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A Appendix

A.1 Detailed Architecture

The detailed description of the Adder Transformer is given in Figure. 1. Adder Transformer takes a
series of N non-overlapping image patches as input. The patches are concatenated with a class token
and added to positional encoding to produce a set of patch embedding. The embedding are then fed
to a sequence of Adder Multi-head Self-attention layers and Adder Feed-Forward Network to model
their relationship, and produces the final set of predicted class labels.
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Figure 1: Illustration of the proposed Adder Transformer framework. After flattening the patch into
vectors, our network alternately processes them by (1) Adder multi-head self-attention mechanism;
(2) Adder feed-forward network implemented by adder linear transformation. Both with a residual
connection and Pre-Layer Normalization. Red arrows indicate vector-wise operations.
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A.2 Proof of Theorem 1

Proof. Proof of the first equation:

Assuming that the components Q ∈ Qm,j,: and K ∈ Km,i,: are independent random variables
following normal distribution, then both Q and K have mean 0 and variance 1, and Q + K also
follows normal distribution with mean 0 and variance 2.

Note that both Q2 and K2 follow chi-square distribution, i.e., Q2 ∼ χ2(1), K2 ∼ χ2(1), then we
have Q2 +K2 ∼ χ2(2). Then according to the following equation,

QK =
(Q+K)2 −Q2 −K2

2
, (1)

QK is actually the result of one chi-square distribution minus two chi-square distributions, and
since E

[
χ2(n)

]
= n and V ar

[
χ2(n)

]
= 2n, we have E(QK) = 0 and V ar(QK) = 1. Thus, for

dot-product attention, QmjK
T
mi has mean 0 and variance dt.

Proof of the second equation:

The variance of the output of the `1-distance between Q and K can be derived as:

V ar(|Q − K|) =
(
1− 2

π

)
V ar(Q−K) =

(
1− 2

π

)
[V ar(Q) + V ar(K)] , (2)

Therefore the variance of `1-distance between Qm,j,: and Km,i,: can be expressed as an accumulation
of variances of its components:

V ar (−‖Qm,j,: −Km,i,:‖1) = 2dt

(
1− 2

π

)
, (3)

Then Theorem 1 follows. Therefore, we adjust the scaling factor to 1√
dt

and 1√
da

in the main paper
respectively to counteract the variance explosion effect.

A.3 Proof of Proposition 1

Proof. In the main body we prove that the attention matrix of the adder self-attention has a much
lower rank, resulting in a skewed distribution of information. Here we prove the effect of adding an
Identity matrix to each attention matrix (Proposition 1). Figure. 2 reports the visualization results

(a) Block 1 Head 0 (b) Block 6 Head 0 (c) Block 11 Head 0

Figure 2: Visualization of attention maps of AdderTR-Tiny. From left to right are attention maps of
Block 1, Head0 , Block 6, Head0, Block 11, Head0, respectively.

of the attention maps in Adder DeiT-Tiny on CIFAR-10 dataset. As shown in this figure, the adder
attention maps exhibit a symmetric form in different layers. Therefore, we assume that the attention
matrix is symmetric in the following analysis. We denote σa, σ̃a as the singular value of Ha, H̃a,
respectively, and λa, λ̃a as the eigenvalue of HT

a Ha, H̃a
T
H̃a, respectively. The relationship between
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λa and λ̃a can be expressed as:

λ̃a = λ
(
H̃a

T
H̃a

)
= λ

(
HT

a Ha +HT
a +Ha + I

)
= λ

(
H2

a + 2Ha + I
)

= λa + 2
√
λa + 1

= (
√
λa + 1)2.

(4)

Note that the singular value of matrix H̃a are the square root of the corresponding eigenvalue of the
matrix H̃a

T
H̃a, thus we have:

σ̃a = σa + 1, (5)
which means that the effect of adding an Identity matrix to each attention matrix is equivalent to an
increase in each singular value by 1. To discuss the impact of the above singular value change, we
measure the magnitude of normalized cumulative singular value at the r-th (r ≤ N ) largest singular
value of the attention matrix. The N singular values of the matrix Ha and H̃a can be written as:
σa = [σ1, σ2, ..., σr, σr+1, ..., σN ] (σ1 ≥ σ2 ≥ ... ≥ σN ) and σ̃a = [σ̃1, σ̃2, ..., σ̃r, ˜σr+1, ..., σ̃N ]

(σ̃1 ≥ σ̃2 ≥ ... ≥ σ̃N ), and we define function fa(r) and f̃a(r) as:

fa(r) =

∑r
t=1 σt∑N
s=1 σs

, (r ∈ [1, N ]), (6)

f̃a(r) =

∑r
t=1 σ̃t∑N
s=1 σ̃s

, (r ∈ [1, N ]), (7)

Wherein, fa(r) and f̃a(r) denote the magnitude of normalized cumulative singular value at the r-th
(r ≤ N ) largest singular value of the attention matrix Ha and H̃a, respectively. According to the
Second-order conditions [?] of the concave function, suppose f is differentiable (i.e., its Hessian or
second derivative∇2f exists at each point in dom f , which is open). Then f is concave if and only
if dom f is convex and its Hessian is negative semidefinite:

∇2f(x) � 0. (8)

Since fa(r) is a discrete function, we use its first-order central difference instead of the first-order
derivative, which is formulated as follows:

∇fa(r) =
fa(r + h)− fa(r)

h
=

∑r+h
t=1 σt −

∑r
t=1 σt

h
∑N

s=1 σs

=

∑r+h
t=r+1 σt

h
∑N

s=1 σs
≥ 0

(9)

Similarly, we use its second-order central difference instead of the second-order derivative, which is
formulated as follows:

∇2fa(r) =
fa(r + h)− 2fa(r) + fa(r − h)

h2

=

∑r+h
t=1 σt − 2

∑r
t=1 σt +

∑r−h
t=1 σt

h2
∑N

s=1 σs

=

∑r+h
t1=r+1 σt1 −

∑r
t2=r−h+1 σt2

h2
∑N

s=1 σs
≤ 0.

(10)

Then Assertion 1 follows. The ratio of the two magnitude can be formulated as:

R(r) =
fa(r)

f̃a(r)
=

∑r
t=1 σt

∑N
s=1 (σs + 1)∑r

t=1 (σt + 1)
∑N

s=1 σs
=

∑r
t=1 σt(

∑N
s=1 σs +N)

(
∑r

t=1 σt + r)
∑N

s=1 σs
, (11)

The difference between the numerator and denominator of Eq. 11 can be written as:
r∑

t=1

σt(

N∑
s=1

σs +N)− (

r∑
t=1

σt + r)

N∑
s=1

σs = N

r∑
t=1

σt − r
N∑
t=1

σs ≥ 0, (12)
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Therefore we have R(r) ≥ 1 (r ∈ [1, N ]), i.e., fa(r) ≥ f̃a(r) (r ∈ [1, N ]), meaning that the
ascending rate of the cumulative singular value slows back down after adding an Identity matrix to
each attention matrix. Then we define the linear function and corresponding difference function as:

g(r) =
r

N
, Da(r) = fa(r)− g(r), D̃a(r) = f̃a(r)− g(r), (13)

where Da(·) and D̃a(·) represents the difference between the cumulative normalized singular value
function and linear function, and we have:

Da(r) ≥ D̃a(r). (14)

Then, adding an identity matrix will lead to a change of the curve of Adder Transformer in Figure. 3
in the main body, more closely approximating the curve of the original transformer model. Thus, we
have: f(r) is closer to g(r) after performing the operation: D̃(r) ≤ D(r), then Assertion 2 follows.

Denote r1 and r2 that satisfies fa(r1) = 0.9 and f̃a(r2) = 0.9, respectively. Since fa(r) ≥
f̃a(r) (r ∈ [1, N ]),∇fa(r) ≥ 0 and∇2fa(r) ≤ 0, we have r1 ≤ r2. This draws the conclusion that
the distribution of information in attention map is more uniform and the equivalent rank of H̃a is
higher than that of Ha: Rank(H̃a) ≥ Rank(Ha), then Assertion 3 follows.

A.4 Visualizations of the Attention Map

In Figure 3 we show the attention maps associated with the individual 3 layers of DeiT-Tiny model
and Adder DeiT-Tiny model. For each image we present two rows: the top row correspond to the
three layers of the attention maps associated with the DeiT-Tiny model. The bottom row correspond
to the three layers of the Adder DeiT-Tiny model. We make two observations:

• Both adder and common self-attention can effectively focus on the key information in the
picture, and the attention maps from Adder DeiT-Tiny seems to focus more on the global
information.

• There exists some layers in both models that clearly focuses on the interest part of the image,
on which the classification decision is performed, and some layers that focus on the context
of the image, or at least the image more globally. Besides, the indexing of layers focusing
on the object of interest of the adder model may not be consistent with the multiplicative
model.
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Block 3 Head 0 ↓ Block 6 Head 0 ↓ Block 10 Head 0 ↓

Figure 3: Visualization of the attention maps, obtained with a DeiT-Tiny model and Adder DeiT-Tiny
model. For each image we present two rows: the top row correspond to the three layers of the
attention maps associated with the DeiT-Tiny model. The bottom row correspond to the three layers
of the Adder DeiT-Tiny model.

5


	Appendix
	Detailed Architecture
	Proof of Theorem 1
	Proof of Proposition 1
	Visualizations of the Attention Map


