
Supplementary Material
Policy Learning Using Weak Supervision

Abstract

In this supplementary material, we first provide theoretical analysis of the con-
vergence rate (Sec A.1) and sample complexity (Sec A.2) for Peer Q-Learning
algorithm. Then we provide the extension to multi-outcome setting with theoretical
proofs (Sec A.3). We also show the extensions to other modern DRL algorithms
in Sec A.4, and further discussions on the effectiveness of PeerRL in Sec A.5.
We then provide more “tie-breaking” examples on varied noise models together
with the python-style code snippet in Sec B. In Sec C, we provide the technical
proofs for proposed PeerBC approach under mild assumptions. Then, we report
the experimental setup details (Sec D.1), the implementation details (Sec D.2),
and additional experiments including complete results for Figure 2 and Table 1
(Sec D.3), sensitivity analysis of peer penalty coefficient ⇠ (Sec D.4), and study of
stochasticity for behavioral cloning policy (Sec D.5). The summary of contents in
the supplementary is provided in the following.

Contents

A Analysis of PeerRL 17
A.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.2 Sample Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.3 Multi-outcome Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.4 Extension in Modern DRL algorithms . . . . . . . . . . . . . . . . . . . . . . . . 23

A.5 Further Discussions on the Effectiveness of PeerRL . . . . . . . . . . . . . . . . . 24

B Tie-Breaking: Toy Examples 25

C Analysis of PeerBC 26

D Supplementary Experiments 28
D.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.3 Supplementary Results for Figure 2 and Table 1 . . . . . . . . . . . . . . . . . . . 28

D.4 Sensitivity Analysis of Peer Penalty ⇠ . . . . . . . . . . . . . . . . . . . . . . . . 29

D.5 Stochastic Policy for Behavioral Cloning . . . . . . . . . . . . . . . . . . . . . . . 31

16



A Analysis of PeerRL

We start this section by providing the proof of the convergence of Q-Learning under peer reward r̃peer

(Theorem A1). Moreover, we give the sample complexity of phased value iteration (Theorem A2).
In the rest of this section, we show how to extend the proposed method to multi-outcome setting
(Section A.3) and modern deep reinforcement learning (DRL) algorithms such as policy gradient [51]
and DQN [49, 56] (Section A.4).

A.1 Convergence

Recall that we consider the binary reward case {r+, r�}, where r+ and r� are two reward levels. The
flipping errors of the reward are defined as e+ = P(r̃t = r�|rt = r+) and e� = P(r̃t = r+|rt = r�).
The peer reward is defined as rpeer(s, a) = r(s, a)� r

0, where r
0 is randomly sampled reward over

all state-action pair (s, a). Note that we treat each (s, a) equally when sampling the r
0 due to lack of

the knowledge of true transition probability P . In practice, the agent could only noisy observation of
peer reward r̃peer(s, a) = r̃(s, a)� r̃

0. We provide the Q-learning with peer reward in Algorithm A1.

Algorithm A1 Q-Learning with Peer Reward

Require: fM = (S,A, eR,P, �), learning rate ↵ 2 (0, 1), initial state distribution �0.
1: Initialize Q: S ⇥A! R arbitrarily
2: while Q is not converged do
3: Start in state s ⇠ �0

4: while s is not terminal do
5: Calculate ⇡ according to Q and exploration strategy
6: a ⇡(s); s0 ⇠ P(·|s, a)
7: Observe noisy reward r̃(s, a) and randomly sample another r̃0 from all state-action pairs
8: Calculate peer reward r̃peer(s, a) = r̃(s, a)� r̃0

9: Q(s, a) (1� ↵) ·Q(s, a) + ↵ · (r̃peer(s, a) + � ·maxa0 Q(s0, a0))
10: s s0

11: end while
12: end while
Ensure: Q(s, a) and ⇡(s)

We then show the proposed peer reward r̃peer offers us an affine transformation of true reward in
expectation, which is the key to guaranteeing the convergence for RL algorithms.
Lemma 1. Let r 2 [0, Rmax] be bounded reward and assume 1� e� � e+ > 0. Then, if we define
the peer reward r̃peer(s, a) = r̃(s, a)� r̃

0, in which the penalty term r̃
0 is randomly sampled noisy

reward over all state-action pair (s, a), we have

E[r̃peer(s, a)] = (1� e� � e+)E[rpeer(s, a)] = (1� e� � e+)E[r(s, a)] + const,

where rpeer(s, a) is the clean version of peer reward when observing the true reward.

Proof. With slight notation abuse, we let r̃peer, r, r̃ represent the random variables r̃peer(s, a), r(s, a),
r̃(s, a). Let ⇡(s, a) denotes the RL agent’s policy. Consider the two terms on the RHS of noisy peer
reward separately,

E[r̃] = P(r = r+|⇡) · Er=r+ [P(r̃ = r�|r = r+) · r� + P(r̃ = r+|r = r+) · r+] (6)
+ P(r = r�|⇡) · Er=r� [P(r̃ = r�|r = r�) · r� + P(r̃ = r+|r = r�) · r+] (7)

= P(r = r+|⇡) · Er=r+ [e+r� + (1� e+)r+] (8)
+ P(r = r�|⇡) · Er=r� [(1� e�)r� + e�r+] (9)

= P(r = r+|⇡) · Er=r+ [(1� e+ � e�) · r+ + e+r� + e�r+] (10)
+ P(r = r�|⇡) · Er=r� [(1� e� � e+) · r� + e�r+ + e+r�)] (11)

= (1� e+ � e�)E[r] + e�r+ + e+r�. (12)

Since we are treating the visitation probability of all state-action pair (s, a) equally while sampling
the peer penalty r

0, then the probability of true reward r under this sampling policy ⇡sample is a

17



constant, denoting as ppeer, i.e., ppeer = P(r = r�|⇡sample) is a constant. Then we have,

E[r̃0] = P(r̃ = r�|⇡sample) · r� + P(r̃ = r+|⇡sample) · r+ (13)
= (e+ppeer + (1� e�) (1� ppeer)) · r� + ((1� e+)ppeer + e�(1� ppeer)) · r+ (14)
= (1� e� � e+)[(1� ppeer) · r� + ppeer · r+] + e+r� + e�r+. (15)

As a consequence, we obtain the expectation of peer reward satisfies

E[r̃peer] = E[r̃]� E[r̃0] (16)
= (1� e+ � e�)E[r]� (1� e� � e+)[(1� ppeer) · r� + ppeer · r+] (17)
= (1� e� � e+)E[r] + const. (18)

Similarly, it is easy to obtain that E[rpeer] = E[r] � [(1 � ppeer) · r� + ppeer · r+]. Therefore, we
have E[r̃peer] = (1� e� � e+)E[rpeer] = (1� e� � e+)E[r] + const.

Lemma 1 shows the proposed peer reward r̃peer offers us a “noise-free” positive (1 � e� � e+ >

0) linear transformation of true reward r in expectation, which is shown the key to govern the
convergence. It is widely known in utility theory and reward shaping literature [60, 61, 62] that any
positive linear transformations leave the optimal policy unchanged. As a consequence, we consider a
“transformed MDP” M̂ with reward r̂ = (1� e� � e+)r+ const, where the const is the same as the
constant in Eqn. (18).

In what follows, we provide the formulation of the concept of “transformed MDP” with the policy
invariance guarantee.

Lemma A1. Given a finite MDP M = hS,A,R,P, �i, a transformed MDP M̂ = hS,A, R̂,P, �i

with positive linear transformation in reward r̂ := a · r + b, where a, b are constants and a > 0, is
guaranteed consistency in optimal policy.

Proof. The Q function for transformed MDP M̂ (denoting as Q̂) is given as follows:

Q̂(s, a) =
1X

t=0

�
t
r̂t =

1X

t=0

�
t(a · rt + b)

= a

1X

t=0

�
t
rt +

1X

t=0

�
t
b

= a ·Q(s, a) +B,

where B =
P1

t=0 �
t
b is a constant. Therefore, there is only a postive linear shift (a > 0) in Q̂(s, a)

thus resulting in invariance in optimal policy for transformed MDP:

⇡̂
⇤(s) = argmax

a2A
Q̂

⇤(s, a) = argmax
a2A

[a ·Q(s, a) +B]

= argmax
a2A

Q(s, a) = ⇡
⇤(s).

Lemma A1 states that we only need to analysis the convergence of learned policy ⇡(s) to the optimal
policy ⇡̂

⇤(s) for transformed MDP M̂, which is equivalent to the optimal policy ⇡(s)⇤ for original
MDP. This result is relevant to potential-based reward shaping [60, 61] where a specific class of state-
dependent transformation is adopted to speed up the convergence speed of Q-Learning meanwhile
maintaining the optimal policy invariance. Moreover, a degenerate case for single-step decisions is
studied in utility theory [62] which also implies our result.

Finally, we need an auxiliary result (Lemma A2) from stochastic process approximation to analyse
the convergence for Q-Learning.
Lemma A2. The random process {�t} taking values in Rn and defined as

�t+1(x) = (1� ↵t(x))�t(x) + ↵t(x)Ft(x)

converges to zero w.p.1 under the following assumptions:

18



• 0  ↵t  1,
P

t ↵t(x) = 1 and
P

t ↵t(x)2 < 1;

• ||E [Ft(x)|Ft] ||W  �||�t||, with � < 1;

• Var [Ft(x)|Ft]  C(1 + ||�t||
2
W ), for C > 0.

Here Ft = {�t,�t�1, · · · , Ft�1 · · · ,↵t, · · · } stands for the past at step t, ↵t(x) is allowed to
depend on the past insofar as the above conditions remain valid. The notation || · ||W refers to some
weighted maximum norm.

Proof of Lemma A2. See previous literature [63, 64].

Theorem A1. (Convergence) Given a finite MDP with noisy reward, denoting as fM =
hS,A, eR, F,P, �i, the Q-learning algorithm with peer rewards, given by the update rule,

Qt+1(st, at) = (1� ↵t)Qt(st, at) + ↵t


r̃peer(st, at) + �max

b2A
Qt(st+1, b)

�
, (19)

⇡t(s) = argmax
a2A

Qt(s, a) (20)

converges w.p.1 to the optimal policy ⇡
⇤(s) as long as

P
t ↵t = 1 and

P
t ↵

2
t < 1.

Proof. Firstly, we construct a surrogate MDP M̂ with the positive-linearly transformed reward
r̂ = (1 � e� � e+) · r + const, where const = �(1 � e� � e+)((1 � p) · r� + p · r+) is a
constant. From Lemma A1, we know the optimal policy for M̂ is precisely the optimal policy for
M: ⇡̂⇤(s) = ⇡

⇤(s).

Let Q̂⇤ denotes the optimal state-action function for this transformed MDP M̂. For notation brevity,
we abbreviate st, st+1, r̃peer(st, st+1), Qt, Qt+1, and ↵t as s, s0, Q, Q0, r̃peer and ↵, respectively.

Subtracting from both sides the quantity Q̂
⇤(s, a) in Eqn. (20):

Q
0(s, a)� Q̂

⇤(s, a) =(1� ↵)
⇣
Q(s, a)� Q̂

⇤(s, a)
⌘
+ ↵


r̃peer + �max

b2A
Q(s0, b)� Q̂

⇤(s, a)

�
.

Let �t(s, a) = Q(s, a)� Q̂
⇤(s, a) and Ft(s, a) = r̃peer + �maxb2A Q(s0, b)� Q̂

⇤(s, a).

�t+1(s
0
, a) = (1� ↵)�t(s, a) + ↵Ft(s, a).

In consequence,

E [Ft(s, a)|Ft] = E

r̃peer + �max

b2A
Q(s0, b)

�
� Q̂

⇤(s, a)

= E

r̃peer + �max

b2A
Q(s0, b)� r̂ � �max

b2A
Q̂

⇤(s0, b)

�

= E [r̃peer]� E [r̂] + �E

max
b2A

Q(s0, b)�max
b2A

Q̂
⇤(s0, b)

�

= �E

max
b2A

Q(s0, b)�max
b2A

Q̂
⇤(s0, b)

�

 �E


max
b2A,s02S

���Q(s0, b)� Q̂
⇤(s0, b)

���
�

= �E
h
kQ� Q̂

⇤
k1

i
= �||Q� Q̂

⇤
||1 = �||�t||1.

19



In above derivations, we utilize the unbiasedness property for peer reward (Lemma 1) and the
inequality maxb2A Q(s0, b)�maxb2A Q̂

⇤(s0, b)  maxb2A,s02S

���Q(s0, b)� Q̂
⇤(s0, b)

���.

Var [Ft(s, a)|Ft] = E
"✓

r̃peer + �max
b2A

Q(s0, b)� Q̂
⇤(s, a)� E


r̃peer + �max

b2A
Q(s0, b)� Q̂

⇤(s, a)

�◆2
#

= E
"✓

r̃peer + �max
b2A

Q(s0, b)� E

r̃peer + �max

b2A
Q(s0, b)

�◆2
#

= Var


r̃peer + �max

b2A
Q(s0, b)

�
.

Since r̃peer is bounded, it can be clearly verified that

Var [Ft(s, a)|Ft]  C
00(1 + ||�t(s, a)||

2
1)

for some constant C 00
> 0. Then, �t converges to zero w.p.1 from Lemma A2, i.e., Q(s, a)

converges to Q̂
⇤(s, a). As a consequence, we know the policy ⇡t(s) converges to the optimal policy

⇡̂
⇤(s) = ⇡

⇤(s).

A.2 Sample Complexity

In this section, we establish the sample complexity for Q-Learning with peer reward as discussed in
Sec 4. Since the transition probability P in MDP remains unknown in practice, we firstly introduce a
practical sampling model G(M) following previous literature [65, 66, 67]. in which the transition
can be observed by calling the generative model. Then the sample complexity is analogous to the
number of calls for G(M) to obtain a near optimal policy.
Definition A1. A generative model G(M) for an MDP M is a sampling model which takes a
state-action pair (st, at) as input, and outputs the corresponding reward r(st, at) and the next state
st+1 randomly with the probability of Pa(st, st+1), i.e., st+1 ⇠ P(·|s, a).

It is known that exact value iteration is not feasible when the agent interacts with generative model
G(M) [7, 68]. For the convenience of analysing sample complexity, we introduce a phased value
iteration following [7, 65, 68].

Algorithm A2 Phased Value Iteration

Require: G(M): generative model of M = (S,A,R,P, �), T : number of iterations.
1: Set VT (s) = 0
2: for t = T � 1, · · · , 0 do
3: Calling G(M) m times for each state-action pair.

P̄a(st, st+1) =
#[(st, at) ! st+1]

m

4: Set

V (st) = max
a2A

X

st+12S
P̄a(st, st+1) [rt + �V (st+1)]

⇡(s) = argmax
a2A

V (st)

5: end for
6: return V (s) and ⇡(s)

Note that P̄a(st, st+1) is the estimation of transition probability Pa(st, st+1) by calling G(M) m
times. For the simplicity of notations, the iteration index t decreases from T � 1 to 0.

We could also adopt peer reward in phased value iteration by replacing Line 4 in Algorithm A2 by

V (st) = max
a2A

X

st+12S
P̄a(st, st+1) [r̃peer(st, a) + �V (st+1)] .

20



Then the sample complexity of one variant (phased value iteration) of Q-Learning is given as follows:
Theorem A2. (Sample Complexity) Let r 2 [0, Rmax] be bounded reward, for an appropriate choice
of m, the phased value iteration algorithm with peer reward r̃peer calls the generative model G(fM)

O

⇣
|S||A|T

✏2(1�e��e+)2 log
|S||A|T

�

⌘
times in T epochs, and returns a policy such that for all state s 2 S,

��� 1⌘V
⇡(s)� V

⇤(s)
���  ✏, w.p. � 1� �, 0 < � < 1, where ⌘ = 1� e� � e+ > 0 is a constant.

Proof. Similar to Theorem A1, we firstly construct a transformed MDP M̂ and the optimal policies
for these two MDP are equivalent (Lemma A1). As a result, we could analyse the sample complexity
of phased value iteration under M̂.

It is easy to obtain that r̃peer 2 [0, Rmax] and V
⇡(s) 2

h
0, Rmax

1��

i
are also bounded. Using Hoeffd-

ing’s inequality, we have

Pr

0

@

������
E
h
V̂

⇤
t+1(st+1)

i
�

X

st+12S
P̄a(st, st+1)V̂

⇤
t+1(st+1)

������
� ✏

1

A  2 exp

✓
�2m✏

2(1� �)2

R2
max

◆
,

Pr

0

@

������
E [r̃peer(st, a)]�

X

st+12S
P̂a(st, st+1)r̃peer(st, a)

������
� ✏

1

A  2 exp

✓
�2m✏

2

R2
max

◆
.

Then the difference between learned value function V
⇡(s)t and optimal value function V̂

⇤(s)t under
transformed MDP at iteration t is given:

���V̂ ⇤
t (s)� Vt(s)

��� = max
a2A

E
⇥
rt + �V

⇤
t+1(st+1)

⇤
�max

a2A

X

st+12S
P̄a(st, st+1) [r̃peer(st, a) + �Vt+1(st+1)]

 max
a2A

������
E [rt]�

X

st+12S
P̄a(st, st+1)r̃peer(st, a)

������

+ �max
a2A

������
E
h
V̂

⇤
t+1(st+1)

i
�

X

st+12S
P̄a(st, st+1)Vt+1(st+1)

������

 ✏1 +max
a2A

|E [rt]� E [r̃peer]|+ �✏2 +
���E

h
V̂

⇤
t+1(st+1)

i
� E [Vt+1(st+1)]

���

 �max
s2S

���V̂ ⇤
t+1(s)� Vt+1(s)

���+ ✏1 + �✏2

Recursing above equation, we get

max
s2S

���V̂ ⇤(s)� V (s)
���  (✏1 + �✏2) + �(✏1 + �✏2) + · · ·+ �

T�1(✏1 + �✏2)

=
(✏1 + �✏2)(1� �

T )

1� �

Let ✏1 = ✏2 = (1��)✏
(1+�) , then maxs2S

���V̂ ⇤(s)� V (s)
���  ✏. In other words, for arbitrarily small ✏, by

choosing m appropriately, there always exists ✏1 and ✏2 such that the value function error is bounded
within ✏. As a consequence the phased value iteration algorithm can converge to the near optimal
policy within finite steps using peer reward.

Note that there are in total |S||A|T transitions under which these conditions must hold, where | · |

represent the number of elements in a specific set. Using a union bound, the probability of failure in
any condition is smaller than

2|S||A|T · exp

✓
�m

✏
2(1� �)2

(1 + �)2
·
(1� �)2

R2
max

◆
.

21



We set above failure probability less than �, and m should satisfy that

m = O

✓
1

✏2
log

|S||A|T

�

◆
.

In consequence, after m|S||A|T calls, which is, O
⇣

|S||A|T
✏2 log |S||A|T

�

⌘
, the value function con-

verges to the optimal value function V̂
⇤(s) for every s in transformed MDP fM , with probability

greater than 1� �.

From Lemma A1, we know V̂
⇤(s) = (1 � e� � e+) · V ⇤(s) + C, where C is a constant. Let

✏ = (1� e� � e+) · ✏0 and V (s) = (1� e� � e+) · V 0(s) + C, we have

|V
⇤(s)� V

0(s)| =

�����
V̂

⇤(s)� C

(1� e� � e+)
�

V (s)� C

(1� e� � e+)

����� (21)

=
1

(1� e� � e+)

���V̂ ⇤(s)� V (s)
���  ✏

0 (22)

This indicates that when the algorithm converges to the optimal value function for transformed
MDP M̂, it also finds a underlying value function V

0(s) = 1
⌘V (s) that converges the optimal value

function V
⇤(s) for original MDP M.

As a consequence, we know it needs to call O
⇣

|S||A|T
✏02(1�e��e+)2 log

|S||A|T
�

⌘
to achieve an ✏

0 error

in value function for original MDP M, which is no more than O

⇣
1

(1�e��e+)2

⌘
times of the one

needed when the RL agent observes true rewards perfectly. When the noise is in high-regime, the
algorithm suffers from a large 1

(1�e��e+)2 thus less efficient. Moreover, the sample complexity of
phased value iteration with peer reward is equivalent to the one with surrogate reward in [7] though
sampling peer reward is less expensive and does not rely on any knowledge of noise rates.

A.3 Multi-outcome Extension

In this section, we show our peer reward is generalizable to multi-class setting. Recall that in Section
2.2 we suppose the reward is discrete and has |R| levels, and the noise rates are characterized as
CRL

|R|⇥|R|. Here we make further assumptions on the confusion matrix: the reward is misreported to
each level with specific probability, e.g.,

CRL
|R|⇥|R| =

2

6664

1�
P

i 6=1 ei, e2, · · · e|R|
e1, 1�

P
i 6=2 ei, · · · e|R|

... · · ·
. . .

...
e1, e2, · · · , 1�

P
i 6=|R| ei

3

7775
(23)

Following the notations in A.1, we define the peer reward in multi-outcome settings as r(s, a) =
r̃(s, a) � r

0, where r
0 is randomly sampled following a specific sample policy ⇡sample over all

state-action pairs. Let eRpeer, R, eR, and R
0 denote the random variables corresponding to r̃peer, r, r̃,

r
0, cij represents the entry of CRL

|R|⇥|R|. Then we have

E⇡

h
eR
i
=

|R|X

i=1

P (R = Ri|⇡)

|R|X

j=1

cijRj

=

|R|X

i=1

P (R = Ri|⇡)

2

4

0

@1�
X

j 6=i

ei

1

ARi +
X

j 6=i

ejRj

3

5

=

|R|X

i=1

P (R = Ri|⇡)

2

4

0

@1�

|R|X

j=1

ei

1

ARi +

|R|X

j=1

ejRj

3

5

=

0

@1�

|R|X

j=1

ej

1

AE⇡ [R] +

|R|X

j=1

ejRj ,

22



and

E⇡sample

h
eR0
i
=

|R|X

i=1

Ri · P
⇣
eR = Ri|⇡sample

⌘

=

|R|X

j=1

Rj

|R|X

i=1

P (R = Ri|⇡sample) cij

=

|R|X

j=1

Rj

2

4
X

i 6=j

P (R = Ri|⇡sample) ej + P (R = Rj |⇡sample)

0

@1�
X

i 6=j

ei

1

A

3

5

=

|R|X

j=1

Rj

2

4
|R|X

i=1

P (R = Ri|⇡sample) ej + P (R = Rj |⇡sample)

0

@1�

|R|X

i=1

ei

1

A

3

5

=

0

@1�

|R|X

i=1

ei

1

AE⇡sample [R] +

|R|X

j=1

ejRj .

Then, the peer reward is formulated as

E
h
eRpeer

i
= E⇡

h
eR
i
� E

h
eR0
i

=

0

@1�

|R|X

j=1

ej

1

AE⇡ [R]�

0

@1�

|R|X

i=1

ei

1

AE⇡sample [R]

=

0

@1�

|R|X

j=1

ej

1

AE⇡ [R] + const.

A.4 Extension in Modern DRL algorithms

In this section, we give the following deep reinforcement learning algorithms combined with our
peer reward in Algorithm A3 and A4. In Algorithm A3, we give the peer reward aided robust
policy gradient algorithm, where the gradient in Equation 24 corresponds to the loss function
`((s, a), q) = q log ⇡✓(a|s), which is classification calibrated [17]. So the expectation of the gradient
in 24 is an unbiased esitmation of the policy gradient in corresponding clean MDP. In (A4), we
present a robust DQN algorithm with peer sampling, in which the origin loss is `((s, a), ỹ), also
classification calibrated. Thus the robustness can be proved via [17].

Algorithm A3 Policy Gradient [51] with Peer Reward

Require: fM = (S,A, eR,P, �), learning rate ↵ 2 (0, 1), initial state distribution �0, weight parameter ⇠.
1: Initialize ⇡✓: S ⇥A! R arbitrarily
2: for episode = 1 to M do
3: Collect trajectory ⌧✓ = {(si, ai, r̃i)}Ti=0, where s0 ⇠ �0, at ⇠ ⇡✓(·|st), st+1 ⇠ P(·|st, at).
4: Compute qt =

PT
i=t �

t�ir̃i for all t 2 {0, 1, . . . , T}
5: For each index i 2 {0, 1, . . . , T}, we independently sample another two different indices j, k,
6: and update policy parameter ✓ following

✓  ✓ + ↵ [qir✓ log ⇡✓(ai|si)� ⇠ · qkr✓ log ⇡✓(aj |sj)] (24)

7: end for
Ensure: ⇡✓

23



Algorithm A4 Deep Q-Network [49] with Peer Reward

Require: fM = (S,A, eR,P, �), learning rate ↵ 2 (0, 1), initial state distribution �0, weight parameter ⇠.
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights
3: for episode = 1 to M do
4: for t = 1 to T do
5: With probability ✏ select a random action at, otherwise select at = maxa Q

⇤(s, a)
6: Execute action at and observe reward r̃t and observation st+1

7: Store transition (st, at, r̃t, st+1) in D
8: Sample three random minibatches of transitions (si, ai, r̃i, si+1), (sj , aj , r̃j , sj+1), (sk, ak, r̃k, sk+1)

from D.

9: Set ỹi =

(
r̃i for terminalsi
r̃i + �maxa0 Q(si+1, a

0) for non-terminal si+1

10: Set ỹpeer =

(
r̃k for terminalsi
r̃k + �maxa0 Q(sj+1, a

0) for non-terminal sj+1

11: Perform a gradient descent step on (ỹi �Q(si, ai))
2 � ⇠ · (ỹpeer �Q(sj , aj))

2

12: end for
13: end for
Ensure: Q

A.5 Further Discussions on the Effectiveness of PeerRL

We can also analyze why peer rewards are beneficial from the error upper bound. When ⇠ = 1, define
the sample mean of rewards as follows.

¯̃r :=
1

T

TX

t=1

r̃(st, at), ¯̃rpeer :=
1

T

TX

t=1

r̃peer(st, at) =
1

T

TX

t=1

[r̃(st, at) + (1� r
0
t)]� 1.

By Hoeffding’s inequality, noting there are T independent random variables in estimating ¯̃r and 2T
independent random variables in estimating ¯̃rpeer, we know w.p. at least 1� �,

|¯̃r � E[r̃]|  Rmax

r
ln 2/�

2T
,

and

|¯̃rpeer � E[¯̃rpeer]|  Rmax

r
ln 2/�

T
.

We can denote the relationship between reward estimates and the corresponding error rate estimates
ē�, ē+ as:

¯̃r = (1� ē� � ē+)r̄ + ē�r+ + ē+r�.

We have

|¯̃r � E[r̃]| =|(1� ē� � ē+)r̄ � (1� e� � e+)E[r] + (ē� � e�)r+ + (ē+ � e+)r�|

=|(1� ē� � ē+)r̄ � (1� ē� � ē+)E[r] + (e� � ē� + e+ � ē+)E[r] + (ē� � e�)r+ + (ē+ � e+)r�|

�(1� ē� � ē+)|r̄ � E[r]|� |ē� � e�|(r+ + E[r])� |ē+ � e+|(r� + E[r]).
Thus

|r̄ � E[r]| 
Rmax

q
ln 2/�
2T + |ē� � e�|(r+ + E[r]) + |ē+ � e+|(r� + E[r])

1� ē� � ē+
.

Assume �e = |ē� � e�| = |ē+ � e+|. We have

|r̄ � E[r]| 
Rmax

q
ln 2/�
2T + �e(r+ + r� + 2E[r])

1� ē� � ē+
(25)

Similarly, for peer rewards, note
¯̃rpeer = (1� ē� � ē+)(r̄ � (1� p̄peer)r� � p̄peerr+).

24



We have

|¯̃rpeer � E[r̃peer]| =|(1� ē� � ē+)(r̄ � (1� p̄peer)r� � p̄peerr+)� (1� ē� � ē+)(E[r]� (1� ppeer)r� � ppeerr+)

+ (e� � ē� + e+ � ē+)(E[r]� (1� ppeer)r� � ppeerr+)|

�(1� ē� � ē+)|r̄ � E[r]|� (1� ē� � ē+)|p̄peer � ppeer||r� � r+|�

|ē� � e�| · |E[r]� (1� ppeer)r� � ppeerr+|� |ē+ � e+| · |E[r]� (1� ppeer)r� � ppeerr+|.

Thus

|r̄�E[r]| 
Rmax

q
ln 2/�

T + (|ē+ � e+|+ |ē� � e�|) · |E[r]� (1� ppeer)r� � ppeerr+|

1� ē� � ē+
+|p̄peer�ppeer||r��r+|.

Assume �e = |ē� � e�| = |ē+ � e+| = |p̄peer � ppeer|. We have

|r̄ � E[r]| 
Rmax

q
ln 2/�

T + 2�e · |E[r]� (1� ppeer)r� � ppeerr+|

1� ē� � ē+
+ �e|r� � r+|. (26)

Comparing Eqn. (25) and Eqn. (26), for the high-noise case, we can infer peer rewards likely
have lower sample complexity, i.e. is more sample efficient. For example, when ppeer = 0.5,
e� = e+ = 0.3, Rmax = 1, r+ = 1, r� = 0, ē� � e� = ē+ � e+ = �e, E[r] = 0.5, we have

|r̄ � E[r]| 

q
ln 2/�
2T + 2�e

0.4
(Plain Reward),

|r̄ � E[r]| 

q
ln 2/�

T + 1.4�e

0.4
(Peer Reward).

In this case, we know peer rewards have a lower error upper bound for estimating r when T is large.

B Tie-Breaking: Toy Examples

To illustrate tie-breaking phenomenon when using peer reward, we consider a two-state Markov
process (no actions) with varied noise models. An example code segment with stochastic rewards
and discrete noise model (e� = e+ = 0.45) is provided below:

1 def get_rewards(state, num_samples, noise_rate=0.45):
2 if state == 0: r = np.random.choice([0, 1], p=[0.4, 0.6], size=num_samples) # E[r] = 0.6
3 else: r = np.random.choice([0, 1], p=[0.6, 0.4], size=num_samples) # E[r] = 0.4
4 mask = np.random.choice(2, p=(1 - noise_rate, noise_rate), size=num_samples) # Add noise
5 r = (1 - mask) * r + mask * (1 - r)
6 return r
7

8 num_samples, xi = 1000, 0.1
9 is_correct_noisy, is_correct_peer = []. []

10 for _ in tqdm.trange(10000):
11 # Baseline
12 r_vec = np.stack([get_rewards(0, num_samples), get_rewards(1, num_samples)], axis=1)
13 r_hat = np.mean(r_vec, axis=0)
14 is_correct_noisy.append(r_hat[0] > r_hat[1])
15 # PeerRL
16 neg_samples = np.concatenate([get_rewards(0, num_samples), get_rewards(1, num_samples)])
17 np.random.shuffle(neg_samples) # Randomly permutes the elements
18 neg_samples0, neg_samples1 = np.split(neg_samples, 2)
19 r_vec = np.stack([get_rewards(0, num_samples) - xi * neg_samples0,
20 get_rewards(1, num_samples) - xi * neg_samples1], axis=1)
21 r_hat = np.mean(r_vec, axis=0)

25



22 is_correct_peer.append(r_hat[0] > r_hat[1])
23

24 print('\nBaseline Success: %.3f\n' % np.mean(is_correct_noisy))
25 print('\nPeer RL Success: %.3f\n' % np.mean(is_correct_peer))

In Table A1, we conducted more experiments with different noise models and reported the absolute
accuracy differences between PeerRL and baseline (noisy reward) in the following three cases: (1)
"Correct" - successfully inferring the better state s1 with larger expected reward, (2) "Tie" - cannot
infer which state is better as the means of collected rewards in two states are equal, (3) "Incorrect" -
wrongly inferring state s2 is better ("Incorrect"). As we can see, PeerRL exploits the "discreteness"
of the reward thus breaking ties to obtain more examples with good-quality supervision. This tie
breaking phenomenon also happens for stochastic reward and bounded/discretized continuous reward.

Table A1: Tie breaking toy examples under varied noise models.
Bounded continuous noise Correct Tie Incorrect
s1 : r = np.clip(np.random.normal(0.6,1.0, num_samples),0,1)
s2 : r = np.clip(np.random.normal(0.4,1.0, num_samples),0,1) +3.4% -5.3% +1.9%
s1 : r = np.clip(np.random.laplace(0.6,1.0, num_samples),0,1)
s2 : r = np.clip(np.random.laplace(0.4,1.0, num_samples),0,1) +2.0% -4.8% +2.8%

Discretized continuous noise Correct Tie Incorrect
s1 : r = np.random.normal(0.6, 1.0, num_samples)
s2 : r = np.random.normal(0.4, 1.0, num_samples)
bins = np.arange(0, 1.01, 0.01), inds = np.digitize(r, bins)
r = bins[inds - 1]

+6.2% -12.6% +6.4%

Stochastic reward with discrete noise Correct Tie Incorrect
s1 : r = np.random.choice([0, 1], p=[0.6, 0.4], size=num_samples)
s2 : r = np.random.choice([0, 1], p=[0.4, 0.6], size=num_samples)
e = 0.4, mask = np.random.choice(2, p=(1 - e, e), size=num_samples)
r = (1 - mask) * r + mask * (1 - r)

+11.7% -23.1% +11.4%

s1 : r = np.random.poisson(0.6, 1.0, num_samples)
s2 : r = np.random.poisson(0.4, 1.0, num_samples) +10.2% -20.8% +10.6%

Deterministic reward with discrete noise Correct Tie Incorrect
s1 : r = np.random.choice([0, 1], p=[0.6, 0.4], size=num_samples)
s2 : r = np.random.choice([0, 1], p=[0.4, 0.6], size=num_samples)
e = 0.4, mask = np.random.choice(2, p=(1 - e, e), size=num_samples)
r = (1 - mask) * r + mask * (1 - r)

+10.5% -21.2% +10.7%

Continuous noise Correct Tie Incorrect
s1 : r = np.clip(np.random.normal(0.6,1.0, num_samples),0,1)
s2 : r = np.random.normal(0.4,1.0, num_samples) +0.0% -0.0% +0.0%
s1 : r = np.random.laplace(0.6,1.0, num_samples)
s2 : r = np.clip(np.random.laplace(0.4,1.0, num_samples),0,1) +0.0% -0.0% +0.0%

C Analysis of PeerBC

We prove that the policy learned by PeerBC converges to the expert policy when observing a sufficient
amount of weak demonstrations in Theorem A3.
Theorem A3. With probability at least 1� �, the error rate is upper-bounded by

R
⇤
DE


1 + ⇠

1� e� � e+

r
2 log 2/�

N
, (27)

where N is the number of state-action pairs demonstrated by the expert.

Proof. Recall eDE denotes the joint distribution of imperfect expert’ state-action pair (s, ã). Assume
there is a perfect expert and the corresponding state-action pairs (s, a) ⇠ DE . The indicator
classification loss (⇡(s), a) is specified here for a clean presentation, where (⇡(s), a) = 1 when

26



⇡(s) 6= a, otherwise (⇡(s), a) = 0. Let eDE := {(si, ãi)}Ni=1 be the set of imperfect demonstrations,
and DE := {(si, ãi)}Ni=1 be the set of weak demonstrations. Define:

RDE (⇡) := E(s,a)⇠DE
[ (⇡(s), a)] , R eDE

(⇡) := E(s,ã)⇠DE
[ (⇡(s), ã)]

R̂DE (⇡) :=
1

N

X

i2[N ]

(⇡(si), ai), R̂ eDE
(⇡) :=

1

N

X

i2[N ]

(⇡(si), ãi).

Note we focus on the analyses of loss in this proof. The negative of loss can be seen as a reward.
Denote by ⇡ eDE

and ⇡ eDE
be the optimal policy obtained with minimizing the indicator loss with

dataset eDE and distribution eDE . We shorten ⇡ eDE
as ⇡̃⇤, which is the best policy we can learn from

imperfect demonstration with our algorithm. Let ⇡⇤ be the policy for the perfect expert. We would
like to see the performance gap of policy learning between imperfect demonstrations and perfect
demonstrations, i.e. RDE (⇡̃

⇤)� RDE (⇡
⇤). Using Hoeffding’s inequality with probability at least

1� �, we have

|R̂ eDE
(⇡)�R eDE

(⇡)|  (1 + ⇠)

r
log 2/�

2N
.

Note we also have

R eDE
(⇡̃⇤)�R eDE

(⇡ eDE
)

R̂ eDE
(⇡̃⇤)� R̂ eDE

(⇡ eDE
)+

⇣
R eDE

(⇡̃⇤)� R̂ eDE
(⇡̃⇤)

⌘

+
⇣
R̂ eDE

(⇡ eDE
)�R eDE

(⇡ eDE
)
⌘

0 + 2max
⇡

���R̂ eDE
(⇡)�R eDE

(⇡)
���

(1 + ⇠)

r
2 log 2/�

N
.

Before proceeding, we need to define a constant to show the affect of label noise. When the dimension
of action space is 2, the problem is essentially a binary classification with noisy labels [17], where
the noise rate (a.k.a confusion matrix) is defined as e+ = P(⇡̃E(s) = A�|⇡

⇤(s) = A+) and
e� = P(⇡̃E(s) = A+|⇡

⇤(s) = A�). Recall the action space is defined as A = {A+, A�}. The
noise constant is denoted by e = e�1 + e+1. Accordingly, when the dimension of action space is
|R| > 2, we can also get similar results under uniform noise where

eu := P(⇡̃E(s) = u|⇡
⇤(s) = u

0), u0
6= u. (28)

The noise constant e is denoted by e =
P|R|

u=1 eu. The feature-independent assumption holds thus
the properties of peer loss functions [17] can be used, i.e.

RDE (⇡̃
⇤)�RDE (⇡

⇤)

=
1

1� e

⇣
R eDE

(⇡̃⇤)�R eDE
(⇡ eDE

)
⌘


1 + ⇠

1� e

r
2 log 2/�

N

From definition and deterministic assumption for ⇡⇤, we have RDE (⇡
⇤) = 0. Thus the error rate in

the k-th iteration is

RDE (⇡̃
⇤)  RDE (⇡

⇤) +
1 + ⇠

1� e

r
2 log 2/�

N

=
1 + ⇠

1� e

r
2 log 2/�

N
.

(29)

Note RDE (⇡̃
⇤) = R eDE

by definition.

27



D Supplementary Experiments

D.1 Experimental Setup

We set up our experiments within the popular OpenAI stable-baselines2 and keras-rl3 frame-
work. Specifically, three popular RL algorithms including Deep-Q-Network (DQN) [49, 56], Dueling-
DQN (DDQN) [50] and Proximal Policy Optimization Algorithms (PPO) are evaluated in a varied of
OpenAI Gym environments including classic control games (CartPole, Acrobot) and vision-based
Atari-2600 games (Breakout, Boxing, Enduro, Freeway, Pong).

D.2 Implementation Details

RL with noisy reward Following [7], we consider the binary reward {�1, 1} for Cartpole where
the symmetric noise is synthesized with different error rates e = e� = e+. We adopted a five-layer
fully connected network and the Adam optimizer. The model is trained for 10,000 steps with the
learning rate of 1e�3 and the Boltzmann exploration strategy. The update rate of target model and
the memory size are 1e�2 and 50,000. The performance is reported under 10 independent trials with
different random seeds.

BC with weak expert We train the imperfect expert on the framework stable-baselines with
default network architecture for Atari and hyper-parameters from rl-baselines-zoo4. The expert
model is trained for 1, 400, 000 steps for Pong and 2, 000, 000 steps for Boxing, Enduro and Freeway.
For each of those environment, We use the trained model to generate 100 trajectories, and behavior
cloning is performed on these trajectories. We adopt cross entropy loss for behavior cloning and add
a small constant (1⇥ 10�8) for each logit after the softmax operation for peer term to avoid this term
become too large. In BC experiments, the batchsize is 128, learning rate is 1⇥ 10�4 and the ✏ value
for Adam optimizer is 1⇥ 10�8.

Policy co-training For the experiments on Gym (CartPole and Acrobot), we mask the first coor-
dinate in the state vector for one view and the second for the other, same as [43]. Both policies are
trained with PPO[58] + PeerBC. In each iteration, we sample 128 steps from each of the 8 parallel
environments. These samples are fed to PPO training with a batchsize of 256, a learning rate of
2.5⇥ 10�4 and a clip range of 0.1. Both learning rate and clip range decay to 0 throughout time. We
represent the policy by a fully connected network with 2 hidden layers, each has 128 units.

For the experiments on Atari (Pong and Breakout), the input is raw game images. We adopt the
preprocess introduced in [49] and mask the pixels in odd columns for one view and even columns for
the other. The policy we use adopts a default CNN as in stable-baselines. Batchsize, learning
rate, clip range and other hyper-parameters are the same as Gym experiments. Note that we only add
PeerBC after 1000 episodes.

D.3 Supplementary Results for Figure 2 and Table 1

Table A2: Numerical performance of DDQN on CartPole with true reward (r), noisy reward (r̃),
surrogate reward r̂ [7], and peer reward r̃peer(⇠ = 0.2). Ravg denotes average reward per episode
after convergence, (last five episodes) the higher (") the better; Nepi denotes total episodes involved
in 10,000 steps, the lower (#) the better.

e = 0.1 e = 0.2 e = 0.3 e = 0.4

Ravg " Nepi # Ravg " Nepi # Ravg " Nepi # Ravg " Nepi #

DQN

r 183.6± 7.6 101.3± 4.8 184.0± 7.3 101.5± 4.6 184.0± 7.3 101.5± 4.6 184.0± 7.3 101.5± 4.6
r̃ 189.3 ± 12.7 98.2± 6.5 189.7± 7.9 110.5± 7.1 183.2± 9.8 130.5± 7.7 169.7± 18.6 150.2± 11.4
r̂ 188.3± 8.2 101.1± 6.2 192.7 ± 9.2 97.9± 6.4 185.4± 15.9 116.9± 11.0 184.8 ± 16.4 123.1± 8.6

r̃peer 177.2± 19.1 91.2 ± 5.9 170.0± 24.8 94.6 ± 8.5 190.5 ± 14.3 99.4 ± 5.2 183.1± 13.3 118.1 ± 10.7

DDQN

r 195.6± 3.1 101.2± 3.2 195.6± 3.1 101.2± 3.2 195.6± 3.1 101.2± 3.2 195.2± 3.0 101.2± 3.3
r̃ 185.2± 15.6 114.6± 6.0 168.8± 13.6 123.9± 9.6 177.1± 11.2 133.2± 9.1 185.5± 10.9 163.1± 11.0
r̂ 183.9± 10.4 110.6± 6.7 165.1± 18.2 113.9± 9.6 192.2 ± 10.9 115.5± 4.3 179.2± 6.6 125.8± 9.6

r̃peer 198.5 ± 2.3 86.2 ± 5.0 195.5 ± 9.1 85.3 ± 5.4 174.1± 32.5 88.8 ± 6.3 191.8 ± 8.5 106.9 ± 9.2

2https://github.com/hill-a/stable-baselines
3https://github.com/keras-rl/keras-rl
4https://github.com/araffin/rl-baselines-zoo/blob/master/hyperparams/ppo2.yml#L1

28

https://github.com/hill-a/stable-baselines
https://github.com/keras-rl/keras-rl
https://github.com/araffin/rl-baselines-zoo/blob/master/hyperparams/ppo2.yml%23L1


D
Q

N
D

D
Q

N

(a) e = 0.1 (b) e = 0.2 (c) e = 0.3 (d) e = 0.4

Figure A1: Learning curves on CartPole game with true reward (r) , noisy reward (r̃) , surrogate
reward [7] (r̂) , and peer reward (r̃peer, ⇠ = 0.2) . Each experiment is repeated 10 times with
different random seeds.

D.4 Sensitivity Analysis of Peer Penalty ⇠

In this section, we analyze the sensitivity of ⇠ in RL and BC tasks. Note that we did not tune this
hyperparameter extensively in all the experiments presented above since we found our method works
robustly in a wide range of ⇠.

⇠
=

0.
1

⇠
=

0.
2

⇠
=

0.
3

⇠
=

0.
4

(a) e = 0.1 (b) e = 0.2 (c) e = 0.3 (d) e = 0.4

Figure A2: Learning curves of DQN on CartPole game with peer reward (r̃peer) under different
choices of ⇠ (from 0.1 to 0.4).

RL with noisy reward We repeat the experiment in Figure A1 for DQN but with a varying ⇠ from
0.1 to 0.4. As shown in Figure A2, our method works reasonably and leads to faster convergence

29



D
Q

N

(a) e = 0.1 (b) e = 0.2 (c) e = 0.3 (d) e = 0.4

D
D

Q
N

(e) e = 0.1 (f) e = 0.2 (g) e = 0.3 (h) e = 0.4

Figure A3: Learning curves of DQN on CartPole game with peer rewards (r̃peer) . Here, a linear
decay ⇠ is applied during training procedure (initial ⇠ = 0.4). Compared to static ⇠ = 0.4, the linear
decay peer penalty stabilizes the convergence of RL algorithms.

compared to baselines. However, we found that the late stage of training, a small ⇠ is necessary
since the agent already gains useful knowledge and make reasonable actions, therefore, an over-large
penalty might avoid the agent achieving simple agreements with the supervision signals, especially in
a low-noise regime (see ⇠ = 0.4, e = 0.1). This observation inspires us that a decay schedule of ⇠
might be helpful in stabilizing the training of PeerRL algorithms. To verify this hypothesis, we repeat
the above experiments but with a linear decay ⇠ that decreases from 0.4 to 0.1. In Figure A3, we
found the linear decay schedule is able to stabilize the convergence of PeerRL algorithms compared
to static ⇠ = 0.4. The theoretical principles and insights of dynamic peer penalty merit further study.

BC from weak demonstrations We conduct experiments on Pong with 12 different ⇠ values,
varying from 0.1 to 1.2. From Figure A4, we can see PeerBC outperforms pure behavior cloning and
SQIL[37] when ⇠ is within [0.1, 0.7], revealing our proposed PeerBC is a superior behavior cloning
approach able to better elicit information from imperfect demonstrations.

30



(a) ⇠ = 0.1 (b) ⇠ = 0.2 (c) ⇠ = 0.3 (d) ⇠ = 0.4

(e) ⇠ = 0.5 (f) ⇠ = 0.6 (g) ⇠ = 0.7 (h) ⇠ = 0.8

(i) ⇠ = 0.9 (j) ⇠ = 1.0 (k) ⇠ = 1.1 (l) ⇠ = 1.2

Figure A4: Sensitivity analysis of ⇠ for PeerBC on Pong with behavior cloning , PeerBC (⇠
varies from 0.2 to 0.5 and 1.0) and expert . Each experiment is repeated under 3 different random
seeds.

D.5 Stochastic Policy for Behavioral Cloning

In this section, we analyze the stochasticity of the imperfect expert model and fully-converged PPO
agent (assumed to be the clean expert), and show that our PeerBC can handle both cases when the
clean expert is stochastic and when it’s rather deterministic.

Figure A5: The policy entropy of the PPO agent during training. The imperfect expert model is
trained for 0.2⇥ 107 timesteps as the red line indicates.

(a) Pong (b) Boxing (c) Enduro (d) Freeway

Table A3: The policy entropy of the PPO agent during training.
Timesteps (⇥107) Pong Boxing Enduro Freeway

0.2 (Imperfect Expert) 1.201 1.949 1.637 0.318
1.0 (Fully converged PPO) 1.250 1.168 1.126 0.171

Table A4: The mean value of the highest action probability over 1000 steps.
Trained timesteps (⇥107) Pong Boxing Enduro Freeway

1.0 (Fully converged PPO) 0.492 0.579 0.664 0.903

31



We plot the entropy of the PPO agent during training on four environments from the BC task in
Figure A5, and we give the entropy value of the imperfect expert model and the optimal policy in
Table A3. We observe that except for Freeway, the entropy of expert policies is always larger than 1.
We calculate the mean value of the highest action probability over 1000 steps for the full-converged
PPO agents in Table A4, which again verifies that the true expert policy we aim to recover might not
be fully deterministic. These results demonstrate the flexibility of our proposed approach in dealing
with both stochastic and deterministic clean expert policies in practice, although a deterministic clean
expert policy is assumed in our theoretical analysis.

Also, from Figure A5 and Table A3, we notice that the entropy of imperfect expert models are higher
than the fully converged PPO agents, implying that the expert models might contain an amount of
noise. That’s because there might be states on which the expert has not seen enough and the selected
actions contain much noise. This is consistent with our claim, that the benefits of PeerBC might come
from two aspects, both noise reduction of the imperfect expert and inducing a more deterministic
policy.

32


	Introduction
	Related Work

	Policy Learning from Weak Supervision
	Overview of Policy Learning
	Weak Supervision in Policy Learning

	PeerPL: Weakly Supervised PL via Correlated Agreement
	A Unified Evaluation Function
	Overview of the Idea: Correlated Agreement with Weak supervision

	PeerRL: Peer Reinforcement Learning
	Peer Reward
	Why does Peer Reward Work?

	PeerBC: Peer Behavioral Cloning
	Experiments
	PeerRL with Noisy Reward
	PeerBC from Weak Demonstrations
	PeerCT for Standard Policy Co-training

	Conclusion
	Analysis of PeerRL
	Convergence
	Sample Complexity
	Multi-outcome Extension
	Extension in Modern DRL algorithms
	Further Discussions on the Effectiveness of PeerRL

	Tie-Breaking: Toy Examples
	Analysis of PeerBC
	Supplementary Experiments
	Experimental Setup
	Implementation Details
	Supplementary Results for Figure 2 and Table 1
	Sensitivity Analysis of Peer Penalty 
	Stochastic Policy for Behavioral Cloning


