A Convergence on Two-Layer Nonlinear Networks

We consider the family of neural networks

$$f(x) = \frac{1}{\sqrt{p}} \sum_{r=1}^{p} \beta_r \psi(w_r^{\mathsf{T}} x) = \frac{1}{\sqrt{p}} \beta^{\mathsf{T}} \psi(W x)$$
(A.1)

where $\beta \in \mathbb{R}^p$, $W = (w_1, ..., w_p)^{\mathsf{T}} \in \mathbb{R}^{p \times d}$, and ψ is an activation function. Given data, the loss function is

$$\mathcal{L}(W,\beta) = \frac{1}{2} \sum_{i=1}^{n} (f(x_i) - y_i)^2 = \frac{1}{2} \sum_{i=1}^{n} \left(\frac{1}{\sqrt{p}}\beta^{\mathsf{T}}\psi(Wx_i) - y\right)^2.$$
(A.2)

The feedback alignment algorithm has updates

$$W(t+1) = W(t) - \eta \frac{1}{\sqrt{p}} \sum_{i=1}^{n} D_i(t) b x_i^{\mathsf{T}} e_i(t)$$

$$\beta(t+1) = \beta(t) - \eta \frac{1}{\sqrt{p}} \sum_{i=1}^{n} \psi(W(t) x_i) e_i(t)$$
(A.3)

where $D_i(t) = \text{diag}(\psi'(W(t)x_i))$ and $e_i(t) = \frac{1}{\sqrt{p}}\beta(t)^{\mathsf{T}}\psi(W(t)x_i) - y_i$. To help make the proof more readable, we use c, C to denote the global constants whose values may vary from line to line.

A.1 Concentration Results

Lemma A.1 (Lemma A.7 in Gao & Lafferty, 2020). Assume $x_1, ..., x_n \stackrel{i.i.d.}{\sim} \mathcal{N}(0, I_d/d)$. We define matrix $\widetilde{G} \in \mathbb{R}^{n \times n}$ with entries

$$\widetilde{G}_{i,j} = |\mathbb{E}\psi'(Z)|^2 \frac{x_i^{\mathsf{T}} x_j}{\|x_i\| \|x_j\|} + (\mathbb{E}|\psi(Z)|^2 - |\mathbb{E}\psi'(Z)|^2) \mathbb{I}\{i=j\}$$

where $Z \sim \mathcal{N}(0, 1)$. If $d = \Omega(\log n)$, then with high probability, we have

$$\|\overline{G} - \widetilde{G}\|^2 \lesssim \frac{\log n}{d} + \frac{n^2}{d^2}.$$

Proof of Proposition 3.3. If ψ is sigmoid or tanh, for a standard Gaussian random variable Z, we have

$$\gamma := \frac{1}{2} (\mathbb{E} |\psi(Z)|^2 - |\mathbb{E} \psi'(Z)|^2) > 0.$$

From Lemma A.1, we know that with high probability $\lambda_{\min}(\overline{G}) \geq \lambda_{\min}(\widetilde{G}) - \|\overline{G} - \widetilde{G}\| \geq 2\gamma - C(\sqrt{\frac{\log n}{d}} + \frac{n}{d}) \geq \gamma.$

Lemma A.2. Assume W(0), $\beta(0)$ and b have i.i.d. standard Gaussian entries. Given $\delta \in (0, 1)$, if $p = \Omega(n/\delta)$, then with probability $1 - \delta$

$$\frac{1}{p}\sum_{r=1}^{p}|b_r| \le c,\tag{A.4}$$

$$\frac{1}{p}\sum_{r=1}^{p}|b_{r}\beta_{r}(0)| \le c,$$
(A.5)

$$\|e(0)\| \le c\sqrt{n},\tag{A.6}$$

$$\max_{r\in[p]} |b_r| \le 2\sqrt{\log p}.\tag{A.7}$$

Proof. We will show each inequality holds with probability at least $1 - \frac{\delta}{4}$, then by a union bound, all of them hold with probability at least $1 - \delta$. Since $\mathbb{V}ar(\frac{1}{p}\sum_{r=1}^{p}|b_r|) \leq \frac{\mathbb{V}ar(|b_0|)}{p}$, by Chebyshev's inequality, we have

$$\mathbb{P}\left(\frac{1}{p}\sum_{r=1}^{p}|b_r| > \mathbb{E}(b_1) + 1\right) \le \frac{\mathbb{V}\mathrm{ar}(|b_1|)}{p} \le \delta/4$$

if $p \ge 4 \operatorname{Var}(|b_1|)/\delta$, which gives (A.4). The proof for (A.5) is similar since $\operatorname{Var}(\frac{1}{p}\sum_{r=1}^{p}|b_r\beta_r(0)|) = O(1/p)$. To prove (A.6), since $|y_i|$ and $||x_i||$ are bounded, it suffices to show $|u_i(0)| \le c$ for all $i \in [n]$. Actually, by independence, we have

$$\mathbb{V}ar(u_i(0)) = \mathbb{V}ar\Big(\frac{1}{p}\sum_{r=1}^p \beta_r(0)\psi(w_r(0)^{\mathsf{T}}x_i)\Big) = \frac{1}{p}\mathbb{V}ar\Big(\beta_1(0)\psi(w_1(0)^{\mathsf{T}}x_i)\Big) = O(1/p).$$

By Chebyshev's inequality, we have for each $i \in [n]$

$$\mathbb{P}(|u_i(0)| > c) \le \frac{\mathbb{V}\mathrm{ar}(u_i(0))}{c^2} \le \frac{\delta}{4n}$$

where we require $p = \Omega(n/\delta)$. With a union bound argument, we can show (A.6). Finally, (A.7) followed from standard Gaussian tail bounds and union bound argument, yielding

$$\mathbb{P}(\max_{r\in[p]}|b_r| > 2\sqrt{\log p}) \le \sum_{r\in[p]} \mathbb{P}(|b_r| > 2\sqrt{\log p}) \le 2pe^{-2\log p} = \frac{2}{p} \le \frac{\delta}{4}.$$

Lemma A.3. Under the conditions of Theorem 3.2, we define matrices $G(0), H(0) \in \mathbb{R}^{n \times n}$ with entries

$$G_{ij}(0) = \frac{1}{p}\psi(W(0)x_i)^{\mathsf{T}}\psi(W(0)x_j) = \frac{1}{p}\sum_{r=1}^{p}\psi(w_r(0)^{\mathsf{T}}x_i)\psi(w_r(0)^{\mathsf{T}}x_j)$$
(A.8)

and

$$H_{ij}(0) = \frac{x_i^{\mathsf{T}} x_j}{p} \beta(0)^{\mathsf{T}} D_i(0) D_j(0) b = \frac{1}{p} \sum_{r=1}^p \beta_r(0) b_r \psi'(w_r(0)^{\mathsf{T}} x_i) \psi'(w_r(0)^{\mathsf{T}} x_j).$$
(A.9)

For any $\delta \in (0,1)$, if $p = \Omega(\frac{n^2}{\delta\gamma^2})$, then with probability at least $1 - \delta$, we have $\lambda_{\min}(G(0)) \ge \frac{3}{4}\gamma$ and $||H(0)|| \le \frac{\gamma}{4}$.

Proof. By independence and boundedness of ψ and ψ' , we have $\mathbb{V}ar(G_{ij}(0)) = O(1/p)$ and $\mathbb{V}ar(H_{ij}(0)) = O(1/p)$. Since $\mathbb{E}(G(0)) = \overline{G}$, we have

$$\mathbb{E} \|G(0) - \overline{G}\|^2 \le \mathbb{E} \|G(0) - \overline{G}\|_F^2 = O(\frac{n^2}{p}).$$

By Markov's inequality, when $p=\Omega(\frac{n^2}{\delta\gamma^2})$

$$\mathbb{P}(\|G(0) - \overline{G}\| > \frac{\gamma}{4}) \le O(\frac{n^2}{p\gamma^2}) \le \frac{\delta}{2}.$$

Similarly we have $\mathbb{P}(||H(0)|| > \frac{\gamma}{4}) \le \frac{\delta}{2}$, since $\mathbb{E}(H(0)) = 0$. Then with probability at least $1 - \delta$, $\lambda_{\min}(G(0)) \ge \lambda_{\min}(\overline{G}) - \gamma/4 \ge \frac{3}{4}\gamma$, and $||H(0)|| \le \gamma/4$.

A.2 Proof of Theorem 3.2

Lemma A.4. Assume all the inequalities from Lemma A.2 hold. Under the conditions of Theorem 3.2, if the error bound (3.1) holds for all t = 1, 2, ..., t' - 1, then the bounds (3.2) hold for all $t \le t'$.

Proof. From the feedback alignment updates (A.3), we have for all $t \leq T$

$$\begin{aligned} |\beta_r(t) - \beta_r(0)| &\leq \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^n |\psi(w_r(t)x_i)e_i(t)| \\ &\leq c \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^n |e_i(t)| \\ &\leq c \frac{\eta\sqrt{n}}{\sqrt{p}} \sum_{s=0}^{t-1} \|e(t)\| \\ &\leq c \frac{\eta\sqrt{n}}{\sqrt{p}} \sum_{s=0}^{t-1} (1 - \frac{\gamma\eta}{4})^t \|e(0)\| \\ &\leq c \frac{\sqrt{n}}{\gamma\sqrt{p}} \|e(0)\| \\ &\leq c \frac{n}{\gamma\sqrt{p}} \end{aligned}$$

where we use the fact that ψ is bounded and (A.6). We also have

$$\begin{aligned} \|w_r(t) - w_r(0)\| &\leq \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^n \|\psi'(w_r(t)^{\mathsf{T}} x_i) b_r x_i e_i(t)\| \\ &\leq c \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^n |b_r| |e_i(t)| \\ &\leq c |b_r| \frac{\eta \sqrt{n}}{\sqrt{p}} \sum_{s=0}^{t-1} \|e(t)\| \\ &\leq c |b_r| \frac{\sqrt{n}}{\gamma \sqrt{p}} \|e(0)\| \\ &\leq c \frac{n \sqrt{\log p}}{\gamma \sqrt{p}} \end{aligned}$$

where we use that ψ' is bounded, (A.6) and (A.7).

Lemma A.5. Assume all the inequalities from Lemma A.2 hold. Under the conditions of Theorem 3.2, if the bound for the weights difference (3.2) holds for all $t \le t'$ and error bound (3.1) holds for all $t \le t' - 1$, then (3.1) holds for t = t'.

Proof. We start with analyzing the error e(t) according to

$$\begin{aligned} e_{i}(t+1) &= \frac{1}{\sqrt{p}}\beta(t+1)^{\mathsf{T}}\psi(W(t+1)x_{i}) - y_{i} \\ &= \frac{1}{\sqrt{p}}\beta(t+1)^{\mathsf{T}}(\psi(W(t+1)x_{i}) - \psi(W(t)x_{i})) + \frac{1}{\sqrt{p}}(\beta(t+1) - \beta(t))^{\mathsf{T}}\psi(W(t)x_{i}) \\ &+ \frac{1}{\sqrt{p}}\beta(t)^{\mathsf{T}}\psi(W(t)x_{i}) - y_{i} \\ &= e_{i}(t) - \frac{\eta}{p}\beta(t+1)^{\mathsf{T}}D_{i}(t)\sum_{j=1}^{n}D_{j}(t)bx_{j}^{\mathsf{T}}x_{i}e_{j}(t) - \frac{\eta}{p}\sum_{j=1}^{n}\psi(W(t)x_{j})^{\mathsf{T}}\psi(W(t)x_{i})e_{j}(t) \\ &+ v_{i}(t) \\ &= e_{i}(t) - \eta\sum_{j=1}^{n}\left(H_{ij}(t) + G_{ij}(t)\right)e_{j}(t) + v_{i}(t) \end{aligned}$$

where

$$G_{ij}(t) = \frac{1}{p} \psi(W(t)x_j)^{\mathsf{T}} \psi(W(t)x_i)$$
$$H_{ij}(t) = \frac{x_i^{\mathsf{T}} x_j}{p} \beta(t+1)^{\mathsf{T}} D_i(t) D_j(t) b$$

and $v_i(t)$ is the residual term from the Taylor expansion

$$v_i(t) = \frac{1}{2\sqrt{p}} \sum_{r=1}^p \beta_r(t+1) |(w_r(t+1) - w_r(t))^{\mathsf{T}} x_i|^2 \psi''(\xi_{ri}(t))$$

with $\xi_{ri}(t)$ between $w_r(t)^{\mathsf{T}} x_i$ and $w_r(t+1)^{\mathsf{T}} x_i$. We can also rewrite the above iteration in vector form as

$$e(t+1) = e(t) - \eta(G(t) + H(t))e(t) + v(t).$$
(A.10)

Now for t = t' - 1, we wish to show that both G(t) and H(t) are close to their initialization. Notice that

$$\begin{aligned} |G_{ij}(t) - G_{ij}(0)| &= \frac{1}{p} \Big| \psi(W(t)x_j)^{\mathsf{T}} \psi(W(t)x_i) - \psi(W(t)x_j)^{\mathsf{T}} \psi(W(t)x_i) \Big| \\ &\leq \frac{1}{p} \sum_{r=1}^{p} |\psi(w_r(t)^{\mathsf{T}} x_j)| |\psi(w_r(t)^{\mathsf{T}} x_i) - \psi(w_r(0)^{\mathsf{T}} x_i)| \\ &+ \frac{1}{p} \sum_{r=1}^{p} |\psi(w_r(0)^{\mathsf{T}} x_i)| |\psi(w_r(t)^{\mathsf{T}} x_j) - \psi(w_r(0)^{\mathsf{T}} x_j)| \\ &\leq c \frac{1}{p} \sum_{r=1}^{p} |w_r(t)^{\mathsf{T}} x_i - w_r(0)^{\mathsf{T}} x_i| + \frac{1}{p} \sum_{r=1}^{p} |w_r(t)^{\mathsf{T}} x_j - w_r(0)^{\mathsf{T}} x_j| \\ &\leq c_0 \frac{n\sqrt{\log p}}{\gamma\sqrt{p}} (||x_i|| + ||x_j||) \end{aligned}$$

where the second inequality is due to the boundedness of ψ and ψ' , and the last inequality is by (3.2). Then we have

$$\|G(t) - G(0)\| \le \max_{j \in [n]} \sum_{i=1}^{n} |G_{ij}(t) - G_{ij}(0)| \le c_0 \frac{n^2 \sqrt{\log p}}{\gamma \sqrt{p}}.$$
 (A.11)

For matrix H(t), we similarly have

$$\begin{aligned} |H_{ij}(t) - H_{ij}(0)| &\leq \frac{|x_i^{\mathsf{T}} x_j|}{p} \Big| \beta(t+1)^{\mathsf{T}} D_i(t) D_j(t) b - \beta(0)^{\mathsf{T}} D_i(0) D_j(0) b \Big| \\ &\leq \frac{||x_i|| ||x_j||}{p} \sum_{r=1}^p \Big| b_r \beta_r(t+1) \psi'(w_r(t)^{\mathsf{T}} x_i) \psi'(w_r(t)^{\mathsf{T}} x_j) \\ &\quad - b_r \beta_r(0) \psi'(w_r(0)^{\mathsf{T}} x_i) \psi'(w_r(0)^{\mathsf{T}} x_j) \Big| \\ &\leq \frac{|||x_i|| ||x_j|||}{p} \sum_{r=1}^p \Big(|b_r|| \beta_r(t+1) - \beta_r(0)||\psi'(w_r(t)^{\mathsf{T}} x_i) \psi'(w_r(t)^{\mathsf{T}} x_j)| \\ &\quad + |b_r|| \beta_r(0)||\psi'(w_r(t)^{\mathsf{T}} x_i) - \psi'(w_r(0)^{\mathsf{T}} x_i)||\psi'(w_r(t)^{\mathsf{T}} x_j)| \\ &\quad + |b_r|| \beta_r(0)||\psi'(w_r(0)^{\mathsf{T}} x_i)||\psi'(w_r(t)^{\mathsf{T}} x_j) - \psi'(w_r(0)^{\mathsf{T}} x_j)| \Big) \\ &\leq c \frac{||x_i||||x_j||}{p} \sum_{r=1}^p \Big(|b_r| \frac{n}{\gamma \sqrt{p}} + |b_r|| \beta_r(0)| \frac{n \sqrt{\log p}}{\gamma \sqrt{p}} (||x_i|| + ||x_j||) \Big) \\ &\leq c_1 \frac{n}{\gamma \sqrt{p}} + c_2 \frac{n \sqrt{\log p}}{\gamma \sqrt{p}}. \end{aligned}$$

It follows that

$$\|H(t) - H(0)\| \le \max_{j \in [n]} \sum_{i=1}^{n} |H_{ij}(t) - H_{ij}(0)| \le c_1 \frac{n^2}{\gamma \sqrt{p}} + c_2 \frac{n^2 \sqrt{\log p}}{\gamma \sqrt{p}}.$$
 (A.12)

Next, we bound the residual term $v_i(t)$. Since ψ'' is bounded, we have

$$\begin{aligned} |v_{i}(t)| &\leq c \frac{1}{\sqrt{p}} \sum_{r=1}^{p} |\beta_{r}(t+1)| \|w_{r}(t+1) - w_{r}(t)\|^{2} \\ &\leq c \frac{1}{\sqrt{p}} \frac{\eta^{2}}{p} \sum_{r=1}^{p} |\beta_{r}(t+1)| \Big(\sum_{i=1}^{n} \|\psi'(w_{r}(t)^{\mathsf{T}}x_{i})b_{r}x_{i}e_{i}(t)\|\Big)^{2} \\ &\leq c \frac{1}{\sqrt{p}} \frac{\eta^{2}}{p} \sum_{r=1}^{p} |\beta_{r}(t+1)| |b_{r}|^{2} \Big(\sum_{i=1}^{n} |e_{i}(t)|\Big)^{2} \\ &\leq c \frac{\eta^{2}n}{\sqrt{p}} \|e(t)\|^{2} \\ &\leq c_{3} \frac{\eta^{2}n\sqrt{n}}{\sqrt{p}} \|e(t)\|. \end{aligned}$$

This leads to the bound

$$\|v(t)\| = \left(\sum_{i=1}^{n} |v_i(t)|^2\right)^{1/2} \le c_3 \frac{\eta^2 n^2}{\sqrt{p}} \|e(t)\|.$$
(A.13)

Combining Eqs. (A.10) to (A.13), we have

$$\begin{split} \|e(t+1)\| &\leq \|I_n - \eta(G(t) + H(t))\| \|e(t)\| + \|v(t)\| \\ &\leq \left(\|I_n - \eta G(0)\| + \eta\|G(t) - G(0)\| + \eta\|H(0)\| \right) \\ &\quad + \eta\|H(t) - H(0)\| \right) \|e(t)\| + \|v(t)\| \\ &\leq \left(1 - \frac{3\eta\gamma}{4} + c_0 \frac{\eta n^2 \sqrt{\log p}}{\gamma \sqrt{p}} + \frac{\eta\gamma}{4} + c_1 \frac{\eta n^2}{\gamma \sqrt{p}} + c_2 \frac{\eta n^2 \sqrt{\log p}}{\gamma \sqrt{p}} + c_3 \frac{\eta^2 n \sqrt{n}}{\sqrt{p}} \right) \|e(t)\| \\ &\leq (1 - \frac{\eta\gamma}{4}) \|e(t)\| \end{split}$$

where we use Lemma A.3 and $p = \Omega(\frac{n^4 \log p}{\gamma^4})$.

Proof of Theorem 3.2. We prove the inequality (3.1) by induction. Suppose (3.1) and (3.2) hold for all t = 1, 2, ..., t' - 1, by Lemma A.4 and Lemma A.5 we know (3.1) and (3.2) hold for t = t', which completes the proof.

A.3 Proof of Theorem 4.2

Lemma A.6. Assume all the inequalities from Lemma A.2 hold. Under the conditions of Theorem 4.2, if the error bound (4.2) holds for all t = 1, 2, ..., t' - 1, then

$$\begin{aligned} |w_r(t) - w_r(0)| &\leq c_1 \frac{n\sqrt{\log p}}{\gamma\sqrt{p}} (1 + \eta \tilde{S}_{\lambda}), \\ |\beta_r(t) - \beta_r(0)| &\leq c_2 \frac{n}{\gamma\sqrt{p}} (1 + \eta \tilde{S}_{\lambda}) \end{aligned}$$
(A.14)

hold for all $t \leq t'$, where c_1 , c_2 are constants.

Proof. For any $k \le t' - 1$, we apply (4.2) repeatedly on the right hand side of itself to get

$$\|e(k)\| \le \prod_{i=0}^{k-1} \left(1 - \frac{\eta\gamma}{4} - \eta\lambda(i)\right) \|e(0)\| + \sum_{i=0}^{k-1} \eta\lambda(i) \prod_{i < j < k} \left(1 - \frac{\eta\gamma}{4} - \eta\lambda(j)\right) \|y\|.$$

For $t \leq t' - 1$, we take the sum over k = 0, .., t on both sides of above inequality to obtain

$$\begin{split} \sum_{k=0}^{t} \|e(k)\| &\leq \sum_{k=0}^{t} \prod_{i=0}^{k-1} \left(1 - \frac{\eta\gamma}{4} - \eta\lambda(i)\right) \|e(0)\| + \sum_{k=0}^{t} \sum_{i=0}^{k-1} \eta\lambda(i) \prod_{i < j < k} \left(1 - \frac{\eta\gamma}{4} - \eta\lambda(j)\right) \|y\| \\ &\leq \sum_{k=0}^{t} \left(1 - \frac{\eta\gamma}{4}\right)^{k-1} \|e(0)\| + \sum_{k=0}^{t} \sum_{i=0}^{k-1} \eta\lambda(i) \left(1 - \frac{\eta\gamma}{4}\right)^{k-i-1} \|y\| \\ &\leq \sum_{k=0}^{t} \left(1 - \frac{\eta\gamma}{4}\right)^{k-1} \|e(0)\| + \eta\|y\| \sum_{k=0}^{t-1} \lambda(i) \sum_{k=i+1}^{T} \left(1 - \frac{\eta\gamma}{4}\right)^{k-i-1} \\ &\leq \frac{4}{\eta\gamma} \|e(0)\| + \frac{4}{\gamma} \tilde{S}_{\lambda} \|y\| \\ &\leq \frac{c\sqrt{n}}{\gamma} \left(\frac{1}{\eta} + \tilde{S}_{\lambda}\right) \end{split}$$

where we use $\|e(0)\| = O(\sqrt{n})$ and $\|y\| = O(\sqrt{n})$. Then for all $t \le t'$, we have

$$\begin{aligned} |\beta_r(t) - \beta_r(0)| &\leq \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^n |\psi(w_r(t)x_i)e_i(t)| \\ &\leq c \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^n |e_i(t)| \\ &\leq c \frac{\eta\sqrt{n}}{\sqrt{p}} \sum_{s=0}^{t-1} \|e(t)\| \\ &\leq c \frac{\eta\sqrt{n}}{\sqrt{p}} \frac{\sqrt{n}}{\gamma} (\frac{1}{\eta} + \tilde{S}_{\lambda}) \\ &\leq c \frac{n}{\gamma\sqrt{p}} (1 + \eta \tilde{S}_{\lambda}) \end{aligned}$$

where we use ψ is bounded and (A.6). We also have

$$\begin{split} \|w_r(t) - w_r(0)\| &\leq \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^n \|\psi'(w_r(t)^{\mathsf{T}} x_i) b_r x_i e_i(t)\| \\ &\leq c \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^n |b_r| |e_i(t)| \\ &\leq c |b_r| \frac{\eta \sqrt{n}}{\sqrt{p}} \sum_{s=0}^{t-1} \|e(t)\| \\ &\leq c |b_r| \frac{\eta \sqrt{n}}{\sqrt{p}} \frac{\sqrt{n}}{\gamma} (\frac{1}{\eta} + \tilde{S}_{\lambda}) \\ &\leq c \frac{\eta \sqrt{\log p}}{\gamma \sqrt{p}} (1 + \eta \tilde{S}_{\lambda}) \end{split}$$

where we use the fact that ψ' is bounded, (A.6) and (A.7).

Lemma A.7. Assume all the inequalities from Lemma A.2 hold. Under the conditions of Theorem 4.2, if the bound for weights difference (A.14) holds for all $t \le t'$ and error bound (4.2) holds for all $t \le t' - 1$, then (4.2) holds for t = t'.

Proof. We start by analyzing the error e(t) according to

$$\begin{aligned} e_{i}(t+1) &= \frac{1}{\sqrt{p}}\beta(t+1)^{\mathsf{T}}\psi(W(t+1)x_{i}) - y_{i} \\ &= \frac{1}{\sqrt{p}}\beta(t+1)^{\mathsf{T}}(\psi(W(t+1)x_{i}) - \psi(W(t)x_{i})) + \frac{1}{\sqrt{p}}(\beta(t+1) - (1 - \eta\lambda(t))\beta(t))^{\mathsf{T}}\psi(W(t)x_{i}) \\ &+ (1 - \eta\lambda(t))\Big(\frac{1}{\sqrt{p}}\beta(t)^{\mathsf{T}}\psi(W(t)x_{i}) - y_{i}\Big) - \eta\lambda(t)y \\ &= (1 - \eta\lambda(t))e_{i}(t) - \frac{\eta}{p}\beta(t+1)^{\mathsf{T}}D_{i}(t)\sum_{j=1}^{n}D_{j}(t)bx_{j}^{\mathsf{T}}x_{i}e_{j}(t) - \frac{\eta}{p}\sum_{j=1}^{n}\psi(W(t)x_{j})^{\mathsf{T}}\psi(W(t)x_{i})e_{j}(t) - \eta\lambda(t)y \\ &+ v_{i}(t) \\ &= (1 - \eta\lambda(t))e_{i}(t) - \eta\sum_{j=1}^{n}\left(H_{ij}(t) + G_{ij}(t)\right)e_{j}(t) + v_{i}(t) - \eta\lambda(t)y \end{aligned}$$

where

$$G_{ij}(t) = \frac{1}{p} \psi(W(t)x_j)^{\mathsf{T}} \psi(W(t)x_i)$$
$$H_{ij}(t) = \frac{x_i^{\mathsf{T}} x_j}{p} \beta(t+1)^{\mathsf{T}} D_i(t) D_j(t) b$$

and $v_i(t)$ is the residual term from a Taylor expansion

$$v_i(t) = \frac{1}{2\sqrt{p}} \sum_{r=1}^p \beta_r(t+1) |(w_r(t+1) - w_r(t))^{\mathsf{T}} x_i|^2 \psi''(\xi_{ri}(t))$$

with $\xi_{ri}(t)$ between $w_r(t)^{\mathsf{T}} x_i$ and $w_r(t+1)^{\mathsf{T}} x_i$. We can also rewrite the above iteration in vector form as

$$e(t+1) = (1 - \lambda(t))e(t) - \eta(G(t) + H(t))e(t) + v(t) - \eta\lambda(t)y.$$
(A.15)

Now for t = t' - 1, we show that both G(t) and H(t) are close to their initialization. Using the argument in Lemma A.5, we can obtain following bounds

$$\|G(t) - G(0)\| \le c_1 \frac{n^2 \sqrt{\log p}}{\gamma \sqrt{p}} (1 + \eta \tilde{S}_{\lambda})$$
(A.16)

$$||H(t) - H(0)|| \le c_2 \frac{n^2 \sqrt{\log p}}{\gamma \sqrt{p}} (1 + \eta \tilde{S}_{\lambda})$$
 (A.17)

$$\|v(t)\| \le c_3 \frac{\eta^2 n^2}{\sqrt{p}} \|e(t)\|.$$
(A.18)

Combining Eqs. (A.15) to (A.18), we have

$$\begin{split} \|e(t+1)\| &\leq \|(1-\eta\lambda(t))I_n - \eta(G(t) + H(t))\| \|e(t)\| + \|v(t)\| \\ &\leq \left(\|(1-\eta\lambda(t))I_n - \eta G(0)\| + \eta\|G(t) - G(0)\| + \eta\|H(0)\| \\ &+ \eta\|H(t) - H(0)\|\right)\|e(t)\| + \|v(t)\| \\ &\leq \left(1-\eta\lambda(t) - \frac{3\eta\gamma}{4} + (c_1 + c_2)\frac{\eta n^2\sqrt{\log p}}{\gamma\sqrt{p}}(1+\eta\tilde{S}_{\lambda}) + c_3\frac{\eta^2n\sqrt{n}}{\sqrt{p}}\right)\|e(t)\| \\ &\leq (1-\eta\lambda(t) - \frac{\eta\gamma}{4})\|e(t)\| \\ e \text{ we use Lemma A.3, } p = \Omega(\frac{n^4\log p}{t^4}) \text{ and } \tilde{S}_{\lambda} = O(\frac{\gamma^2\sqrt{p}}{t^{1/2}}). \end{split}$$

where we use Lemma A.3, $p = \Omega(\frac{n^4 \log p}{\gamma^4})$ and $\tilde{S}_{\lambda} = O(\frac{\gamma^2 \sqrt{p}}{\eta n^2 \sqrt{\log p}})$.

Proof of Theorem 4.2. We prove the inequality (4.2) by induction. Suppose (4.2) holds for all t = 1, 2, ..., t'-1. Then by Lemma A.6 and Lemma A.7 we know (4.2) holds for t = t', which completes the proof.

B Alignment on Two-Layer Linear Networks

Now we assume $\psi(u) = u$, so that f is a linear network. The loss function with regularization at time t is

$$\mathcal{L}(t, W, \beta) = \frac{1}{2} \left\| \frac{1}{\sqrt{p}} X W^{\mathsf{T}} \beta - y \right\|^2 + \frac{1}{2} \lambda(t) \|\beta\|^2.$$
(B.1)

The regularized feedback alignment algorithm gives

$$W(t+1) = W(t) - \eta \frac{1}{\sqrt{p}} be(t)^{\mathsf{T}} X$$

$$\beta(t+1) = (1 - \eta \lambda(t))\beta(t) - \frac{\eta}{\sqrt{p}} W(t) X^{\mathsf{T}} e(t)$$

(B.2)

where $e(t) = \frac{1}{\sqrt{p}} X W(t)^{\mathsf{T}} \beta(t) - y$ is the error vector at time t.

Lemma B.1. Suppose the network is trained with the regularized feedback alignment algorithm (B.2). Then the prediction error e(t) satisfies the recurrence

$$e(t+1) = \left[(1 - \eta\lambda(t))I_d - \frac{\eta}{p}XW(0)^{\mathsf{T}}W(0)X^{\mathsf{T}} - \eta \Big(J_1(t) + J_2(t) + J_3(t)\Big) \right] e(t) - \eta\lambda(t)y$$
(B.3)

where

$$J_{1}(t) = \frac{1}{p} b^{\mathsf{T}} \beta(0) \prod_{i=0}^{t} (1 - \eta \lambda(i)) X X^{\mathsf{T}}$$

$$J_{2}(t) = -\frac{\eta}{p} \Big(\bar{v}^{\mathsf{T}} X^{\mathsf{T}} \hat{s}(t) X X^{\mathsf{T}} + X X^{\mathsf{T}} s(t-1) \bar{v}^{\mathsf{T}} X^{\mathsf{T}} + X \bar{v} s(t-1)^{\mathsf{T}} X X^{\mathsf{T}} \Big)$$

$$J_{3}(t) = \frac{\eta^{2}}{p^{2}} \|b\|^{2} \Big(\hat{S}(t) X X^{\mathsf{T}} + X X^{\mathsf{T}} s(t-1) s(t-1)^{\mathsf{T}} X X^{\mathsf{T}} \Big)$$

and

$$\begin{split} \bar{v} &= \frac{1}{\sqrt{p}} W(0)^{\mathsf{T}} b\\ s(t) &= \sum_{i=0}^{t} e(i)\\ \hat{s}(t) &= \sum_{i=0}^{t} \prod_{i < k \le t} (1 - \eta \lambda(k)) e(i)\\ \hat{S}(t) &= \sum_{i=0}^{t} \prod_{i < k \le t} (1 - \eta \lambda(k)) e(i)^{\mathsf{T}} X X^{\mathsf{T}} \sum_{j=0}^{i-1} e(j). \end{split}$$

Proof. We first write W(t) in terms of W(0) and e(i), $i \in [t]$, so that

$$W(t) = W(0) - \frac{\eta}{\sqrt{p}} b \sum_{i=0}^{t-1} e(i)^{\mathsf{T}} X = W(0) - \frac{\eta}{\sqrt{p}} b s(t-1)^{\mathsf{T}} X.$$
(B.4)

Similarly, for $\beta(t)$ we have

$$\begin{split} \beta(t) &= \prod_{i=0}^{t-1} (1 - \eta \lambda(i)) \beta(0) - \frac{\eta}{\sqrt{p}} \sum_{i=0}^{t-1} \prod_{i < k < t} (1 - \eta \lambda(k)) W(i) X^{\mathsf{T}} e(i) \\ &= \prod_{i=0}^{t-1} (1 - \eta \lambda(i)) \beta(0) - \frac{\eta}{\sqrt{p}} \sum_{i=0}^{t-1} \prod_{i < k < t} (1 - \eta \lambda(k)) \Big(W(0) - \frac{\eta}{\sqrt{p}} b \sum_{j=0}^{i-1} e(j)^{\mathsf{T}} X \Big) X^{\mathsf{T}} e(i) \\ &= \prod_{i=0}^{t-1} (1 - \eta \lambda(i)) \beta(0) - \frac{\eta}{\sqrt{p}} \sum_{i=0}^{t-1} \prod_{i < k < t} (1 - \eta \lambda(k)) W(0) X^{\mathsf{T}} e(i) \\ &+ \frac{\eta^2}{p} b \sum_{i=0}^{t-1} \prod_{i < k < t} (1 - \eta \lambda(k)) e(i)^{\mathsf{T}} X X^{\mathsf{T}} \sum_{j=0}^{i-1} e(j) \\ &= \prod_{i=0}^{t-1} (1 - \eta \lambda(i)) \beta(0) - \frac{\eta}{\sqrt{p}} W(0) X^{\mathsf{T}} \hat{s}(t-1) + \frac{\eta^2}{p} b \hat{S}(t-1). \end{split}$$
(B.5)

We now study how the error $\boldsymbol{e}(t)$ changes after a single update step, writing

$$\begin{split} e(t+1) &= \frac{1}{\sqrt{p}} X W(t+1)^{\mathsf{T}} \beta(t+1) - y \\ &= \frac{1}{\sqrt{p}} X (W(t+1) - W(t)^{\mathsf{T}} \beta(t+1) + \frac{1}{\sqrt{p}} X W(t)^{\mathsf{T}} (\beta(t+1) - (1 - \eta \lambda(t)) \beta(t)) \\ &+ (1 - \eta \lambda(t)) \Big(\frac{1}{\sqrt{p}} X W(t)^{\mathsf{T}} \beta(t) - y \Big) - \eta \lambda(t) y \\ &= (1 - \eta \lambda(t)) e(t) - \frac{\eta}{p} b^{\mathsf{T}} \beta(t+1) X X^{\mathsf{T}} e(t) - \frac{\eta}{p} X W(t)^{\mathsf{T}} W(t) X^{\mathsf{T}} e(t) - \eta \lambda(t) y \end{split}$$

By plugging (B.4) and (B.5) into above equation, we have

$$\begin{split} e(t+1) &= (1-\eta\lambda(t))e(t) \\ &- \frac{\eta}{p}b^{\mathsf{T}} \bigg[\prod_{i=0}^{t} (1-\eta\lambda(i))\beta(0) - \frac{\eta}{\sqrt{p}}W(0)X^{\mathsf{T}}\hat{s}(t) + \frac{\eta^{2}}{p}b\hat{S}(t) \bigg] XX^{\mathsf{T}}e(t) \\ &- \frac{\eta}{p}X \bigg[W(0) - \frac{\eta}{\sqrt{p}}bs(t-1)^{\mathsf{T}}X \bigg]^{\mathsf{T}} \bigg[W(0) - \frac{\eta}{\sqrt{p}}bs(t-1)^{\mathsf{T}}X \bigg] X^{\mathsf{T}}e(t) \\ &- \eta\lambda(t)y \end{split}$$

After expanding the brackets and rearranging the items, we can obtain (B.3).

Lemma B.2. Given $\delta \in (0,1)$ and $\epsilon > 0$, if $p = \Omega(\frac{1}{\epsilon} \log \frac{d}{\delta} + \frac{d}{\epsilon} \log \frac{1}{\epsilon})$, the following inequalities hold with probability at least $1 - \delta$

$$\frac{|b^{\mathsf{T}}\beta(0)|}{\sqrt{p}} \le c\sqrt{\log\frac{1}{\delta}} \tag{B.6}$$

$$\frac{\|b^{\mathsf{T}}W(0)\|}{\sqrt{p}} \le c\sqrt{d\log\frac{d}{\delta}} \tag{B.7}$$

$$\left|\frac{\|b\|^2}{p} - 1\right| \le \frac{c}{\sqrt{p}}\sqrt{\log\frac{1}{\delta}} \tag{B.8}$$

$$\left\|\frac{1}{p}W(0)^{\mathsf{T}}W(0) - I_d\right\| \le \epsilon \tag{B.9}$$

where c is a constant.

Proof. (B.6) is derived from Lemma C.4. (B.7) is by (B.6) and a union bound argument. (B.8) is by Lemma C.3. (B.9) is by Corollary C.2

Proof of Theorem 4.3. We show (4.3) by induction. Assume (4.3) holds for all t = 0, 1, ..., t', we will show it hold for t = t' + 1. For any $k \le t'$, we apply (4.3) repeatedly on the right hand side of itself to get

$$\|e(k)\| \le \prod_{i=0}^{k-1} \left(1 - \frac{\eta\gamma}{2} - \eta\lambda(i)\right) \|e(0)\| + \sum_{i=0}^{k-1} \eta\lambda(i) \prod_{i < j < k} \left(1 - \frac{\eta\gamma}{2} - \eta\lambda(j)\right) \|y\|$$

For $t \leq t'$, we take the sum over k = 0, .., t on both sides of above inequality

$$\begin{split} \sum_{k=0}^{t} \|e(k)\| &\leq \sum_{k=0}^{t} \prod_{i=0}^{k-1} \left(1 - \frac{\eta\gamma}{2} - \eta\lambda(i)\right) \|e(0)\| + \sum_{k=0}^{t} \sum_{i=0}^{k-1} \eta\lambda(i) \prod_{i < j < k} \left(1 - \frac{\eta\gamma}{2} - \eta\lambda(j)\right) \|y\| \\ &\leq \sum_{k=0}^{t} \left(1 - \frac{\eta\gamma}{2}\right)^{k-1} \|e(0)\| + \sum_{k=0}^{t} \sum_{i=0}^{k-1} \eta\lambda(i) \left(1 - \frac{\eta\gamma}{2}\right)^{k-i-1} \|y\| \\ &\leq \sum_{k=0}^{t} \left(1 - \frac{\eta\gamma}{2}\right)^{k-1} \|e(0)\| + \eta\|y\| \sum_{k=0}^{t-1} \lambda(i) \sum_{k=i+1}^{T} \left(1 - \frac{\eta\gamma}{2}\right)^{k-i-1} \\ &\leq \frac{2}{\eta\gamma} \|e(0)\| + \frac{2}{\gamma} S_{\lambda} \|y\| \\ &\leq \frac{c\sqrt{n}}{\gamma} \left(\frac{1}{\eta} + S_{\lambda}\right) \end{split}$$

where we use $||e(0)|| = O(\sqrt{n})$ and $||y|| = O(\sqrt{n})$. With this bound and the inequalities from Lemma B.2, we can bound the norms of $J_1(t)$, $J_2(t)$ and $J_3(t)$ from Lemma B.1. It follows that

$$\|J_{1}(t)\| \leq \frac{1}{p} |b^{\mathsf{T}}\beta(0)| \|XX^{\mathsf{T}}\| \leq c \frac{M\sqrt{\log \delta^{-1}}}{\sqrt{p}} \leq \frac{\gamma}{16},$$
(B.10)

$$\|J_{2}(t)\| \leq \frac{\eta}{p} \|X\| \|XX^{\mathsf{T}}\| \|\bar{v}\| (2\|s(t-1)\| + \|\hat{s}(t)\|) \leq c\frac{\eta}{p} M^{3/2} \sqrt{d\log\frac{d}{\delta}} \frac{\sqrt{n}}{\gamma} (\frac{1}{\eta} + S_{\lambda}) \leq \frac{\gamma}{16}$$
(B.11)

and

$$\|J_3(t)\| \le \frac{\eta^2}{p^2} \|b\|^2 (\|XX^{\mathsf{T}}\||\hat{S}(t)| + \|XX^{\mathsf{T}}\|^2 \|s(t-1)\|^2) \le c\frac{\eta^2}{p} M^2 \frac{n}{\gamma^2} (\frac{1}{\eta} + S_\lambda)^2 \le \frac{\gamma}{16}$$
(B.12)

hold for all $t \leq t'$ if $p = \Omega(\frac{Md\log(d/\delta)}{\gamma})$ and $S_{\lambda} = O(\frac{\gamma\sqrt{\gamma p}}{\eta\sqrt{nM}})$. Furthermore, since $\|\frac{1}{p}W(0)W(0)^{\intercal} - I_d\| \leq \epsilon_0$ with high probability when $p = \Omega(d)$, we have

$$\begin{aligned} \|\frac{1}{p}XW(0)^{\mathsf{T}}W(0)X^{\mathsf{T}} - \gamma I_d\| &\leq \|\frac{1}{p}XW(0)^{\mathsf{T}}W(0)X^{\mathsf{T}} - XX^{\mathsf{T}}\| + \|XX^{\mathsf{T}} - \gamma I_d\| \\ &\leq (1+\epsilon)\epsilon_0\gamma + \epsilon\gamma \leq \frac{\gamma}{16} \end{aligned}$$
(B.13)

Therefore, combining (B.10), (B.11), (B.12) and (B.3), we have

$$\begin{split} \|e(t'+1)\| &\leq \left(1 - \eta\lambda(t') - \eta\gamma\right) \|e(t')\| + \eta \left\|\frac{\eta}{p} XW(0)^{\mathsf{T}} W(0) X^{\mathsf{T}} - \gamma I_d \right\| \|e(t')\| \\ &+ \eta(\|J_1(t')\| + \|J_2(t')\| + \|J_3(t')\|)\|e(t')\| + \eta\lambda(t')\|y\| \\ &\leq \left(1 - \eta\lambda(t') - \eta\gamma\right) \|e(t')\| + \frac{1}{16}\eta\gamma\|e(t')\| + \frac{3}{16}\eta\gamma\|e(t')\| + \eta\lambda(t')\|y\| \\ &\leq \left(1 - \eta\lambda(t') - \frac{\eta\gamma}{2}\right) \|e(t')\| + \eta\lambda(t')\|y\| \end{split}$$

which completes the proof.

Proof of Proposition 4.5. By Corollary C.2, if $d = \Omega(\frac{1}{\epsilon} \log \frac{n}{\delta} + \frac{n}{\epsilon} \log \frac{1}{\epsilon})$, we have $\|XX^{\mathsf{T}} - I_n\| \leq \epsilon$

It follows that $\lambda_{\min}(XX^{\intercal}) \geq 1 - \epsilon$ and $\lambda_{\max}(XX^{\intercal}) \leq 1 + \epsilon \leq (1 + 4\epsilon)(1 - \epsilon)$ for $\epsilon < 1/2$. \Box

Lemma B.3. Recall from Lemma B.1 that

$$\beta(t) = \prod_{i=0}^{t-1} (1 - \eta \lambda(i)) \beta(0) - \frac{\eta}{\sqrt{p}} W(0) X^{\mathsf{T}} \hat{s}(t-1) + \frac{\eta^2}{p} b \hat{S}(t-1)$$

with $\hat{s}(t) = \sum_{i=0}^{t} \prod_{i < k \le t} (1 - \eta \lambda(k)) e(i)$ and $\hat{S}(t) = \sum_{i=0}^{t} \prod_{i < k \le t} (1 - \eta \lambda(k)) e(i)^{\mathsf{T}} X X^{\mathsf{T}} \sum_{j=0}^{i-1} e(j)$. Under the conditions of Theorem 4.6, if $t > C_1 \frac{\log(p/\eta)}{\eta \lambda}$ and $\hat{S}(t) \ge \max(C_2 \frac{\sqrt{p\gamma}}{\eta} \| \hat{s}(t) \|, 1)$ for some positive constants C_1 and C_2 , then $\cos \angle (b, \beta(t)) \ge c$ for some constant $c = c_{\delta}$.

Proof. We compute the cosine of the angle between $\beta(t)$ and b. With probability $1 - \delta$,

$$\begin{aligned} \cos \angle (b, \beta(t)) &= \frac{b^{\mathsf{T}} \beta(t)}{\|b\| \|\beta(t)\|} = \frac{\frac{b}{\|b\|}^{\mathsf{T}} \beta(t)}{\|\beta(t)\|} \\ &\geq \frac{\frac{\eta^2}{p} \|b\| \hat{S}(t-1) - (1-\eta\lambda)^t \|\beta(0)\| - \frac{\eta}{\sqrt{p}} \|\frac{b}{\|b\|}^{\mathsf{T}} W(0)\| \|X\| \|\hat{s}(t-1)\|}{\frac{\eta^2}{p} \|b\| \hat{S}(t-1) + (1-\eta\lambda)^t \|\beta(0)\| + \frac{\eta}{\sqrt{p}} \|W(0)\| \|X\| \|\hat{s}(t-1)\|} \\ &\geq \frac{c_1' \frac{\eta^2}{\sqrt{p}} \hat{S}(t-1) - c_2' \sqrt{p} (1-\eta\lambda)^t - c_3' \eta \sqrt{\frac{d\gamma}{p}} \|\hat{s}(t-1)\|}{c_1' \frac{\eta^2}{\sqrt{p}} \hat{S}(t-1) + c_2' \sqrt{p} (1-\eta\lambda)^t + c_4' \eta \sqrt{\gamma} \|\hat{s}(t-1)\|} \end{aligned}$$

where we use (B.8), (B.9) and the tail bound for standard Gaussian vectors, and c'_i are constants that only depend on δ . Notice that if $t = \Omega(\frac{\log(p/\eta)}{\eta\lambda})$, we have $c'_2\sqrt{p}(1-\eta\lambda)^t = O(\frac{\eta^2}{\sqrt{p}})$. It follows that $\cos \angle (b, \beta(t)) \ge c$ if $\hat{S}(t-1) = \Omega(\frac{\sqrt{p\gamma}}{\eta} || \hat{s}(t-1) || + 1)$.

Lemma B.4. Consider the orthogonal decomposition $e(t) = a(t)\bar{y} + \xi(t)$, where $\bar{y} = -y/||y||$ and $\xi(t) \perp y$. Under the conditions of Theorem 4.6, there exists a constant $C_{\tau} > 0$ such that for any $t \in [\tau, T]$ with $\tau = \frac{C_{\tau}}{n\lambda}$, we have

$$a(t) \ge \frac{\lambda - \gamma}{\lambda + \gamma} \|y\| \tag{B.14}$$

and

$$\|\xi(t)\| \le \frac{\gamma}{\lambda + \gamma} \|y\|. \tag{B.15}$$

Proof. By Theorem 4.3, we have for all $t \leq T$, $||e(t)|| \leq (1 - \eta\lambda - \eta\gamma/2)||e(t)|| + \eta\lambda||y||$. By rearranging the terms, we have

$$\|e(t+1)\| - \frac{\lambda}{\lambda - \gamma/2} \|y\| \le (1 - \eta\lambda - \frac{\eta\gamma}{2}) \Big(\|e(t)\| - \frac{\lambda}{\lambda - \gamma/2} \|y\| \Big)$$

or

$$\|e(t)\| - \frac{\lambda}{\lambda - \gamma/2} \|y\| \le (1 - \eta\lambda - \frac{\eta\gamma}{2})^t \Big(\|e_0\| - \frac{\lambda}{\lambda - \gamma/2} \|y\|\Big) \le (1 - \eta\lambda)^t (\|e_0\| + \|y\|).$$

Notice that ||y|| and ||e(0)|| are of the same order, so when $t \in [\tau_1, T]$ with $\tau_1 = \frac{c_1}{\eta \lambda}$ and some constant c_1 , we have

$$\|e(t)\| \le \frac{\lambda + \gamma/2}{\lambda - \gamma/2} \|y\|. \tag{B.16}$$

In order to get a lower bound for a(t), we multiply \bar{y}^{T} on both sides of (B.3). It follows that for $t \in [\tau_1, T]$

$$a(t+1) \ge \bar{y}^{\mathsf{T}} \Big(1 - \eta\lambda - \eta\gamma \Big) e(t) - \eta \| \frac{1}{p} X W(0)^{\mathsf{T}} W(0) X^{\mathsf{T}} - \gamma I_d \| \| e(t) \| - \eta(\|J_1(t)\| + \|J_2(t)\| + \|J_3(t)\|) \| e(t)\| + \eta\lambda \|y\| \ge (1 - \eta\lambda - \eta\gamma)a(t) - \frac{1}{4}\eta\gamma \| e(t)\| + \eta\lambda \|y\| \ge (1 - \eta\lambda - \eta\gamma)a(t) + \frac{1}{2}\eta\gamma \|y\|.$$

In the second inequality, we use the bounds (B.10), (B.11), (B.12) and (B.13). The last inequality is by (B.16) and $\lambda \ge 3\gamma$. Following a similar derivation, we have

$$a(t) - \frac{\lambda - \gamma/2}{\lambda + \gamma} \|y\| \ge (1 - \eta\lambda - \eta\gamma)^{t - \tau_1} \left(a(\tau_1) - \frac{\lambda - \gamma/2}{\lambda + \gamma} \|y\| \right) \ge -(1 - \eta\lambda)^{t - \tau_1} (\|e(\tau_1)\| + \|y\|).$$

The bound (B.14) holds when $t \in [\tau_1 + \tau_2, T]$ with $\tau_2 = \frac{c_2}{\eta \lambda}$ and some constant c_2 . Then we multiply $\frac{\xi(t+1)^{\mathsf{T}}}{\|\xi(t+1)\|}$ on both sides of (B.3). This establishes that for $t \in [\tau_1, T]$

$$\begin{aligned} \|\xi(t+1)\| &\leq \frac{\xi(t+1)^{\mathsf{T}}}{\|\xi(t+1)\|} \Big(1 - \eta\lambda - \eta\gamma\Big) e(t) + \eta \|\frac{1}{p} X W(0)^{\mathsf{T}} W(0) X^{\mathsf{T}} - \gamma I_d \| \|e(t)\| \\ &+ \eta(\|J_1(t)\| + \|J_2(t)\| + \|J_3(t)\|)\| e(t)\| + \eta\lambda \|y\| \\ &\leq (1 - \eta\lambda - \eta\gamma) \|\xi(t)\| + \frac{\eta\gamma}{4} \|e(t)\| \\ &\leq (1 - \eta\lambda - \eta\gamma) \|\xi(t)\| + \frac{\eta\gamma}{2} \eta\gamma \|y\|. \end{aligned}$$

The first inequality is by $\xi(t+1)^{\mathsf{T}}y = 0$ and in the second inequality we use $\xi(t+1)^{\mathsf{T}}e(t) = \xi(t+1)^{\mathsf{T}}\xi(t) \le \|\xi(t+1)\|\|\xi(t)\|$. It follows that

$$\|\xi(t)\| - \frac{\gamma/2}{\lambda + \gamma} \|y\| \le (1 - \eta\lambda - \eta\gamma)^{t - \tau_1} \Big(\|\xi(0)\| - \frac{\gamma/2}{\lambda + \gamma} \|y\| \Big) \le (1 - \eta\lambda)^{t - \tau_1} (\|e(\tau_1)\| + \|y\|).$$

The bound (B.15) holds when $t \in [\tau_1 + \tau_3, T]$ with $\tau_3 = \frac{c_3}{\eta\lambda}$ for a constant c_3 . Finally, the bounds (B.14) and (B.15) hold when $t \in [\tau, T]$ with $\tau = \tau_1 + \max(\tau_2, \tau_3)$.

Lemma B.5. Under the conditions of Theorem 4.6, suppose $T = \lfloor \frac{S_{\lambda}}{\lambda} \rfloor = C_T \frac{\sqrt{p}}{\eta \sqrt{n\gamma}}$. Then we have $\hat{S}(T) \geq \tilde{c} \frac{\sqrt{p\gamma}}{\eta} \|\hat{s}(T)\|$, where C_T and \tilde{c} are positive constants.

Proof. Notice that

$$e(i)^{\mathsf{T}}XX^{\mathsf{T}}e(j) \ge \gamma e(i)^{\mathsf{T}}e(j) - \|e(i)\|\|e(j)\|\|XX^{\mathsf{T}} - \gamma I\| \ge \gamma e(i)^{\mathsf{T}}e(j) - \epsilon \gamma \|e(i)\|\|e(j)\|.$$

For $i \in [T/2, T]$ and τ defined in Lemma B.4, we have

$$e(i)^{\mathsf{T}}XX^{\mathsf{T}}\sum_{j

$$\geq \sum_{\tau\leq j

$$\geq \sum_{\tau\leq j

$$\geq (i-\tau)\gamma \left[\left(\frac{\lambda-\gamma}{\lambda+\gamma}\right)^{2} \|y\|^{2} - \left(\frac{\gamma}{\lambda+\gamma}\right)^{2} \|y\|^{2} - \epsilon \left(\frac{\lambda+\gamma/2}{\lambda-\gamma/2}\right)^{2} \|y\|^{2} - \frac{2c\tau}{i-\tau} \|y\|^{2}\right]$$

$$\geq \frac{T}{8}\gamma \|y\|^{2} = \frac{C_{T}}{8} \frac{\sqrt{p}}{\eta\sqrt{n\gamma}}\gamma \|y\|^{2}$$

$$\geq c\frac{\sqrt{p\gamma}}{\eta} \|y\|.$$
(B.17)$$$$$$

The second inequality is the orthogonal decomposition of e(i) and $||e(i)|| \le c||y||$ given by (4.3). The third inequality is by (B.14), (B.15) and (B.16) from Lemma B.4. The fourth inequality is by $\lambda = \Omega(\gamma), i - \tau \ge T/4$ and the fact that $\tau/(i - \tau)$ is small $(p = \Omega(n))$. The last inequality is by

 $||y|| = \Theta(\sqrt{n})$. Therefore,

$$\begin{split} \hat{S}(T) &= \sum_{i=0}^{T} (1 - \eta \lambda)^{T-i} e(i)^{\mathsf{T}} X X^{\mathsf{T}} \sum_{j < i} e(j) \\ &= \sum_{i=T/2}^{T} (1 - \eta \lambda)^{T-i} e(i)^{\mathsf{T}} X X^{\mathsf{T}} \sum_{j < i} e(j) + (1 - \eta \lambda)^{T/2} \sum_{i=0}^{T/2} (1 - \eta \lambda)^{T/2-i} e(i)^{\mathsf{T}} X X^{\mathsf{T}} \sum_{j < i} e(j) \\ &\geq \sum_{i=T/2}^{T} (1 - \eta \lambda)^{T-i} c \frac{\sqrt{p\gamma}}{\eta} \|y\| + (1 - \eta \lambda)^{T/2} \sum_{i=0}^{T/2} (1 - \eta \lambda)^{T/2-i} c' T \gamma \|y\|^2 \\ &\geq \frac{c}{2} \frac{\sqrt{p\gamma}}{\eta} \frac{\|y\|}{\eta \lambda} - (1 - \eta \lambda)^{T/2} \frac{c' T \gamma \|y\|^2}{\eta \lambda} \\ &\geq \frac{c}{4} \frac{\sqrt{p\gamma}}{\eta} \frac{\|y\|}{\eta \lambda} \end{split}$$

where the last inequality is by $(1 - \eta \lambda)^{T/2} \ll 1$ when $p = \Omega(n)$. On the other hand,

$$\|\hat{s}(T)\| \le \sum_{i=0}^{T} (1 - \eta \lambda)^{T-i} \|e(i)\| \le \frac{c}{\eta \lambda} \|y\|.$$

Combining the above inequalities gives the proof.

Proof of Theorem 4.6. First, notice that $\lambda(t) = 0$ when t > T. By Theorem 4.3 we have that the prediction error converges to zero exponentially fast, or $||e(t+1)|| \le (1 - \eta\gamma/2)||e(t)||$. It follows that $\hat{S}(t) \to \hat{S}(\infty)$ and $\hat{s}(t) \to \hat{s}(\infty)$ as $t \to \infty$. By Lemma B.3, we know it suffices to show $\hat{S}(\infty) \ge C \frac{\sqrt{p\gamma}}{\eta} ||\hat{s}(\infty)||$ with some constant C. Since

$$\hat{S}(\infty) = \sum_{i=0}^{\infty} (1 - \eta \lambda)^{(T-i)_{+}} e(i)^{\mathsf{T}} X X^{\mathsf{T}} \sum_{j < i} e(j) = \hat{S}(T) + \sum_{i > T} e(i)^{\mathsf{T}} X X^{\mathsf{T}} \sum_{j < i} e(j)$$

and

$$\hat{s}(\infty) = \sum_{i=0}^{\infty} (1 - \eta \lambda)^{(T-i)_{+}} e(i) = \hat{s}(T) + \sum_{i>T} e(i),$$

by Lemma B.5, it suffices to show

$$\sum_{i>T} e(i)^{\mathsf{T}} X X^{\mathsf{T}} \sum_{jT} \|e(i)\|.$$
(B.18)

We write $g = X X^{\mathsf{T}} \sum_{j < T} e(j)$. Then we have

$$\|g\| \ge \lambda_{\min}(XX^{\mathsf{T}}) \left[\left\| \sum_{\tau \ge j < T} e(j) \right\| - \sum_{j < \tau} \|e(j)\| \right]$$
$$\ge \lambda_{\min}(XX^{\mathsf{T}}) \left[\sum_{\tau \ge j < T} a(j) - \sum_{j < \tau} \|e(j)\| \right]$$
$$\ge \gamma \left[(T - \tau) \left(\frac{\lambda - \gamma}{\lambda + \gamma} \right) \|y\| - \tau c \|y\| \right]$$
(B.19)

and

$$\|g\| \leq \|XX^{\mathsf{T}}\| \Big(\sum_{j < \tau} \|e(j)\| + \sum_{\tau \geq j < T} \|e(j)\| \Big)$$

$$\leq (1+\epsilon)\gamma \Big[\tau c \|y\| + (T-\tau) \Big(\frac{\lambda+\gamma/2}{\lambda-\gamma/2} \Big) \|y\| \Big]$$
(B.20)

where we use the bounds (B.14) and (B.16) from Lemma B.4. We further denote $\alpha(t) = \bar{g}^{\mathsf{T}} e(t)$ where $\bar{g} = g/||g||$. Following the same calculation in (B.17), we have

$$g^{\mathsf{T}}e(T) = e(T)^{\mathsf{T}}XX^{\mathsf{T}}\sum_{j
$$\geq (T-\tau)\gamma\Big[\Big(\frac{\lambda-\gamma}{\lambda+\gamma}\Big)^{2}\|y\|^{2} - \Big(\frac{\gamma}{\lambda+\gamma}\Big)^{2}\|y\|^{2} - \epsilon\Big(\frac{\lambda+\gamma/2}{\lambda-\gamma/2}\Big)^{2}\|y\|^{2} - \frac{2c\tau}{T-\tau}\|y\|^{2}\Big].$$$$

Then

$$\begin{split} \frac{\alpha(T)}{\|e(T)\|} &\geq \frac{g^{\mathsf{T}}e(T)}{\|g\|\|e(T)\|} \\ &\geq \frac{(T-\tau)\gamma\Big[\Big(\frac{\lambda-\gamma}{\lambda+\gamma}\Big)^2\|y\|^2 - \Big(\frac{\gamma}{\lambda+\gamma}\Big)^2\|y\|^2 - \epsilon\Big(\frac{\lambda+\gamma/2}{\lambda-\gamma/2}\Big)^2\|y\|^2 - \frac{2c\tau}{T-\tau}\|y\|^2\Big]}{(1+\epsilon)\gamma\Big[\tau c\|y\| + (T-\tau)\Big(\frac{\lambda+\gamma/2}{\lambda-\gamma/2}\Big)\|y\|\Big] \times \Big(\frac{\lambda+\gamma/2}{\lambda-\gamma/2}\Big)\|y\|} \\ &\geq \frac{\Big[\Big(\frac{\lambda-\gamma}{\lambda+\gamma}\Big)^2 - \Big(\frac{\gamma}{\lambda+\gamma}\Big)^2 - \epsilon\Big(\frac{\lambda+\gamma/2}{\lambda-\gamma/2}\Big)^2 - \frac{2c\tau}{T-\tau}\Big]}{(1+\epsilon)\Big[\frac{\tau c}{T-\tau} + \Big(\frac{\lambda+\gamma/2}{\lambda-\gamma/2}\Big)\Big] \times \Big(\frac{\lambda+\gamma/2}{\lambda-\gamma/2}\Big)}. \end{split}$$

Notice that $T/\tau = \Omega(\sqrt{p/n})$, so that when p/n, λ/γ are large and ϵ is small, we have

$$\alpha(T) \ge \frac{3}{4} \|e(T)\|.$$
 (B.21)

In order to obtain the lower bound on $\alpha(t)$ for all $t \ge T$, we multiply \bar{g}^{T} on both sides of (B.3). Notice $\lambda(t) = 0$ and apply the bounds (B.10), (B.11), (B.12) and (B.13). We have that

$$\begin{aligned} \alpha(t+1) &\geq (1-\eta\gamma)\bar{g}^{\mathsf{T}}e(t) - \eta \|\frac{1}{p}XW(0)^{\mathsf{T}}W(0)X^{\mathsf{T}} - \gamma I_d\|\|e(t)\| \\ &- \eta(\|J_1(t)\| + \|J_2(t)\| + \|J_3(t)\|)\|e(t)\| \\ &\geq (1-\eta\gamma)\alpha(t) - \frac{\eta\gamma}{4}\|e(t)\| \end{aligned}$$

or for $t \geq T$,

$$\alpha(t) \ge (1 - \eta\gamma)^{t-T} \alpha(T) - \frac{\eta\gamma}{4} \sum_{i=T}^{t-1} (1 - \eta\gamma)^{t-i} ||e(i)||.$$
(B.22)

Taking the sum over t > T, we have

$$\sum_{t>T} \alpha(t) \geq \sum_{t>T} (1 - \eta\gamma)^{t-T} \alpha(T) - \frac{\eta\gamma}{4} \sum_{t>T} \sum_{i=T}^{t-1} (1 - \eta\gamma)^{t-i} \|e(i)\|$$

$$\geq \frac{1 - \eta\gamma}{\eta\gamma} \alpha(T) - \frac{\eta\gamma}{4} \sum_{i>T} \|e(i)\| \sum_{t>i} (1 - \eta\gamma)^{t-i}$$

$$\geq \frac{1 - \eta\gamma}{\eta\gamma} \Big(\alpha(T) - \frac{\eta\gamma}{4} \sum_{i>T} \|e(i)\| \Big)$$

$$\geq \frac{1 - \eta\gamma}{\eta\gamma} (\alpha(T) - \frac{1}{2} \|e(T)\|)$$

$$\geq \frac{1 - \eta\gamma}{4\eta\gamma} \|e(T)\|.$$
(B.23)

The second inequality follows from switching the order of sums. The fourth inequality is by exponential convergence after T steps. The last inequality is by (B.21). With the above inequalities, we

are ready to bound the left hand side of (B.18), obtaining

$$\begin{split} \sum_{i>T} e(i)^{\mathsf{T}} X X^{\mathsf{T}} \sum_{j < i} e(j) &= \sum_{i>T} e(i)^{\mathsf{T}} X X^{\mathsf{T}} \sum_{j < T} e(j) + \sum_{i>T} e(i)^{\mathsf{T}} X X^{\mathsf{T}} \sum_{j \ge T} e(j) \\ &\geq \sum_{t>T} \alpha(t) \|g\| - 2\gamma \Big(\sum_{i \ge t} \|e(i)\|\Big)^2 \\ &\geq \frac{1 - \eta\gamma}{4\eta\gamma} \|e(T)\|\gamma \Big[(T - \tau) \Big(\frac{\lambda - \gamma}{\lambda + \gamma}\Big) \|y\| - \tau c \|y\| \Big] - 2\gamma \frac{4}{\eta^2 \gamma^2} \|e(T)\|^2 \\ &\geq \frac{1 - \eta\gamma}{4\eta\gamma} \|e(T)\|\gamma \Big[(T - \tau) \Big(\frac{\lambda - \gamma}{\lambda + \gamma}\Big) \|y\| - \tau c \|y\| - \frac{64}{\eta\gamma(1 - \eta\gamma)} \|y\| \Big] \\ &\geq \frac{1 - \eta\gamma}{4\eta\gamma} \|e(T)\|\gamma \frac{T}{2}\|y\| = \frac{1 - \eta\gamma}{4\eta\gamma} \|e(T)\|\gamma \frac{C_T}{2} \frac{\sqrt{p}}{\eta\sqrt{n\gamma}} \|y\| \\ &\geq C \frac{1 - \eta\gamma}{4\eta\gamma} \frac{\sqrt{p\gamma}}{\eta} \|e(T)\|. \end{split}$$

The second inequality is by (B.23) and (B.19). The third inequality is by $||e(T)|| \le 2||y||$. The last inequality is by $||y|| = \Theta(\sqrt{n})$. On the other hand,

$$\sum_{i>T} \|e(i)\| \le \sum_{i>T} (1 - \eta\gamma/2)^{i-T} \|e(T)\| = \frac{1 - \eta\gamma/2}{\eta\gamma/2} \|e(T)\|$$
(B.25)

Combining (B.24) and (B.25) implies (B.18), as desired.

C Technical Lemmas

In this section, we list technical lemmas that are used in our proofs, with references. The first is a variant of the Restricted Isometry Property that bounds the spectral norm of a random Gaussian matrix around 1 with high probability.

Lemma C.1 (Hand & Voroninski, 2018). Let $A \in \mathbb{R}^{m \times n}$ has i.i.d. $\mathcal{N}(0, 1/m)$ entries. Fix $0 < \varepsilon < 1$, k < m, and a subspace $T \subseteq \mathbb{R}^n$ of dimension k, then there exists universal constants c_1 and γ_1 , such that with probability at least $1 - (c_1/\varepsilon)^k e^{-\gamma_1 \varepsilon m}$,

$$(1-\varepsilon) \|v\|_2^2 \le \|Av\|_2^2 \le (1+\varepsilon) \|v\|_2^2, \quad \forall v \in T.$$

Let us take k = n in Lemma C.1 to get the following corollary.

Corollary C.2. Let $A \in \mathbb{R}^{m \times n}$ has i.i.d. $\mathcal{N}(0, 1/m)$ entries. For any $0 < \varepsilon < 1$, there exists universal constants c_2 and γ_2 , such that with probability at least $1 - (c_2/\varepsilon)^d e^{-\gamma_2 \varepsilon m}$,

$$\|A'A - I_m\| \le \varepsilon$$

Then following lemma gives tail bounds for χ^2 random variables.

Lemma C.3 (Laurent & Massart, 2000). Suppose $X \sim \chi_p^2$, then for all $t \ge 0$ it holds

$$\mathbb{P}\{X - p \ge 2\sqrt{pt} + 2t\} \le e^{-t}$$

and

$$\mathbb{P}\{X - p \le -2\sqrt{pt}\} \le e^{-t}.$$

For two independent random Gaussian vectors, their inner product can be controlled with the following tail bound.

Lemma C.4 (Gao & Lafferty, 2020). Let $X, Y \in \mathbb{R}^p$ be independent random Gaussian vectors where $X_r \sim \mathcal{N}(0, 1)$ and $Y_r \sim \mathcal{N}(0, 1)$ for all $r \in [p]$, then it holds

$$\mathbb{P}(|X^{\mathsf{T}}Y| \ge \sqrt{2pt + 2t}) \le 2e^t.$$

References

- Gao, C. & Lafferty, J. (2020). Model repair: Robust recovery of over-parameterized statistical models. *arXiv preprint arXiv:2005.09912*.
- Hand, P. & Voroninski, V. (2018). Global guarantees for enforcing deep generative priors by empirical risk. In *Conference On Learning Theory* (pp. 970–978).: PMLR.
- Laurent, B. & Massart, P. (2000). Adaptive estimation of a quadratic functional by model selection. *Annals of Statistics*, (pp. 1302–1338).