
Appendix for

Reverse engineering learned optimizers reveals known and novel mechanisms

A Comparing results across all mechanisms and tasks

Below, we present and discuss results comparing mechanisms in learned optimizers across the
different tasks studied (linear regression, Rosenbrock, Two Moons, and MNIST classification; see §3).
This comparative anatomy across networks lets us see both how general particular mechanisms are,
and hints at possible ways in which learned optimizers become tuned to a particular task distribution,
at the expense of generalizing to other (untrained) tasks.

A.1 Momentum

1 0 1
PC #2

1

0

1

PC
#4

Linear Regression

1 0 1
PC #1

1

0

1
PC

#2

Rosenbrock

1 0 1
PC #1

1

0

1

PC
#3

Two Moons

2 0 2
Gradient (g)

10

0

10

U
pd
at
e
(Δ
x)

10 0 10
0.02

0.00

0.02

0.01 0.00 0.01
0.015

0.000

0.015

0 1(λ)
0.5

0.0

0.5

(λ
)

0 1
0.5

0.0

0.5

0 1
0.5

0.0

0.5

2 0 2

1

0

1

2

2 0 2

1

0

1

2

2 0 2

1

0

1

2

Iteration

Total
variance

0 200
0

max

0 2000

max

0

max

max

0

maxmax

00

0 200

Learning
R
ate

Learning
R
ate

Learning
R
ate

Figure 8: Momentum in learned optimizers. Each column shows the same phenomena, but for
optimizers trained on different tasks. Top row: Projection of the optimizer state around a convergence
point (black square). Inset: the total variance of the optimizer states over test problems goes to zero
as the trajectories converge. Middle row: visualization of the update functions (§4.1) along the slow
mode of the dynamics (colored lines correspond to arrows in (a)). Along this dimension, the effect on
the system is to induce an offset in the update, just as in classical momentum (cf. Fig. 2c). Bottom
row: Eigenvalues of the linearized optimizer dynamics at the convergence fixed point (black square
in top row) plotted in the complex plane. The eigenvalue magnitudes are momentum timescales, and
the color indicates the corresponding learning rate.

We found highly consistent momentum mechanisms across the first three tasks studied (linear
regression, Rosenbrock, and Two Moons classification). Results for these are shown in Figure 8.
Across these three tasks, we find that optimizer state trajectories converge to a single (global) fixed
point (top row). This can be seen as the total variance across hidden states (inset in top row) goes to
zero as training progresses. The dynamics around these final convergence points are organized around
an approximate 1D line (indicated by gray dots in Fig. 8). When moving along this line, the effect on
the update function is to induce a vertical offset (Fig. 8, middle row). Finally, the dynamics around
these fixed points can be approximated using a linear approximation. This is done by computing
the Jacobian of the system at the fixed point, and looking at its eigenvalues and eigenvectors. The
bottom row of Figure 8 shows these eigenvalues in the complex plane. Across tasks, we find one or

14

two modes that seem responsible for the dynamics. The eigenvalue of these modes can be interpreted
as momentum timescales.

-0.001 0.001
Input (g)

-0.005

0.005

U
pd
at
e
(
x)

Eigenmode #1

-0.001 0.001

Eigenmode #2

-0.001 0.001

Eigenmode #3

-0.001 0.001

Eigenmode #4

0.0 0.5 1.0
()

0.2

0.1

0.0

0.1

0.2
(
)

10-4

10-3

10-2

10-1(a) (b)

Figure 9: Momentum in a learned optimizer trained on MNIST. (a) Eigenvalues of the Jacobian of
the optimizer dynamics, computed at an approximate convergence fixed point. There are multiple
modes with large learning rates that seem to all contribute to the dynamics. (b) Update functions cor-
responding to moving along different eigenvectors of the Jacobian. For the first of these eigenmodes,
the effect seems to be a change in the learning rate. For the rest, we see behavior that resembles
momentum (a vertical shift in the update function).

In a learned optimizer trained on MNIST, we found that trajectories did not converge to just one
fixed point, but instead converged to any number of fixed points along a 1D manifold. The purpose
of this manifold appears to be used for a type of learning rate adaptation, discussed more below in
section A.4. What this means for the momentum mechanism, is twofold. First, the total variance of
the trajectories no longer goes to zero, instead, it remains elevated as the trajectories for different
parameters. Second, we find that there is not a single dominant eigenmode that seems responsible for
momentum, the effect is spread out across multiple eigenmodes.

This is shown in Figure 9. Fig. 9a shows the eigenvalues of the Jacobian computed at one of the
convergence fixed points along the manifold (others are similar). Instead of a single dominant mode,
as observed for the other tasks, there are a number of modes with large learning rates. Fig. 9b shows
the effect of moving along the eigenvector associated with these top eigenvalues in state space. The
first eigenmode corresponds to moving along the fixed point manifold7 and is discussed more below
in the section on learning rate adaptation (A.4). However, eigenmodes 2-4 (and beyond) all have
dynamics that look like momentum; our interpretation of this is that the network is using multiple
momentum timescales as opposed to just one in this case.

A.2 Gradient clipping

The gradient clipping effect (discussed in §5.2) can be tuned by learned optimizers by making the
update function more linear, or more saturating, over the range of expected gradient magnitudes.
Indeed, we find this is the case for learned optimizers trained across the four tasks (Figure 10). For
some tasks, such as linear regression, the update functions look quite linear. For others, such as the
Rosenbrock task, the network uses much more of the saturating part of the curve. Perhaps this is
due to the large changes in curvature in the (non-convex) loss surface; clipping allows the network
to have large learning rates in the valley of the Rosenbrock function, while not diverging if a step
happens to take the network into the high curvature region outside the curved valley.

For the MNIST task (far right column of Fig. 10), we find that the update function does not quite
saturate, but instead slopes backwards, giving a non-monotonic update function. We found this
consistently across multiple learned optimizers trained using different random seeds; however, the
functional benefit of this non-monotonic behavior (if any) remains a mystery.

A.3 Learning rate schedules

Learned optimizers can learn an effective learning rate schedule through the use of autonomous (as
opposed to input-driven) dynamics. The input to the learned optimizer is the gradient with respect to

7A oen dimensional fixed point manifold is an approximate line attractor; for a discrete time linear dynamical
system this moving along the manifold corresponds to moving along an eigenvector whose corresponding
eigenvalue is on the unit circle. Indeed, we see that the first eigenmode corresponds to the eigenvalue on the unit
circle in Fig. 9a.

15

5 0 5
Gradient (g)

20

0

20

Up
da

te
 (

x)

Linear Regression

1000 0 1000
0.1

0.0

0.1
Rosenbrock

0.1 0.0 0.1
0.05

0.00

0.05
Two Moons

0.01 0.00 0.01
0.01

0.00

0.01
MNIST

5 0 5
Gradient

De
ns

ity

1000 0 1000 0.05 0.00 0.05 0.01 0.00 0.01

Figure 10: Gradient clipping in learned optimizers, trained on four different tasks. Top row: The
update function computed at the initial state saturates for large gradient magnitudes. This effect is
similar to that of gradient clipping (cf. Fig. 2b). Bottom row: the empirical density of encountered
gradients for each task (note the different ranges along the x-axes). Depending on the problem, the
learned optimizer can tune its update function so that most gradients are in the linear portion of the
function, and thus not use gradient clipping (seen in linear regression, left column) or can potentially
use more of the saturating region (seen on the Rosenbrock task, middle left).

4 0 4
PC #1

2

0

2

PC
 #

2

Linear Regression

4 0 4
2

0

2
Rosenbrock

4 0 4
2

0

2
Two Moons

4 0 4
2

0

2
MNIST

0 100 200
Iteration

0

5

10

15

Le
ar

nin
g

ra
te

0 100 200
0.000

0.001

0.002

0.003

0 100 200
0

1

2

3

0 100 200
0

5

10

Figure 11: Learning rate schedules mediated by autonomous dynamics. Top row: Low-dimensional
projection of the dynamics of the learned optimizer in response to zero gradients (no input). These
autonomous dynamics allow the system to learn a learning rate schedule (see §5.3). Gray circles
are approximate fixed points of the dynamics. Bottom row: Effective learning rate (measured as
the slope of the update function) as a function of iteration during the autonomous trajectories in the
top row. We only observe a clear learning rate schedule in the linear regression task (far left) and
the MNIST task (far right), both of which include a warm-up and decay. For context, dashed lines
indicate the best (tuned) learning rate for momentum.

a particular parameter. When that derivative is zero, the network should not update the parameter.
However, this does not mean that the hidden state needs to remain constant, instead, the hidden state
is free to evolve along a subspace orthogonal to the readout used to update the parameter.

The functional benefit of this is that through the use of autonomous dynamics, the network can
effectively change its behavior as a function of time (i.e. the current optimization step). One type
of behavioral change that we observe is a change in learning rate. This is prominent in learned
optimizers trained on linear regression (far left column of Fig. 10) and on MNIST (far right column
of Fig. 10).

A.4 Learning rate adaptation

The final phenomenon we found across tasks is learning rate adaptation. The overall effect of this
phenomenon is to reduce (increase) the learning rate for parameters as their corresponding gradient

16

15 0 15
PC #2

10

0

10

PC
#4

Linear Regression

15 0 15
PC #1

10

0

10

PC
#2

Rosenbrock

15 0 15
PC #1

10

0

10

PC
#3

Two Moons

1 0 1
Gradient (g)

20

0

20
U
pd

at
e
(Δ
x)

10 0 10
0.02

0.00

0.02

0.005 0.000 0.005
0.01

0.00

0.01

10 1 100 101
Gradient magnitude (|g|)

0

5

10

15

20

Ef
fe
ct
iv
e
le
ar
ni
ng

ra
te

10-3 100 103
0.0

2.0 10-3

1.5 10-3

1.0 10-3

0.5 10-3

10 4 10 1
0.0

0.5

1.0

1.5

2.0

Figure 12: Learning rate adaptation in learned optimizers. Top row: Approximate fixed points
(colored circles) of the dynamics computed for different gradients reveal an S-curve structure.
Middle row: Update functions (§4.1) computed at different points along the S-curve (corresponding
to arrows from the top row). The effect of moving towards the edge of the S-curve is to make the
update function more shallow (thus have a smaller effective learning rate, cf. Fig. 2d). The effect is
similar along both arms; only one arm is shown for clarity. Bottom row: Summary plot showing the
effective learning rate along each arm of the S-curve, for negative (red) and positive (green) gradients.
The overall effect is to reduce learning rates when the gradient magnitude is large.

magnitudes get large (small). While this effect is similar to that of RMSProp or Adam, we found the
underlying mechanism in learned optimizers to be different.

For learned optimizers trained on the first three tasks, this mechanism is mediated by input-dependent
fixed points. These points are found by running the numerical optimization routine discussed in §4.2,
but while holding the input fixed at various non-zero levels (rather than zero). The significance of this
is that in the presence of large gradients, the network hidden state is away from the convergence point,
and instead attracted towards different points (the input-dependent fixed points). The speed at which
the hidden state approaches these fixed points depends on their dynamical properties, presumably this
is something that can be tuned by the network as well. The functional benefit of this is that it allows
the network to adapt its behavior after encountering large gradients for a number of consecutive
iterations.

Figure 12 breaks down the mechanism found across the first three tasks. The top row of Fig. 12 shows
the set of input-dependent fixed points, which across these tasks forms an S-shaped curve. Large
positive gradients (shown in green) pull the state along one arm of the S-curve, and large negative
gradients (shown in red) pull the state along the opposite arm; the dynamics are symmetric across
positive and negative gradients.

Along this curve, the network changes its behavior through a changing learning rate. We can see this
as the slope of the update function changes (middle row of Fig. 12), these green lines correspond
to the locations given by the arrows in the top row. Only changes along one arm of the S-curve are
shown for clarity (for positive gradients), the effects are similar for negative gradients. The effect is
shown for both arms in the bottom row of Fig. 12, summarized as the slope of the update function

17

(the effective learning rate). Again, we see that the effect is to reduce the learning rate for large
gradients. Interestingly, the most conservative learning rates for each task seem to match the best
tuned learning rates used by momentum (shown as the dashed line). We hypothesize that momentum
(whose learning rate does not adapt) must constrain its learning rate so that it does not diverge even in
the off chance that a large gradient is encountered. Learned optimizers, on the other hand, are able to
increase the learning rate as the gradient magnitudes decrease, which presumably partially explains
their improved performance.

2 0 2
PC #1

2

1

0

1

2
PC

 #
2

0

1

2

3

4

5

Ef
fe

cti
ve

 le
ar

nin
g

ra
te

0.01 0.00 0.01
Input (gradient)

0.010

0.005

0.000

0.005

0.010

Ou
tp

ut
 (c

ha
ng

e
in

pa
ra

m
et

er
)(a) (b)

Figure 13: Variation in learning rate in a learned optimizer trained to optimize a network on MNIST
classification. (a) Initial state (black square) and approximate fixed points (colored circles) found in a
network trained on MNIST. Instead of a single fixed point, we see an approximately one dimensional
manifold of fixed points. (b) Update functions corresponding to the points in the manifold in (a).
Along this manifold, the overarching effect is a change in the effective learning rate.

Finally, this was another mechanism where we see a different mechanism for the learned optimizer
trained on MNIST classification. Here, we find that the network learns a manifold of fixed points (not
just one) even when the input is held at zero. That is, while learned optimizers trained on the other
tasks all converged to a single global fixed point, the MNIST networks converged to a 1D manifold of
approximate fixed points. This manifold is shown in Figure 13a. The functional benefit of this seems
to be to induce a type of learning rate adaptation. Along this manifold, the update functions change
dramatically (Fig. 13b). One consequence of this is that the effective learning rate changes. This
denoted by the variation in color in Fig. 13, going from small learning rates (yellow) to large ones
(purple). We suspect these fixed points are responsible for the dynamics that separates trajectories
based on the underlying parameter type and layer (discussed in §5.5).

B A learned optimizer that recovers momentum

When training learned optimizers on the linear regression tasks, we noticed that we could train
a learned optimizer that seemed to strongly mimic momentum, both in terms of behavior and
performance. With additional training, the learned optimizer would eventually start to outperform
momentum. However, it is still instructive to go through the analysis for the learned optimizer
that mimics momentum. This example in particular clearly demonstrates the connections between
eigenvalues, momentum, and dynamics.

B.1 Recovering momentum using linear dynamics

The learned optimizer (parameterized by a GRU) that performs as well as momentum learns to mimic
linear dynamics. That is, the dynamics of the nonlinear optimizer can be very well approximated
using a linear approximation computed at the convergence point. The dynamics of this optimizer
(projected onto the top principal components of the optimizer state space) are shown in Figure 14. A
single principal component explains nearly all of the variance in hidden states (right inset of Fig. 14a).
The optimizer state trajectories for an example problem are shown in Fig. 14a (recall that this problem
is a five dimensional quadratic, so there are five trajectories). All trajectories converge to a single
global fixed point, indicated by a black circle.

The update functions for this optimizer along the first principal component are shown in Fig. 14b
(c.f. Fig. 2 and Fig. 3). The effect of moving along the first principal component looks exactly

18

0 20
Dimension

0

1

Va
r.

ex
p.

4 2 0 2 4
PC #1

2

0

2

PC
 #

2

Optimizer state space dynamics(a)

0.5 0.0 0.5
Input (gradient)

5.0

2.5

0.0

2.5

5.0

Ou
tp

ut
 (p

ar
am

et
er

 u
pd

at
e)

Effect of moving along PC #1
(b)

1 01
Real component

1

0

1

Im
ag
in
ar
y
co
m
po
ne
nt

10 3

10 2

10 1

100

(c)

10 3 10 1 101
Learning rate ()

0.0

0.2

0.4

0.6

0.8

1.0

M
om

en
tu
m
(
)

(d)

Figure 14: A learned optimizer that recovers momentum on the linear regression task. (a) Optimizer state
dynamics after training, projected onto the top principal components of the optimizer state space. Most of the
action happens along a single dimension (PC 1). The dynamics converge to a single global fixed point (black
circle). (b) Update functions of the optimizer along the first principal component. Moving along this component
induces a vertical offset in the update function. (c) Eigenvalues of the Jacobian of the optimizer dynamics
evaluated at the convergence fixed point. There is a single eigenmode that has separated from the bulk. The
color of each point corresponds to the effective learning rate for that eigenmode. (d) Another way of visualizing
eigenvalues is by translating them into optimization parameters (learning rates and momentum timescales), as
described in section C. When we do this for this particular optimizer, we see that the slow eigenvalue (momentum
timescale closest to one) also has a large learning rate. These specific hyperparameters match the best tuned
momentum hyperparametrs for this task distribution (red star).

like what happens as you change the state variable in momentum. We can additionally analyze the
dynamics of the optimizer hidden state by linearizing the nonlinear RNN dynamics around the fixed
point. The eigenvalues of the Jacobian of the dynamics at the fixed point are shown in Fig. 14c. We
find a single mode that pops out of the bulk of eigenvalues, indicated with a blue circle. The color in
Fig. 14c corresponds to the effective learning rate of each eigenmode (as discussed below in section
C).

Additionally, we can plot these eigenvalue magnitudes (which are the momentum time scales), against
the extracted learning rate of each mode (Fig. 14d). The single mode that dominates the dynamics
is in the upper right of the plot. Moreover, the extracted momentum timescale and learning rate for
this mode match the best tuned hyperparameters (red star in Fig. 14d) from tuning the momentum
algorithm directly, which can also be derived analytically.

Finally, if we extract and run just the dynamics along this particular mode, we see that it matches
the behavior of the full, nonlinear optimizer almost exactly. This suggests that in this scenario, the
learned optimizer has simply learned the single mechanism of momentum. Moreover, the learned
optimizer has encoded the best hyperparameters for this particular task distribution in its dynamics.
One benefit of our analysis is that we can now separate the overall mechanism (linear dynamics along
eigenmodes) from the particular hyperparameters of that mechanism (the specific learning rate and
momentum timescale).

B.2 Meta-training dynamics

For this example, we also examined how the properties of the learned dynamics changed during
meta-training. Specifically, we looked at how the effective learning rate and momentum of the
optimizer (extracted from the Jacobian of the dynamics at the fixed point) varied over the course of
meta-training (Figure 15). Fig. 15a shows the evolution of both the learning rate and momentum
parameters for each eigenmode of the Jacobian. Panels (b) and (c) show the meta-training dynamics
of just the top eigenmode (the only one that is used).

19

(a) (b)

0 2500 5000
Meta-training iteration

0

1

2

3

4

Le
ar
ni
ng

ra
te

(c)

0 2500 5000
Meta-training iteration

0.75

0.80

0.85

0.90

0.95

1.00

M
om

en
tu
m
(
)

Figure 15: Meta-training dynamics. (a) Meta-training dynamics of the learning rate and momentum parameters,
extracted from the Jacobian of the convergence fixed point. Color indicates the meta-training iteration, from
initialization (yellow-green) to when the optimizer is fully trained (purple). The red star indicates the optimal
momentum parameters, derived analytically. (b) and (c) How the learning rate and momentum parameters for
the top eigenmode evolve over the course of meta-training. Horizontal black line indicates the optimal value,
derived analytically.

C Linearized optimizers and aggregated momentum

In this section, we elaborate on the connections between linearized optimizers and momentum with
multiple timescales. We begin with our definition of an optimizer, equations (1) and (2) in the main
text:

hk+1 = F (hk, gk)

xk+1 = xk + wThk+1,

where h is the optimizer state, g is the gradient, x is the parameter being optimized, and k is the
current iteration. Note that since this is a component-wise optimizer, it is applied to each parameter
(xi) of the target problem in parallel; therefore we drop the index (i) to reduce notation.

Near a fixed point of the dynamics, we approximate the recurrent dynamics with a linear approxima-
tion. The linearized state update can be expressed as:

F (hk, gk) ≈ h∗ +
∂F

∂h

(
hk − h∗) +

∂F

∂g
gk, (4)

where h∗ is a fixed point of the dynamics, ∂F
∂h is a square matrix known as the Jacobian, and ∂F

∂g is a
vector that controls how the scalar gradient enters the system. Both of these latter two quantities are
evaluated at the fixed point, h∗, and g∗ = 0.

For a linear dynamical system, as we have now, the dynamics decouple along eigenmodes of the
system. We can see this by rewriting the state in terms of the left eigenvectors of the Jacobian matrix.
Let v = UTh denote the transformed coordinates, in the left eigenvector basis U (the columns of U
are left eigenvectors of the matrix ∂F

∂h). In terms of these coordinates, we have:

vk+1 = v∗ + B
(
vk + v∗) + agk, (5)

where B is a diagonal matrix containing the eigenvalues of the Jacobian, and a is a vector obtained
by projecting the vector that multiplies the input

(
∂F
∂g

)
from eqn. (4) onto the left eigenvector basis.

If we have an N -dimensional state vector h, then eqn. (5) defines N independent (decoupled)
scalar equations that govern the evolution of the dynamics along each eigenvector: vk+1

j = v∗j +

βj
(
vkj + v∗j

)
+ αjg

k, where we use βj to denote the jth eigenvalue and αj is the jth component of a
in eqn. (5). Collecting constants yields the following simplified update:

vk+1
j = βjv

k
j + αjg + const., (6)

which is exactly equal to the momentum update (vk+1 = βvk + αgk), up to a (fixed) additive
constant. The main difference between momentum and the linearized momentum in eqn. (6) is that
we now have N different momentum timescales. Again these timescales are exactly the eigenvalues

20

Figure 16: Schematic of a learned optimizer.

of the Jacobian matrix from above. Moreover, we also have a way of extracting the corresponding
learning rate associated with eigenmode j, as αj . This particular optimizer (momentum with multiple
timescales) has been proposed under the name aggregated momentum by Lucas et al. [31].

Taking a step back, we have drawn connections between a linearized approximation of a nonlinear
optimizer, and a form of momentum with multiple timescales. What this now allows us to do is
interpret the behavior of learned optimizers near fixed points through this new lens. In particular,
we have a way of translating the parameters of a dynamical system (Jacobians, eigenvalues and
eigenvectors) into more intuitive optimization parameters (learning rates and momentum timescales).

D Supplemental methods

D.1 Tasks for training learned optimizers

An optimization problem is specified by both the loss function to minimize and the initial parameters.
When training a learned optimizer (or tuning baseline optimizers), we sample this loss function and
initial condition from a distribution that defines a task. Then, when evaluating an optimizer, we
sample new optimization problems from this distribution to form a test set.

The idea is that the learned optimizer will discover useful strategies for optimizing the particular task
it was trained on. By studying the properties of optimizers trained across different tasks, we gain
insight into how different types of tasks influence the learned algorithms that underlie the operation
of the optimizer. This sheds insight on the inductive bias of learned optimizers; i.e. we want to know
what properties of tasks affect the resulting learned optimizer and whether those strategies are useful
across problem domains.

We train and analyzed learned optimizers on three distinct tasks. In order to train a learned optimizer,
for each task, we must repeatedly initialize and run the corresponding optimization problem (resulting
in thousands of optimization runs). Therefore we focused on simple tasks that could be optimized
within a couple hundred iterations, but still covered different types of loss surfaces: convex and non-
convex functions, over low- and high-dimensional parameter spaces. We also focused on deterministic
functions (whose gradients are not stochastic), to reduce variability when training and analyzing
optimizers.

D.2 Training a learned optimizer

We train learned optimizers that are parameterized by recurrent neural networks (RNNs). In all of
the learned optimizers presented here, we use gated recurrent unit (GRU) [45] to parameterize the
optimizer. This means that the function F in eqn. (1) is the state update function of a GRU, and the
optimizer state is the GRU state. In addition, for all of our experiments, we set the readout of the
optimizer state, as defined in eqn. (2), to be linear. The parameters of the learned optimizer are now
the GRU parameters, and the weights of the linear readout. We meta-learn these parameters through
a meta-optimization procedure, described below.

In order to apply a learned optimizer, we sample an optimization problem from our task distribution,
and iteratively feed in the current gradient and update the problem parameters, schematized in
Figure 16. This iterative application of an optimizer builds an unrolled computational graph, where
the number of nodes in the graph is proportional to the number of iterations of optimization (known

21

M
om

en
tu

m

RM
SP

ro
p

Ad
am

Le
ar

ne
d

10 2

10 1

100

M
et

a-
Ob

jec
tiv

e

Quadratic

M
om

en
tu

m

RM
SP

ro
p

Ad
am

Le
ar

ne
d

10 2

10 1

100
Rosenbrock

M
om

en
tu

m

RM
SP

ro
p

Ad
am

Le
ar

ne
d

10 1

2 × 10 1

3 × 10 1
4 × 10 1

Two Moons

M
om

en
tu

m

RM
SP

ro
p

Ad
am

Le
ar

ne
d

10 1

2 × 10 1

3 × 10 1
4 × 10 1

MNIST

Figure 17: Performance summary. Each panel shows the distribution of the meta-objective over
64 random test problems for baseline and learned optimizers. Dark bars inside of each violin plot
indicate the mean and standard error across the 64 random seeds. The learned optimizer has the
lowest (best) meta-objective, on average, for each task.

as the length of the unroll). This is sometimes called the inner optimization loop, to contrast it with
the outer loop that is used to update the optimizer parameters.

In order to train a learned optimizer, we first need to specify a target objective to minimize. In
this work, we use the average loss over the unrolled (inner) loop as this meta-objective. In order
to minimize the meta-objective, we compute the gradient of the meta-objective with respect to the
optimizer weights. We do this by first running an unrolled computational graph, and then using
backpropagation through the unrolled graph in order to compute the meta-gradient.

This unrolled procedure is computationally expensive. In order to get a single meta-gradient, we need
to initialize, optimize, and then backpropagate back through an entire optimization problem. This is
why we focus on small optimization problems, that are fast to train.

Another known difficulty with this kind of meta-optimization arises from the unrolled inner loop.
In order to train optimizers on longer unrolled problems, previous studies have truncated this inner
computational graph, effectively only using pieces of it in order to compute meta-gradients. While
this saves computation, it is known that this induces bias in the resulting meta-gradients [46, 6].

To avoid this, we compute and backpropagate through fully unrolled inner computational graphs.
This places a limit on the number of steps that we can then run the inner optimization for, in this
work, we set this unroll length to 200 for all three tasks. Backpropagation through a single unrolled
optimization run gives us a single (stochastic) meta-gradient, when meta-training, we average these
over a batch size of 32.

Now that we have a procedure for computing meta-gradients, we can use these to iteratively update
parameters of the learned optimizer (the outer loop, also known as meta-optimization). We do this
using Adam as the meta-optimizer, with the default hyperparameters (except for the initial learning
rate, which was tuned via random search). In addition, we use gradient clipping (with a clip value
of five applied to each parameter independently and decay the learning rate exponentially (by a
factor of 0.8 every 500 steps) during meta-training. We added a small `2-regularization penalty to
the parameters of the learned optimizer, with a penalty strength of 10−5. We trained each learned
optimizer for a total of 5000 steps.

We meta-train our optimizers on a single TPUv2 core. Each model meta-trains in a few hours. Our
code is built on top of the scientific python stack, including: NumPy [47], SciPy [48], Matplotlib [49],
and JAX [50].

For each task, we ended up with a single (best performing) learned optimizer architecture. These
are the optimizers that we then analyzed, and form the basis of the results in the main text. The final
meta-objective for each learned optimizer and best tuned baselines are compared below in Figure 17.

D.3 Hyperparameter selection for baseline optimizers

We tuned the hyperparameters of each baseline optimizer, separately for each task. For each com-
bination of optimizer and task, we randomly sampled 2500 hyperparameter combinations from a

22

Figure 18: Hyperparameter selection for linear regression.

grid, and selected the best one using the same meta-objective that was used for training the learned
optimizer. We ensured that the best parameters did not occur along the edge of any grid.

For momentum, we tuned the learning rate (α) and momentum timescale (β). For RMSProp, we
tuned the learning rate (α) and learning rate adaptation parameter (γ). For Adam, we tuned the
learning rate (α), momentum (β1), and learning rate adaptation (β2) parameters. The result of
these hyperparameter runs are shown in Figures 18 (linear regression), 19 (Rosenbrock), 20 (two
moons classification), and 21 (MNIST classification). In each of these figures, the color scale is the
same — purple denotes the optimal hyperparameters.

23

Figure 19: Hyperparameter selection for Rosenbrock.

Figure 20: Hyperparameter selection for training a neural network on two moons data.

24

Figure 21: Hyperparameter selection for training a neural network on MNIST classification.

25

	Introduction
	Related Work
	Methods
	Preliminaries
	Training learned optimizers

	Tools for understanding optimizers
	Update functions
	A dynamical systems perspective

	Mechanisms of learned optimizers
	Momentum
	Gradient clipping
	Learning rate schedules
	Learning rate adaptation
	Tuning per layer and parameter type

	Discussion
	Comparing results across all mechanisms and tasks
	Momentum
	Gradient clipping
	Learning rate schedules
	Learning rate adaptation

	A learned optimizer that recovers momentum
	Recovering momentum using linear dynamics
	Meta-training dynamics

	Linearized optimizers and aggregated momentum
	Supplemental methods
	Tasks for training learned optimizers
	Training a learned optimizer
	Hyperparameter selection for baseline optimizers

