## A Convergence on Two-Layer Nonlinear Networks

We consider the family of neural networks

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{p}} \sum_{r=1}^{p} \beta_{r} \psi\left(w_{r}^{\boldsymbol{\top}} x\right)=\frac{1}{\sqrt{p}} \beta^{\boldsymbol{\top}} \psi(W x) \tag{A.1}
\end{equation*}
$$

where $\beta \in \mathbb{R}^{p}$, $W=\left(w_{1}, \ldots, w_{p}\right)^{\top} \in \mathbb{R}^{p \times d}$, and $\psi$ is an activation function. Given data, the loss function is

$$
\begin{equation*}
\mathcal{L}(W, \beta)=\frac{1}{2} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}=\frac{1}{2} \sum_{i=1}^{n}\left(\frac{1}{\sqrt{p}} \beta^{\boldsymbol{\top}} \psi\left(W x_{i}\right)-y\right)^{2} . \tag{A.2}
\end{equation*}
$$

The feedback alignment algorithm has updates

$$
\begin{align*}
W(t+1) & =W(t)-\eta \frac{1}{\sqrt{p}} \sum_{i=1}^{n} D_{i}(t) b x_{i}^{\top} e_{i}(t) \\
\beta(t+1) & =\beta(t)-\eta \frac{1}{\sqrt{p}} \sum_{i=1}^{n} \psi\left(W(t) x_{i}\right) e_{i}(t) \tag{A.3}
\end{align*}
$$

where $D_{i}(t)=\operatorname{diag}\left(\psi^{\prime}\left(W(t) x_{i}\right)\right)$ and $e_{i}(t)=\frac{1}{\sqrt{p}} \beta(t)^{\top} \psi\left(W(t) x_{i}\right)-y_{i}$. To help make the proof more readable, we use $c, C$ to denote the global constants whose values may vary from line to line.

## A. 1 Concentration Results

Lemma A. 1 (Lemma A. 7 in Gao \& Lafferty, 2020). Assume $x_{1}, \ldots, x_{n} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, I_{d} / d\right)$. We define matrix $\widetilde{G} \in \mathbb{R}^{n \times n}$ with entries

$$
\widetilde{G}_{i, j}=\left|\mathbb{E} \psi^{\prime}(Z)\right|^{2} \frac{x_{i}^{\top} x_{j}}{\left\|x_{i}\right\|\left\|x_{j}\right\|}+\left(\mathbb{E}|\psi(Z)|^{2}-\left|\mathbb{E} \psi^{\prime}(Z)\right|^{2}\right) \mathbb{I}\{i=j\}
$$

where $Z \sim \mathcal{N}(0,1)$. If $d=\Omega(\log n)$, then with high probability, we have

$$
\|\bar{G}-\widetilde{G}\|^{2} \lesssim \frac{\log n}{d}+\frac{n^{2}}{d^{2}}
$$

Proof of Proposition 3.3. If $\psi$ is sigmoid or tanh, for a standard Gaussian random variable $Z$, we have

$$
\gamma:=\frac{1}{2}\left(\mathbb{E}|\psi(Z)|^{2}-\left|\mathbb{E} \psi^{\prime}(Z)\right|^{2}\right)>0 .
$$

From Lemma A.1, we know that with high probability $\lambda_{\min }(\bar{G}) \geq \lambda_{\min }(\widetilde{G})-\|\bar{G}-\widetilde{G}\| \geq 2 \gamma-$ $C\left(\sqrt{\frac{\log n}{d}}+\frac{n}{d}\right) \geq \gamma$.

Lemma A.2. Assume $W(0), \beta(0)$ and $b$ have i.i.d. standard Gaussian entries. Given $\delta \in(0,1)$, if $p=\Omega(n / \delta)$, then with probability $1-\delta$

$$
\begin{gather*}
\frac{1}{p} \sum_{r=1}^{p}\left|b_{r}\right| \leq c,  \tag{A.4}\\
\frac{1}{p} \sum_{r=1}^{p}\left|b_{r} \beta_{r}(0)\right| \leq c,  \tag{A.5}\\
\|e(0)\| \leq c \sqrt{n}  \tag{A.6}\\
\max _{r \in[p]}\left|b_{r}\right| \leq 2 \sqrt{\log p} \tag{A.7}
\end{gather*}
$$

Proof. We will show each inequality holds with probability at least $1-\frac{\delta}{4}$, then by a union bound, all of them hold with probability at least $1-\delta$. Since $\operatorname{Var}\left(\frac{1}{p} \sum_{r=1}^{p}\left|b_{r}\right|\right) \leq \frac{\operatorname{Var}\left(\left|b_{0}\right|\right)}{p}$, by Chebyshev's inequality, we have

$$
\mathbb{P}\left(\frac{1}{p} \sum_{r=1}^{p}\left|b_{r}\right|>\mathbb{E}\left(b_{1}\right)+1\right) \leq \frac{\operatorname{Var}\left(\left|b_{1}\right|\right)}{p} \leq \delta / 4
$$

if $p \geq 4 \mathbb{V} \operatorname{ar}\left(\left|b_{1}\right|\right) / \delta$, which gives (A.4). The proof for (A.5) is similar since $\operatorname{Var}\left(\frac{1}{p} \sum_{r=1}^{p}\left|b_{r} \beta_{r}(0)\right|\right)=O(1 / p)$. To prove (A.6), since $\left|y_{i}\right|$ and $\left\|x_{i}\right\|$ are bounded, it suffices to show $\left|u_{i}(0)\right| \leq c$ for all $i \in[n]$. Actually, by independence, we have

$$
\mathbb{V} \operatorname{ar}\left(u_{i}(0)\right)=\mathbb{V} \operatorname{ar}\left(\frac{1}{p} \sum_{r=1}^{p} \beta_{r}(0) \psi\left(w_{r}(0)^{\top} x_{i}\right)\right)=\frac{1}{p} \operatorname{V} \operatorname{ar}\left(\beta_{1}(0) \psi\left(w_{1}(0)^{\top} x_{i}\right)\right)=O(1 / p)
$$

By Chebyshev's inequality, we have for each $i \in[n]$

$$
\mathbb{P}\left(\left|u_{i}(0)\right|>c\right) \leq \frac{\operatorname{Var}\left(u_{i}(0)\right)}{c^{2}} \leq \frac{\delta}{4 n}
$$

where we require $p=\Omega(n / \delta)$. With a union bound argument, we can show (A.6). Finally, (A.7) followed from standard Gaussian tail bounds and union bound argument, yielding

$$
\mathbb{P}\left(\max _{r \in[p]}\left|b_{r}\right|>2 \sqrt{\log p}\right) \leq \sum_{r \in[p]} \mathbb{P}\left(\left|b_{r}\right|>2 \sqrt{\log p}\right) \leq 2 p e^{-2 \log p}=\frac{2}{p} \leq \frac{\delta}{4}
$$

Lemma A.3. Under the conditions of Theorem 3.2, we define matrices $G(0), H(0) \in \mathbb{R}^{n \times n}$ with entries

$$
\begin{equation*}
G_{i j}(0)=\frac{1}{p} \psi\left(W(0) x_{i}\right)^{\top} \psi\left(W(0) x_{j}\right)=\frac{1}{p} \sum_{r=1}^{p} \psi\left(w_{r}(0)^{\top} x_{i}\right) \psi\left(w_{r}(0)^{\top} x_{j}\right) \tag{A.8}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{i j}(0)=\frac{x_{i}^{\top} x_{j}}{p} \beta(0)^{\top} D_{i}(0) D_{j}(0) b=\frac{1}{p} \sum_{r=1}^{p} \beta_{r}(0) b_{r} \psi^{\prime}\left(w_{r}(0)^{\top} x_{i}\right) \psi^{\prime}\left(w_{r}(0)^{\top} x_{j}\right) \tag{A.9}
\end{equation*}
$$

For any $\delta \in(0,1)$, if $p=\Omega\left(\frac{n^{2}}{\delta \gamma^{2}}\right)$, then with probability at least $1-\delta$, we have $\lambda_{\min }(G(0)) \geq \frac{3}{4} \gamma$ and $\|H(0)\| \leq \frac{\gamma}{4}$.

Proof. By independence and boundedness of $\psi$ and $\psi^{\prime}$, we have $\mathbb{V a r}\left(G_{i j}(0)\right)=O(1 / p)$ and $\operatorname{Var}\left(H_{i j}(0)\right)=O(1 / p)$. Since $\mathbb{E}(G(0))=\bar{G}$, we have

$$
\mathbb{E}\|G(0)-\bar{G}\|^{2} \leq \mathbb{E}\|G(0)-\bar{G}\|_{F}^{2}=O\left(\frac{n^{2}}{p}\right)
$$

By Markov's inequality, when $p=\Omega\left(\frac{n^{2}}{\delta \gamma^{2}}\right)$

$$
\mathbb{P}\left(\|G(0)-\bar{G}\|>\frac{\gamma}{4}\right) \leq O\left(\frac{n^{2}}{p \gamma^{2}}\right) \leq \frac{\delta}{2}
$$

Similarly we have $\mathbb{P}\left(\|H(0)\|>\frac{\gamma}{4}\right) \leq \frac{\delta}{2}$, since $\mathbb{E}(H(0))=0$. Then with probability at least $1-\delta$, $\lambda_{\min }(G(0)) \geq \lambda_{\min }(\bar{G})-\gamma / 4 \geq \frac{3}{4} \gamma$, and $\|H(0)\| \leq \gamma / 4$.

## A. 2 Proof of Theorem 3.2

Lemma A.4. Assume all the inequalities from Lemma A. 2 hold. Under the conditions of Theorem 3.2, if the error bound (3.1) holds for all $t=1,2, \ldots, t^{\prime}-1$, then the bounds (3.2) hold for all $t \leq t^{\prime}$.

Proof. From the feedback alignment updates (A.3), we have for all $t \leq T$

$$
\begin{aligned}
\left|\beta_{r}(t)-\beta_{r}(0)\right| & \leq \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^{n}\left|\psi\left(w_{r}(t) x_{i}\right) e_{i}(t)\right| \\
& \leq c \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^{n}\left|e_{i}(t)\right| \\
& \leq c \frac{\eta \sqrt{n}}{\sqrt{p}} \sum_{s=0}^{t-1}\|e(t)\| \\
& \leq c \frac{\eta \sqrt{n}}{\sqrt{p}} \sum_{s=0}^{t-1}\left(1-\frac{\gamma \eta}{4}\right)^{t}\|e(0)\| \\
& \leq c \frac{\sqrt{n}}{\gamma \sqrt{p}}\|e(0)\| \\
& \leq c \frac{n}{\gamma \sqrt{p}}
\end{aligned}
$$

where we use the fact that $\psi$ is bounded and (A.6). We also have

$$
\begin{aligned}
\left\|w_{r}(t)-w_{r}(0)\right\| & \leq \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^{n}\left\|\psi^{\prime}\left(w_{r}(t)^{\top} x_{i}\right) b_{r} x_{i} e_{i}(t)\right\| \\
& \leq c \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^{n}\left|b_{r} \| e_{i}(t)\right| \\
& \leq c\left|b_{r}\right| \frac{\eta \sqrt{n}}{\sqrt{p}} \sum_{s=0}^{t-1}\|e(t)\| \\
& \leq c\left|b_{r}\right| \frac{\sqrt{n}}{\gamma \sqrt{p}}\|e(0)\| \\
& \leq c \frac{n \sqrt{\log p}}{\gamma \sqrt{p}}
\end{aligned}
$$

where we use that $\psi^{\prime}$ is bounded, (A.6) and (A.7).
Lemma A.5. Assume all the inequalities from Lemma A. 2 hold. Under the conditions of Theorem 3.2, if the bound for the weights difference (3.2) holds for all $t \leq t^{\prime}$ and error bound (3.1) holds for all $t \leq t^{\prime}-1$, then (3.1) holds for $t=t^{\prime}$.

Proof. We start with analyzing the error $e(t)$ according to

$$
\begin{aligned}
e_{i}(t+1)= & \frac{1}{\sqrt{p}} \beta(t+1)^{\boldsymbol{\top}} \psi\left(W(t+1) x_{i}\right)-y_{i} \\
= & \frac{1}{\sqrt{p}} \beta(t+1)^{\boldsymbol{\top}}\left(\psi\left(W(t+1) x_{i}\right)-\psi\left(W(t) x_{i}\right)\right)+\frac{1}{\sqrt{p}}(\beta(t+1)-\beta(t))^{\boldsymbol{\top}} \psi\left(W(t) x_{i}\right) \\
& +\frac{1}{\sqrt{p}} \beta\left(t \boldsymbol{\top}^{\boldsymbol{\top}} \psi\left(W(t) x_{i}\right)-y_{i}\right. \\
= & e_{i}(t)-\frac{\eta}{p} \beta(t+1)^{\boldsymbol{\top}} D_{i}(t) \sum_{j=1}^{n} D_{j}(t) b x_{j}^{\boldsymbol{\top}} x_{i} e_{j}(t)-\frac{\eta}{p} \sum_{j=1}^{n} \psi\left(W(t) x_{j}\right)^{\boldsymbol{\top}} \psi\left(W(t) x_{i}\right) e_{j}(t) \\
& +v_{i}(t) \\
= & e_{i}(t)-\eta \sum_{j=1}^{n}\left(H_{i j}(t)+G_{i j}(t)\right) e_{j}(t)+v_{i}(t)
\end{aligned}
$$

where

$$
\begin{aligned}
G_{i j}(t) & =\frac{1}{p} \psi\left(W(t) x_{j}\right)^{\top} \psi\left(W(t) x_{i}\right) \\
H_{i j}(t) & =\frac{x_{i}^{\top} x_{j}}{p} \beta(t+1)^{\top} D_{i}(t) D_{j}(t) b
\end{aligned}
$$

and $v_{i}(t)$ is the residual term from the Taylor expansion

$$
v_{i}(t)=\frac{1}{2 \sqrt{p}} \sum_{r=1}^{p} \beta_{r}(t+1)\left|\left(w_{r}(t+1)-w_{r}(t)\right)^{\top} x_{i}\right|^{2} \psi^{\prime \prime}\left(\xi_{r i}(t)\right)
$$

with $\xi_{r i}(t)$ between $w_{r}(t)^{\boldsymbol{\top}} x_{i}$ and $w_{r}(t+1)^{\top} x_{i}$. We can also rewrite the above iteration in vector form as

$$
\begin{equation*}
e(t+1)=e(t)-\eta(G(t)+H(t)) e(t)+v(t) \tag{A.10}
\end{equation*}
$$

Now for $t=t^{\prime}-1$, we wish to show that both $G(t)$ and $H(t)$ are close to their initialization. Notice that

$$
\begin{aligned}
\left|G_{i j}(t)-G_{i j}(0)\right|= & \frac{1}{p}\left|\psi\left(W(t) x_{j}\right)^{\top} \psi\left(W(t) x_{i}\right)-\psi\left(W(t) x_{j}\right)^{\top} \psi\left(W(t) x_{i}\right)\right| \\
\leq & \frac{1}{p} \sum_{r=1}^{p}\left|\psi\left(w_{r}(t)^{\top} x_{j}\right) \| \psi\left(w_{r}(t)^{\top} x_{i}\right)-\psi\left(w_{r}(0)^{\top} x_{i}\right)\right| \\
& +\frac{1}{p} \sum_{r=1}^{p}\left|\psi\left(w_{r}(0)^{\top} x_{i}\right) \| \psi\left(w_{r}(t)^{\top} x_{j}\right)-\psi\left(w_{r}(0)^{\top} x_{j}\right)\right| \\
\leq & c \frac{1}{p} \sum_{r=1}^{p}\left|w_{r}(t)^{\top} x_{i}-w_{r}(0)^{\top} x_{i}\right|+\frac{1}{p} \sum_{r=1}^{p}\left|w_{r}(t)^{\top} x_{j}-w_{r}(0)^{\top} x_{j}\right| \\
\leq & c_{0} \frac{n \sqrt{\log p}}{\gamma \sqrt{p}}\left(\left\|x_{i}\right\|+\left\|x_{j}\right\|\right)
\end{aligned}
$$

where the second inequality is due to the boundedness of $\psi$ and $\psi^{\prime}$, and the last inequality is by (3.2). Then we have

$$
\begin{equation*}
\|G(t)-G(0)\| \leq \max _{j \in[n]} \sum_{i=1}^{n}\left|G_{i j}(t)-G_{i j}(0)\right| \leq c_{0} \frac{n^{2} \sqrt{\log p}}{\gamma \sqrt{p}} \tag{A.11}
\end{equation*}
$$

For matrix $H(t)$, we similarly have

$$
\begin{aligned}
\left|H_{i j}(t)-H_{i j}(0)\right| \leq & \frac{\left|x_{i}^{\top} x_{j}\right|}{p}\left|\beta(t+1)^{\top} D_{i}(t) D_{j}(t) b-\beta(0)^{\top} D_{i}(0) D_{j}(0) b\right| \\
\leq & \left.\frac{\left\|x_{i}\right\|\left\|x_{j}\right\|}{p} \sum_{r=1}^{p} \right\rvert\, b_{r} \beta_{r}(t+1) \psi^{\prime}\left(w_{r}(t)^{\top} x_{i}\right) \psi^{\prime}\left(w_{r}(t)^{\top} x_{j}\right) \\
& -b_{r} \beta_{r}(0) \psi^{\prime}\left(w_{r}(0)^{\top} x_{i}\right) \psi^{\prime}\left(w_{r}(0)^{\top} x_{j}\right) \mid \\
\leq & \frac{\mid\left\|x_{i}\right\|\left\|x_{j}\right\| \|}{p} \sum_{r=1}^{p}\left(\left|b_{r}\right|\left|\beta_{r}(t+1)-\beta_{r}(0) \| \psi^{\prime}\left(w_{r}(t)^{\top} x_{i}\right) \psi^{\prime}\left(w_{r}(t)^{\top} x_{j}\right)\right|\right. \\
& +\left|b_{r}\right|\left|\beta_{r}(0)\left\|\psi^{\prime}\left(w_{r}(t)^{\top} x_{i}\right)-\psi^{\prime}\left(w_{r}(0)^{\top} x_{i}\right)\right\| \psi^{\prime}\left(w_{r}(t)^{\top} x_{j}\right)\right| \\
& \left.+\left|b_{r}\right|\left|\beta_{r}(0)\left\|\psi^{\prime}\left(w_{r}(0)^{\top} x_{i}\right)\right\| \psi^{\prime}\left(w_{r}(t)^{\top} x_{j}\right)-\psi^{\prime}\left(w_{r}(0)^{\top} x_{j}\right)\right|\right) \\
\leq & c \frac{\left\|x_{i}\right\|\left\|x_{j}\right\|}{p} \sum_{r=1}^{p}\left(\left|b_{r}\right| \frac{n}{\gamma \sqrt{p}}+\left|b_{r}\right|\left|\beta_{r}(0)\right| \frac{n \sqrt{\log p}}{\gamma \sqrt{p}}\left(\left\|x_{i}\right\|+\left\|x_{j}\right\|\right)\right) \\
\leq & c_{1} \frac{n}{\gamma \sqrt{p}}+c_{2} \frac{n \sqrt{\log p}}{\gamma \sqrt{p}} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\|H(t)-H(0)\| \leq \max _{j \in[n]} \sum_{i=1}^{n}\left|H_{i j}(t)-H_{i j}(0)\right| \leq c_{1} \frac{n^{2}}{\gamma \sqrt{p}}+c_{2} \frac{n^{2} \sqrt{\log p}}{\gamma \sqrt{p}} \tag{A.12}
\end{equation*}
$$

Next, we bound the residual term $v_{i}(t)$. Since $\psi^{\prime \prime}$ is bounded, we have

$$
\begin{aligned}
\left|v_{i}(t)\right| & \leq c \frac{1}{\sqrt{p}} \sum_{r=1}^{p}\left|\beta_{r}(t+1)\right|\left\|w_{r}(t+1)-w_{r}(t)\right\|^{2} \\
& \leq c \frac{1}{\sqrt{p}} \frac{\eta^{2}}{p} \sum_{r=1}^{p}\left|\beta_{r}(t+1)\right|\left(\sum_{i=1}^{n}\left\|\psi^{\prime}\left(w_{r}(t)^{\top} x_{i}\right) b_{r} x_{i} e_{i}(t)\right\|\right)^{2} \\
& \leq c \frac{1}{\sqrt{p}} \frac{\eta^{2}}{p} \sum_{r=1}^{p}\left|\beta_{r}(t+1) \| b_{r}\right|^{2}\left(\sum_{i=1}^{n}\left|e_{i}(t)\right|\right)^{2} \\
& \leq c \frac{\eta^{2} n}{\sqrt{p}}\|e(t)\|^{2} \\
& \leq c_{3} \frac{\eta^{2} n \sqrt{n}}{\sqrt{p}}\|e(t)\|
\end{aligned}
$$

This leads to the bound

$$
\begin{equation*}
\|v(t)\|=\left(\sum_{i=1}^{n}\left|v_{i}(t)\right|^{2}\right)^{1 / 2} \leq c_{3} \frac{\eta^{2} n^{2}}{\sqrt{p}}\|e(t)\| \tag{A.13}
\end{equation*}
$$

Combining Eqs. (A.10) to (A.13), we have

$$
\begin{aligned}
\|e(t+1)\| \leq & \left\|I_{n}-\eta(G(t)+H(t))\right\|\|e(t)\|+\|v(t)\| \\
\leq & \left(\left\|I_{n}-\eta G(0)\right\|+\eta\|G(t)-G(0)\|+\eta\|H(0)\|\right. \\
& +\eta\|H(t)-H(0)\|)\|e(t)\|+\|v(t)\| \\
\leq & \left(1-\frac{3 \eta \gamma}{4}+c_{0} \frac{\eta n^{2} \sqrt{\log p}}{\gamma \sqrt{p}}+\frac{\eta \gamma}{4}+c_{1} \frac{\eta n^{2}}{\gamma \sqrt{p}}+c_{2} \frac{\eta n^{2} \sqrt{\log p}}{\gamma \sqrt{p}}+c_{3} \frac{\eta^{2} n \sqrt{n}}{\sqrt{p}}\right)\|e(t)\| \\
\leq & \left(1-\frac{\eta \gamma}{4}\right)\|e(t)\|
\end{aligned}
$$

where we use Lemma A. 3 and $p=\Omega\left(\frac{n^{4} \log p}{\gamma^{4}}\right)$.
Proof of Theorem 3.2. We prove the inequality (3.1) by induction. Suppose (3.1) and (3.2) hold for all $t=1,2, \ldots, t^{\prime}-1$, by Lemma A. 4 and Lemma A. 5 we know (3.1) and (3.2) hold for $t=t^{\prime}$, which completes the proof.

## A. 3 Proof of Theorem 4.2

Lemma A.6. Assume all the inequalities from Lemma A. 2 hold. Under the conditions of Theorem 4.2, if the error bound (4.2) holds for all $t=1,2, \ldots, t^{\prime}-1$, then

$$
\begin{align*}
\left\|w_{r}(t)-w_{r}(0)\right\| & \leq c_{1} \frac{n \sqrt{\log p}}{\gamma \sqrt{p}}\left(1+\eta \tilde{S}_{\lambda}\right)  \tag{A.14}\\
\left|\beta_{r}(t)-\beta_{r}(0)\right| & \leq c_{2} \frac{n}{\gamma \sqrt{p}}\left(1+\eta \tilde{S}_{\lambda}\right)
\end{align*}
$$

hold for all $t \leq t^{\prime}$, where $c_{1}, c_{2}$ are constants.
Proof. For any $k \leq t^{\prime}-1$, we apply (4.2) repeatedly on the right hand side of itself to get

$$
\|e(k)\| \leq \prod_{i=0}^{k-1}\left(1-\frac{\eta \gamma}{4}-\eta \lambda(i)\right)\|e(0)\|+\sum_{i=0}^{k-1} \eta \lambda(i) \prod_{i<j<k}\left(1-\frac{\eta \gamma}{4}-\eta \lambda(j)\right)\|y\|
$$

For $t \leq t^{\prime}-1$, we take the sum over $k=0, . ., t$ on both sides of above inequality to obtain

$$
\begin{aligned}
\sum_{k=0}^{t}\|e(k)\| & \leq \sum_{k=0}^{t} \prod_{i=0}^{k-1}\left(1-\frac{\eta \gamma}{4}-\eta \lambda(i)\right)\|e(0)\|+\sum_{k=0}^{t} \sum_{i=0}^{k-1} \eta \lambda(i) \prod_{i<j<k}\left(1-\frac{\eta \gamma}{4}-\eta \lambda(j)\right)\|y\| \\
& \leq \sum_{k=0}^{t}\left(1-\frac{\eta \gamma}{4}\right)^{k-1}\|e(0)\|+\sum_{k=0}^{t} \sum_{i=0}^{k-1} \eta \lambda(i)\left(1-\frac{\eta \gamma}{4}\right)^{k-i-1}\|y\| \\
& \leq \sum_{k=0}^{t}\left(1-\frac{\eta \gamma}{4}\right)^{k-1}\|e(0)\|+\eta\|y\| \sum_{k=0}^{t-1} \lambda(i) \sum_{k=i+1}^{T}\left(1-\frac{\eta \gamma}{4}\right)^{k-i-1} \\
& \leq \frac{4}{\eta \gamma}\|e(0)\|+\frac{4}{\gamma} \tilde{S}_{\lambda}\|y\| \\
& \leq \frac{c \sqrt{n}}{\gamma}\left(\frac{1}{\eta}+\tilde{S}_{\lambda}\right)
\end{aligned}
$$

where we use $\|e(0)\|=O(\sqrt{n})$ and $\|y\|=O(\sqrt{n})$. Then for all $t \leq t^{\prime}$, we have

$$
\begin{aligned}
\left|\beta_{r}(t)-\beta_{r}(0)\right| & \leq \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^{n}\left|\psi\left(w_{r}(t) x_{i}\right) e_{i}(t)\right| \\
& \leq c \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^{n}\left|e_{i}(t)\right| \\
& \leq c \frac{\eta \sqrt{n}}{\sqrt{p}} \sum_{s=0}^{t-1}\|e(t)\| \\
& \leq c \frac{\eta \sqrt{n}}{\sqrt{p}} \frac{\sqrt{n}}{\gamma}\left(\frac{1}{\eta}+\tilde{S}_{\lambda}\right) \\
& \leq c \frac{n}{\gamma \sqrt{p}}\left(1+\eta \tilde{S}_{\lambda}\right)
\end{aligned}
$$

where we use $\psi$ is bounded and (A.6). We also have

$$
\begin{aligned}
\left\|w_{r}(t)-w_{r}(0)\right\| & \leq \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^{n}\left\|\psi^{\prime}\left(w_{r}(t)^{\top} x_{i}\right) b_{r} x_{i} e_{i}(t)\right\| \\
& \leq c \frac{\eta}{\sqrt{p}} \sum_{s=0}^{t-1} \sum_{i=1}^{n}\left|b_{r} \| e_{i}(t)\right| \\
& \leq c\left|b_{r}\right| \frac{\eta \sqrt{n}}{\sqrt{p}} \sum_{s=0}^{t-1}\|e(t)\| \\
& \leq c\left|b_{r}\right| \frac{\eta \sqrt{n}}{\sqrt{p}} \frac{\sqrt{n}}{\gamma}\left(\frac{1}{\eta}+\tilde{S}_{\lambda}\right) \\
& \leq c \frac{n \sqrt{\log p}}{\gamma \sqrt{p}}\left(1+\eta \tilde{S}_{\lambda}\right)
\end{aligned}
$$

where we use the fact that $\psi^{\prime}$ is bounded, (A.6) and (A.7).

Lemma A.7. Assume all the inequalities from Lemma A. 2 hold. Under the conditions of Theorem 4.2, if the bound for weights difference (A.14) holds for all $t \leq t^{\prime}$ and error bound (4.2) holds for all $t \leq t^{\prime}-1$, then (4.2) holds for $t=t^{\prime}$.

Proof. We start by analyzing the error $e(t)$ according to

$$
\begin{aligned}
e_{i}(t+1)= & \frac{1}{\sqrt{p}} \beta(t+1)^{\top} \psi\left(W(t+1) x_{i}\right)-y_{i} \\
= & \frac{1}{\sqrt{p}} \beta(t+1)^{\top}\left(\psi\left(W(t+1) x_{i}\right)-\psi\left(W(t) x_{i}\right)\right)+\frac{1}{\sqrt{p}}(\beta(t+1)-(1-\eta \lambda(t)) \beta(t))^{\top} \psi\left(W(t) x_{i}\right) \\
& +(1-\eta \lambda(t))\left(\frac{1}{\sqrt{p}} \beta(t)^{\top} \psi\left(W(t) x_{i}\right)-y_{i}\right)-\eta \lambda(t) y \\
= & (1-\eta \lambda(t)) e_{i}(t)-\frac{\eta}{p} \beta(t+1)^{\top} D_{i}(t) \sum_{j=1}^{n} D_{j}(t) b x_{j}^{\top} x_{i} e_{j}(t)-\frac{\eta}{p} \sum_{j=1}^{n} \psi\left(W(t) x_{j}\right)^{\top} \psi\left(W(t) x_{i}\right) e_{j}(t)-\eta \lambda(t) y \\
& +v_{i}(t) \\
= & (1-\eta \lambda(t)) e_{i}(t)-\eta \sum_{j=1}^{n}\left(H_{i j}(t)+G_{i j}(t)\right) e_{j}(t)+v_{i}(t)-\eta \lambda(t) y
\end{aligned}
$$

where

$$
\begin{aligned}
G_{i j}(t) & =\frac{1}{p} \psi\left(W(t) x_{j}\right)^{\top} \psi\left(W(t) x_{i}\right) \\
H_{i j}(t) & =\frac{x_{i}^{\top} x_{j}}{p} \beta(t+1)^{\top} D_{i}(t) D_{j}(t) b
\end{aligned}
$$

and $v_{i}(t)$ is the residual term from a Taylor expansion

$$
v_{i}(t)=\frac{1}{2 \sqrt{p}} \sum_{r=1}^{p} \beta_{r}(t+1)\left|\left(w_{r}(t+1)-w_{r}(t)\right)^{\top} x_{i}\right|^{2} \psi^{\prime \prime}\left(\xi_{r i}(t)\right)
$$

with $\xi_{r i}(t)$ between $w_{r}(t)^{\top} x_{i}$ and $w_{r}(t+1)^{\top} x_{i}$. We can also rewrite the above iteration in vector form as

$$
\begin{equation*}
e(t+1)=(1-\lambda(t)) e(t)-\eta(G(t)+H(t)) e(t)+v(t)-\eta \lambda(t) y \tag{A.15}
\end{equation*}
$$

Now for $t=t^{\prime}-1$, we show that both $G(t)$ and $H(t)$ are close to their initialization. Using the argument in Lemma A.5, we can obtain following bounds

$$
\begin{align*}
\|G(t)-G(0)\| & \leq c_{1} \frac{n^{2} \sqrt{\log p}}{\gamma \sqrt{p}}\left(1+\eta \tilde{S}_{\lambda}\right)  \tag{A.16}\\
\|H(t)-H(0)\| & \leq c_{2} \frac{n^{2} \sqrt{\log p}}{\gamma \sqrt{p}}\left(1+\eta \tilde{S}_{\lambda}\right)  \tag{A.17}\\
\|v(t)\| & \leq c_{3} \frac{\eta^{2} n^{2}}{\sqrt{p}}\|e(t)\| \tag{A.18}
\end{align*}
$$

Combining Eqs. (A.15) to (A.18), we have

$$
\begin{aligned}
\|e(t+1)\| \leq & \left\|(1-\eta \lambda(t)) I_{n}-\eta(G(t)+H(t))\right\|\|e(t)\|+\|v(t)\| \\
\leq & \left(\left\|(1-\eta \lambda(t)) I_{n}-\eta G(0)\right\|+\eta\|G(t)-G(0)\|+\eta\|H(0)\|\right. \\
& +\eta\|H(t)-H(0)\|)\|e(t)\|+\|v(t)\| \\
\leq & \left(1-\eta \lambda(t)-\frac{3 \eta \gamma}{4}+\left(c_{1}+c_{2}\right) \frac{\eta n^{2} \sqrt{\log p}}{\gamma \sqrt{p}}\left(1+\eta \tilde{S}_{\lambda}\right)+c_{3} \frac{\eta^{2} n \sqrt{n}}{\sqrt{p}}\right)\|e(t)\| \\
\leq & \left(1-\eta \lambda(t)-\frac{\eta \gamma}{4}\right)\|e(t)\|
\end{aligned}
$$

where we use Lemma A.3, $p=\Omega\left(\frac{n^{4} \log p}{\gamma^{4}}\right)$ and $\tilde{S}_{\lambda}=O\left(\frac{\gamma^{2} \sqrt{p}}{\eta n^{2} \sqrt{\log p}}\right)$.
Proof of Theorem 4.2. We prove the inequality (4.2) by induction. Suppose (4.2) holds for all $t=$ $1,2, \ldots, t^{\prime}-1$. Then by Lemma A. 6 and Lemma A. 7 we know (4.2) holds for $t=t^{\prime}$, which completes the proof.

## B Alignment on Two-Layer Linear Networks

Now we assume $\psi(u)=u$, so that $f$ is a linear network. The loss function with regularization at time $t$ is

$$
\begin{equation*}
\mathcal{L}(t, W, \beta)=\frac{1}{2}\left\|\frac{1}{\sqrt{p}} X W^{\boldsymbol{\top}} \beta-y\right\|^{2}+\frac{1}{2} \lambda(t)\|\beta\|^{2} \tag{B.1}
\end{equation*}
$$

The regularized feedback alignment algorithm gives

$$
\begin{align*}
W(t+1) & =W(t)-\eta \frac{1}{\sqrt{p}} b e(t)^{\top} X  \tag{B.2}\\
\beta(t+1) & =(1-\eta \lambda(t)) \beta(t)-\frac{\eta}{\sqrt{p}} W(t) X^{\top} e(t)
\end{align*}
$$

where $e(t)=\frac{1}{\sqrt{p}} X W(t)^{\top} \beta(t)-y$ is the error vector at time t .
Lemma B.1. Suppose the network is trained with the regularized feedback alignment algorithm (B.2). Then the prediction error $e(t)$ satisfies the recurrence

$$
\begin{equation*}
e(t+1)=\left[(1-\eta \lambda(t)) I_{d}-\frac{\eta}{p} X W(0)^{\boldsymbol{\top}} W(0) X^{\boldsymbol{\top}}-\eta\left(J_{1}(t)+J_{2}(t)+J_{3}(t)\right)\right] e(t)-\eta \lambda(t) y \tag{B.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& J_{1}(t)=\frac{1}{p} b^{\boldsymbol{\top}} \beta(0) \prod_{i=0}^{t}(1-\eta \lambda(i)) X X^{\boldsymbol{\top}} \\
& J_{2}(t)=-\frac{\eta}{p}\left(\bar{v}^{\boldsymbol{\top}} X^{\boldsymbol{\top}} \hat{s}(t) X X^{\boldsymbol{\top}}+X X^{\boldsymbol{\top}} s(t-1) \bar{v}^{\boldsymbol{\top}} X^{\boldsymbol{\top}}+X \bar{v} s(t-1)^{\boldsymbol{\top}} X X^{\boldsymbol{\top}}\right) \\
& J_{3}(t)=\frac{\eta^{2}}{p^{2}}\|b\|^{2}\left(\hat{S}(t) X X^{\boldsymbol{\top}}+X X^{\boldsymbol{\top}} s(t-1) s(t-1)^{\boldsymbol{\top}} X X^{\boldsymbol{\top}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \bar{v}=\frac{1}{\sqrt{p}} W(0)^{\top} b \\
& s(t)=\sum_{i=0}^{t} e(i) \\
& \hat{s}(t)=\sum_{i=0}^{t} \prod_{i<k \leq t}(1-\eta \lambda(k)) e(i) \\
& \hat{S}(t)=\sum_{i=0}^{t} \prod_{i<k \leq t}(1-\eta \lambda(k)) e(i)^{\top} X X^{\top} \sum_{j=0}^{i-1} e(j) .
\end{aligned}
$$

Proof. We first write $W(t)$ in terms of $W(0)$ and $e(i), i \in[t]$, so that

$$
\begin{equation*}
W(t)=W(0)-\frac{\eta}{\sqrt{p}} b \sum_{i=0}^{t-1} e(i)^{\top} X=W(0)-\frac{\eta}{\sqrt{p}} b s(t-1)^{\top} X \tag{B.4}
\end{equation*}
$$

Similarly, for $\beta(t)$ we have

$$
\begin{align*}
\beta(t)= & \prod_{i=0}^{t-1}(1-\eta \lambda(i)) \beta(0)-\frac{\eta}{\sqrt{p}} \sum_{i=0}^{t-1} \prod_{i<k<t}(1-\eta \lambda(k)) W(i) X^{\boldsymbol{\top}} e(i) \\
= & \prod_{i=0}^{t-1}(1-\eta \lambda(i)) \beta(0)-\frac{\eta}{\sqrt{p}} \sum_{i=0}^{t-1} \prod_{i<k<t}(1-\eta \lambda(k))\left(W(0)-\frac{\eta}{\sqrt{p}} b \sum_{j=0}^{i-1} e(j)^{\top} X\right) X^{\boldsymbol{\top}} e(i) \\
= & \prod_{i=0}^{t-1}(1-\eta \lambda(i)) \beta(0)-\frac{\eta}{\sqrt{p}} \sum_{i=0}^{t-1} \prod_{i<k<t}(1-\eta \lambda(k)) W(0) X^{\boldsymbol{\top}} e(i) \\
& +\frac{\eta^{2}}{p} b \sum_{i=0}^{t-1} \prod_{i<k<t}(1-\eta \lambda(k)) e(i)^{\top} X X^{\top} \sum_{j=0}^{i-1} e(j) \\
= & \prod_{i=0}^{t-1}(1-\eta \lambda(i)) \beta(0)-\frac{\eta}{\sqrt{p}} W(0) X^{\top} \hat{s}(t-1)+\frac{\eta^{2}}{p} b \hat{S}(t-1) . \tag{B.5}
\end{align*}
$$

We now study how the error $e(t)$ changes after a single update step, writing

$$
\begin{aligned}
e(t+1)= & \frac{1}{\sqrt{p}} X W(t+1)^{\boldsymbol{\top}} \beta(t+1)-y \\
= & \frac{1}{\sqrt{p}} X\left(W(t+1)-W(t)^{\boldsymbol{\top}} \beta(t+1)+\frac{1}{\sqrt{p}} X W(t)^{\boldsymbol{\top}}(\beta(t+1)-(1-\eta \lambda(t)) \beta(t))\right. \\
& +(1-\eta \lambda(t))\left(\frac{1}{\sqrt{p}} X W(t)^{\boldsymbol{\top}} \beta(t)-y\right)-\eta \lambda(t) y \\
= & (1-\eta \lambda(t)) e(t)-\frac{\eta}{p} b^{\boldsymbol{\top}} \beta(t+1) X X^{\boldsymbol{\top}} e(t)-\frac{\eta}{p} X W(t)^{\top} W(t) X^{\boldsymbol{\top}} e(t)-\eta \lambda(t) y
\end{aligned}
$$

By plugging (B.4) and (B.5) into above equation, we have

$$
\begin{aligned}
e(t+1)= & (1-\eta \lambda(t)) e(t) \\
& -\frac{\eta}{p} b^{\top}\left[\prod_{i=0}^{t}(1-\eta \lambda(i)) \beta(0)-\frac{\eta}{\sqrt{p}} W(0) X^{\boldsymbol{\top}} \hat{s}(t)+\frac{\eta^{2}}{p} b \hat{S}(t)\right] X X^{\boldsymbol{\top}} e(t) \\
& -\frac{\eta}{p} X\left[W(0)-\frac{\eta}{\sqrt{p}} b s(t-1)^{\top} X\right]^{\top}\left[W(0)-\frac{\eta}{\sqrt{p}} b s(t-1)^{\top} X\right] X^{\top} e(t) \\
& -\eta \lambda(t) y
\end{aligned}
$$

After expanding the brackets and rearranging the items, we can obtain (B.3).
Lemma B.2. Given $\delta \in(0,1)$ and $\epsilon>0$, if $p=\Omega\left(\frac{1}{\epsilon} \log \frac{d}{\delta}+\frac{d}{\epsilon} \log \frac{1}{\epsilon}\right)$, the following inequalities hold with probability at least $1-\delta$

$$
\begin{align*}
& \frac{\left|b^{\top} \beta(0)\right|}{\sqrt{p}} \leq c \sqrt{\log \frac{1}{\delta}}  \tag{B.6}\\
& \frac{\left\|b^{\top} W(0)\right\|}{\sqrt{p}} \leq c \sqrt{d \log \frac{d}{\delta}}  \tag{B.7}\\
&\left|\frac{\|b\|^{2}}{p}-1\right| \leq \frac{c}{\sqrt{p}} \sqrt{\log \frac{1}{\delta}}  \tag{B.8}\\
&\left\|\frac{1}{p} W(0)^{\top} W(0)-I_{d}\right\| \leq \epsilon \tag{B.9}
\end{align*}
$$

where $c$ is a constant.
Proof. (B.6) is derived from Lemma C.4. (B.7) is by (B.6) and a union bound argument. (B.8) is by Lemma C.3. (B.9) is by Corollary C. 2

Proof of Theorem 4.3. We show (4.3) by induction. Assume (4.3) holds for all $t=0,1, \ldots, t^{\prime}$, we will show it hold for $t=t^{\prime}+1$. For any $k \leq t^{\prime}$, we apply (4.3) repeatedly on the right hand side of itself to get

$$
\|e(k)\| \leq \prod_{i=0}^{k-1}\left(1-\frac{\eta \gamma}{2}-\eta \lambda(i)\right)\|e(0)\|+\sum_{i=0}^{k-1} \eta \lambda(i) \prod_{i<j<k}\left(1-\frac{\eta \gamma}{2}-\eta \lambda(j)\right)\|y\|
$$

For $t \leq t^{\prime}$, we take the sum over $k=0, . ., t$ on both sides of above inequality

$$
\begin{aligned}
\sum_{k=0}^{t}\|e(k)\| & \leq \sum_{k=0}^{t} \prod_{i=0}^{k-1}\left(1-\frac{\eta \gamma}{2}-\eta \lambda(i)\right)\|e(0)\|+\sum_{k=0}^{t} \sum_{i=0}^{k-1} \eta \lambda(i) \prod_{i<j<k}\left(1-\frac{\eta \gamma}{2}-\eta \lambda(j)\right)\|y\| \\
& \leq \sum_{k=0}^{t}\left(1-\frac{\eta \gamma}{2}\right)^{k-1}\|e(0)\|+\sum_{k=0}^{t} \sum_{i=0}^{k-1} \eta \lambda(i)\left(1-\frac{\eta \gamma}{2}\right)^{k-i-1}\|y\| \\
& \leq \sum_{k=0}^{t}\left(1-\frac{\eta \gamma}{2}\right)^{k-1}\|e(0)\|+\eta\|y\| \sum_{k=0}^{t-1} \lambda(i) \sum_{k=i+1}^{T}\left(1-\frac{\eta \gamma}{2}\right)^{k-i-1} \\
& \leq \frac{2}{\eta \gamma}\|e(0)\|+\frac{2}{\gamma} S_{\lambda}\|y\| \\
& \leq \frac{c \sqrt{n}}{\gamma}\left(\frac{1}{\eta}+S_{\lambda}\right)
\end{aligned}
$$

where we use $\|e(0)\|=O(\sqrt{n})$ and $\|y\|=O(\sqrt{n})$. With this bound and the inequalities from Lemma B.2, we can bound the norms of $J_{1}(t), J_{2}(t)$ and $J_{3}(t)$ from Lemma B.1. It follows that

$$
\begin{gather*}
\left\|J_{1}(t)\right\| \leq \frac{1}{p}\left|b^{\boldsymbol{\top}} \beta(0)\right|\left\|X X^{\boldsymbol{\top}}\right\| \leq c \frac{M \sqrt{\log \delta^{-1}}}{\sqrt{p}} \leq \frac{\gamma}{16},  \tag{B.10}\\
\left\|J_{2}(t)\right\| \leq \frac{\eta}{p}\|X\|\left\|X X^{\boldsymbol{\top}}\right\|\|\bar{v}\|(2\|s(t-1)\|+\|\hat{s}(t)\|) \leq c \frac{\eta}{p} M^{3 / 2} \sqrt{d \log \frac{d}{\delta}} \frac{\sqrt{n}}{\gamma}\left(\frac{1}{\eta}+S_{\lambda}\right) \leq \frac{\gamma}{16} \tag{B.11}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|J_{3}(t)\right\| \leq \frac{\eta^{2}}{p^{2}}\|b\|^{2}\left(\left\|X X^{\boldsymbol{\top}}\right\||\hat{S}(t)|+\left\|X X^{\boldsymbol{\top}}\right\|^{2}\|s(t-1)\|^{2}\right) \leq c \frac{\eta^{2}}{p} M^{2} \frac{n}{\gamma^{2}}\left(\frac{1}{\eta}+S_{\lambda}\right)^{2} \leq \frac{\gamma}{16} \tag{B.12}
\end{equation*}
$$

hold for all $t \leq t^{\prime}$ if $p=\Omega\left(\frac{M d \log (d / \delta)}{\gamma}\right)$ and $S_{\lambda}=O\left(\frac{\gamma \sqrt{\gamma p}}{\eta \sqrt{n} M}\right)$. Furthermore, since $\| \frac{1}{p} W(0) W(0)^{\top}-$ $I_{d} \| \leq \epsilon_{0}$ with high probability when $p=\Omega(d)$, we have

$$
\begin{align*}
\left\|\frac{1}{p} X W(0)^{\top} W(0) X^{\top}-\gamma I_{d}\right\| & \leq\left\|\frac{1}{p} X W(0)^{\top} W(0) X^{\top}-X X^{\top}\right\|+\left\|X X^{\top}-\gamma I_{d}\right\|  \tag{B.13}\\
& \leq(1+\epsilon) \epsilon_{0} \gamma+\epsilon \gamma \leq \frac{\gamma}{16}
\end{align*}
$$

Therefore, combining (B.10), (B.11), (B.12) and (B.3), we have

$$
\begin{aligned}
\left\|e\left(t^{\prime}+1\right)\right\| \leq & \left(1-\eta \lambda\left(t^{\prime}\right)-\eta \gamma\right)\left\|e\left(t^{\prime}\right)\right\|+\eta\left\|\frac{\eta}{p} X W(0)^{\top} W(0) X^{\top}-\gamma I_{d}\right\|\left\|e\left(t^{\prime}\right)\right\| \\
& +\eta\left(\left\|J_{1}\left(t^{\prime}\right)\right\|+\left\|J_{2}\left(t^{\prime}\right)\right\|+\left\|J_{3}\left(t^{\prime}\right)\right\|\right)\left\|e\left(t^{\prime}\right)\right\|+\eta \lambda\left(t^{\prime}\right)\|y\| \\
\leq & \left(1-\eta \lambda\left(t^{\prime}\right)-\eta \gamma\right)\left\|e\left(t^{\prime}\right)\right\|+\frac{1}{16} \eta \gamma\left\|e\left(t^{\prime}\right)\right\|+\frac{3}{16} \eta \gamma\left\|e\left(t^{\prime}\right)\right\|+\eta \lambda\left(t^{\prime}\right)\|y\| \\
\leq & \left(1-\eta \lambda\left(t^{\prime}\right)-\frac{\eta \gamma}{2}\right)\left\|e\left(t^{\prime}\right)\right\|+\eta \lambda\left(t^{\prime}\right)\|y\|
\end{aligned}
$$

which completes the proof.
Proof of Proposition 4.5. By Corollary C.2, if $d=\Omega\left(\frac{1}{\epsilon} \log \frac{n}{\delta}+\frac{n}{\epsilon} \log \frac{1}{\epsilon}\right)$, we have

$$
\left\|X X^{\top}-I_{n}\right\| \leq \epsilon
$$

It follows that $\lambda_{\min }\left(X X^{\top}\right) \geq 1-\epsilon$ and $\lambda_{\max }\left(X X^{\boldsymbol{\top}}\right) \leq 1+\epsilon \leq(1+4 \epsilon)(1-\epsilon)$ for $\epsilon<1 / 2$.

Lemma B.3. Recall from Lemma B. 1 that

$$
\beta(t)=\prod_{i=0}^{t-1}(1-\eta \lambda(i)) \beta(0)-\frac{\eta}{\sqrt{p}} W(0) X^{\boldsymbol{\top}} \hat{s}(t-1)+\frac{\eta^{2}}{p} b \hat{S}(t-1)
$$

with $\hat{s}(t)=\sum_{i=0}^{t} \prod_{i<k \leq t}(1-\eta \lambda(k)) e(i) \quad$ and $\quad \hat{S}(t)=\sum_{i=0}^{t} \prod_{i<k \leq t}(1-$ $\eta \lambda(k)) e(i)^{\top} X X^{\top} \sum_{j=0}^{i-1} e(j)$. Under the conditions of Theorem 4.6, if $t>C_{1} \frac{\log (p / \eta)}{\eta \lambda}$ and $\hat{S}(t) \geq \max \left(C_{2} \frac{\sqrt{p \gamma}}{\eta}\|\hat{s}(t)\|, 1\right)$ for some positive constants $C_{1}$ and $C_{2}$, then $\cos \angle(b, \beta(t)) \geq c$ for some constant $c=c_{\delta}$.

Proof. We compute the cosine of the angle between $\beta(t)$ and $b$. With probability $1-\delta$,

$$
\begin{aligned}
\cos \angle(b, \beta(t)) & =\frac{b^{\top} \beta(t)}{\|b\|\|\beta(t)\|}=\frac{\frac{b}{\|b\|}^{\top} \beta(t)}{\|\beta(t)\|} \\
& \geq \frac{\frac{\eta^{2}}{p}\|b\| \hat{S}(t-1)-(1-\eta \lambda)^{t}\|\beta(0)\|-\frac{\eta}{\sqrt{p}}\| \|^{\frac{b}{b \|}}{ }^{\top} W(0)\| \| X\| \| \hat{s}(t-1) \|}{\frac{\eta^{2}}{p}\|b\| \hat{S}(t-1)+(1-\eta \lambda)^{t}\|\beta(0)\|+\frac{\eta}{\sqrt{p}}\|W(0)\|\|X\|\|\hat{s}(t-1)\|} \\
& \geq \frac{c_{1}^{\prime} \frac{\eta^{2}}{\sqrt{p}} \hat{S}(t-1)-c_{2}^{\prime} \sqrt{p}(1-\eta \lambda)^{t}-c_{3}^{\prime} \eta \sqrt{\frac{d \gamma}{p}}\|\hat{s}(t-1)\|}{c_{1}^{\prime} \frac{\eta^{2}}{\sqrt{p}} \hat{S}(t-1)+c_{2}^{\prime} \sqrt{p}(1-\eta \lambda)^{t}+c_{4}^{\prime} \eta \sqrt{\gamma}\|\hat{s}(t-1)\|}
\end{aligned}
$$

where we use (B.8), (B.9) and the tail bound for standard Gaussian vectors, and $c_{i}^{\prime}$ are constants that only depend on $\delta$. Notice that if $t=\Omega\left(\frac{\log (p / \eta)}{\eta \lambda}\right)$, we have $c_{2}^{\prime} \sqrt{p}(1-\eta \lambda)^{t}=O\left(\frac{\eta^{2}}{\sqrt{p}}\right)$. It follows that $\cos \angle(b, \beta(t)) \geq c$ if $\hat{S}(t-1)=\Omega\left(\frac{\sqrt{p \gamma}}{\eta}\|\hat{s}(t-1)\|+1\right)$.

Lemma B.4. Consider the orthogonal decomposition $e(t)=a(t) \bar{y}+\xi(t)$, where $\bar{y}=-y /\|y\|$ and $\xi(t) \perp y$. Under the conditions of Theorem 4.6, there exists a constant $C_{\tau}>0$ such that for any $t \in[\tau, T]$ with $\tau=\frac{C_{\tau}}{\eta \lambda}$, we have

$$
\begin{equation*}
a(t) \geq \frac{\lambda-\gamma}{\lambda+\gamma}\|y\| \tag{B.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\xi(t)\| \leq \frac{\gamma}{\lambda+\gamma}\|y\| \tag{B.15}
\end{equation*}
$$

Proof. By Theorem 4.3, we have for all $t \leq T,\|e(t)\| \leq(1-\eta \lambda-\eta \gamma / 2)\|e(t)\|+\eta \lambda\|y\|$. By rearranging the terms, we have

$$
\|e(t+1)\|-\frac{\lambda}{\lambda-\gamma / 2}\|y\| \leq\left(1-\eta \lambda-\frac{\eta \gamma}{2}\right)\left(\|e(t)\|-\frac{\lambda}{\lambda-\gamma / 2}\|y\|\right)
$$

or

$$
\|e(t)\|-\frac{\lambda}{\lambda-\gamma / 2}\|y\| \leq\left(1-\eta \lambda-\frac{\eta \gamma}{2}\right)^{t}\left(\left\|e_{0}\right\|-\frac{\lambda}{\lambda-\gamma / 2}\|y\|\right) \leq(1-\eta \lambda)^{t}\left(\left\|e_{0}\right\|+\|y\|\right)
$$

Notice that $\|y\|$ and $\|e(0)\|$ are of the same order, so when $t \in\left[\tau_{1}, T\right]$ with $\tau_{1}=\frac{c_{1}}{\eta \lambda}$ and some constant $c_{1}$, we have

$$
\begin{equation*}
\|e(t)\| \leq \frac{\lambda+\gamma / 2}{\lambda-\gamma / 2}\|y\| \tag{B.16}
\end{equation*}
$$

In order to get a lower bound for $a(t)$, we multiply $\bar{y}^{\top}$ on both sides of (B.3). It follows that for $t \in\left[\tau_{1}, T\right]$

$$
\begin{aligned}
a(t+1) \geq & \bar{y}^{\top}(1-\eta \lambda-\eta \gamma) e(t)-\eta\left\|\frac{1}{p} X W(0)^{\top} W(0) X^{\top}-\gamma I_{d}\right\|\|e(t)\| \\
& -\eta\left(\left\|J_{1}(t)\right\|+\left\|J_{2}(t)\right\|+\left\|J_{3}(t)\right\|\right)\|e(t)\|+\eta \lambda\|y\| \\
\geq & (1-\eta \lambda-\eta \gamma) a(t)-\frac{1}{4} \eta \gamma\|e(t)\|+\eta \lambda\|y\| \\
\geq & (1-\eta \lambda-\eta \gamma) a(t)+\frac{1}{2} \eta \gamma\|y\|
\end{aligned}
$$

In the second inequality, we use the bounds (B.10), (B.11), (B.12) and (B.13). The last inequality is by (B.16) and $\lambda \geq 3 \gamma$. Following a similar derivation, we have
$a(t)-\frac{\lambda-\gamma / 2}{\lambda+\gamma}\|y\| \geq(1-\eta \lambda-\eta \gamma)^{t-\tau_{1}}\left(a\left(\tau_{1}\right)-\frac{\lambda-\gamma / 2}{\lambda+\gamma}\|y\|\right) \geq-(1-\eta \lambda)^{t-\tau_{1}}\left(\left\|e\left(\tau_{1}\right)\right\|+\|y\|\right)$.
The bound (B.14) holds when $t \in\left[\tau_{1}+\tau_{2}, T\right]$ with $\tau_{2}=\frac{c_{2}}{\eta \lambda}$ and some constant $c_{2}$. Then we multiply $\frac{\xi(t+1)^{\top}}{\|\xi(t+1)\|}$ on both sides of (B.3). This establishes that for $t \in\left[\tau_{1}, T\right]$

$$
\begin{aligned}
\|\xi(t+1)\| \leq & \frac{\xi(t+1)^{\top}}{\|\xi(t+1)\|}(1-\eta \lambda-\eta \gamma) e(t)+\eta\left\|\frac{1}{p} X W(0)^{\top} W(0) X^{\top}-\gamma I_{d}\right\|\|e(t)\| \\
& +\eta\left(\left\|J_{1}(t)\right\|+\left\|J_{2}(t)\right\|+\left\|J_{3}(t)\right\|\right)\|e(t)\|+\eta \lambda\|y\| \\
\leq & (1-\eta \lambda-\eta \gamma)\|\xi(t)\|+\frac{\eta \gamma}{4}\|e(t)\| \\
\leq & (1-\eta \lambda-\eta \gamma)\|\xi(t)\|+\frac{\eta \gamma}{2} \eta \gamma\|y\|
\end{aligned}
$$

The first inequality is by $\xi(t+1)^{\top} y=0$ and in the second inequality we use $\xi(t+1)^{\top} e(t)=$ $\xi(t+1)^{\top} \xi(t) \leq\|\xi(t+1)\|\|\xi(t)\|$. It follows that
$\|\xi(t)\|-\frac{\gamma / 2}{\lambda+\gamma}\|y\| \leq(1-\eta \lambda-\eta \gamma)^{t-\tau_{1}}\left(\|\xi(0)\|-\frac{\gamma / 2}{\lambda+\gamma}\|y\|\right) \leq(1-\eta \lambda)^{t-\tau_{1}}\left(\left\|e\left(\tau_{1}\right)\right\|+\|y\|\right)$.
The bound (B.15) holds when $t \in\left[\tau_{1}+\tau_{3}, T\right]$ with $\tau_{3}=\frac{c_{3}}{\eta \lambda}$ for a constant $c_{3}$. Finally, the bounds (B.14) and (B.15) hold when $t \in[\tau, T]$ with $\tau=\tau_{1}+\max \left(\tau_{2}, \tau_{3}\right)$.

Lemma B.5. Under the conditions of Theorem 4.6, suppose $T=\left\lfloor\frac{S_{\lambda}}{\lambda}\right\rfloor=C_{T} \frac{\sqrt{p}}{\eta \sqrt{n \gamma}}$. Then we have $\hat{S}(T) \geq \tilde{c} \frac{\sqrt{p \gamma}}{\eta}\|\hat{s}(T)\|$, where $C_{T}$ and $\tilde{c}$ are positive constants.

Proof. Notice that

$$
e(i)^{\top} X X^{\top} e(j) \geq \gamma e(i)^{\top} e(j)-\|e(i)\|\|e(j)\|\left\|X X^{\top}-\gamma I\right\| \geq \gamma e(i)^{\top} e(j)-\epsilon \gamma\|e(i)\|\|e(j)\| .
$$

For $i \in[T / 2, T]$ and $\tau$ defined in Lemma B.4, we have

$$
\begin{align*}
e(i)^{\top} X X^{\top} \sum_{j<i} e(j) & =e(i)^{\top} X X^{\top} \sum_{\tau \leq j<i} e(j)+e(i)^{\top} X X^{\top} \sum_{j<\tau} e(j) \\
& \geq \sum_{\tau \leq j<i}\left(\gamma e(i)^{\top} e(j)-\epsilon \gamma\|e(i)\|\|e(j)\|\right)-2 \gamma \sum_{j<\tau}\|e(i)\|\|e(j)\| \\
& \geq \sum_{\tau \leq j<i} \gamma(a(i) a(j)-\|\xi(i)\|\|\xi(j)\|-\epsilon\|e(i)\|\|e(j)\|)-2 c \tau \gamma\|y\|^{2} \\
& \geq(i-\tau) \gamma\left[\left(\frac{\lambda-\gamma}{\lambda+\gamma}\right)^{2}\|y\|^{2}-\left(\frac{\gamma}{\lambda+\gamma}\right)^{2}\|y\|^{2}-\epsilon\left(\frac{\lambda+\gamma / 2}{\lambda-\gamma / 2}\right)^{2}\|y\|^{2}-\frac{2 c \tau}{i-\tau}\|y\|^{2}\right] \\
& \geq \frac{T}{8} \gamma\|y\|^{2}=\frac{C_{T}}{8} \frac{\sqrt{p}}{\eta \sqrt{n \gamma}} \gamma\|y\|^{2} \\
& \geq c \frac{\sqrt{p \gamma}}{\eta}\|y\| . \tag{B.17}
\end{align*}
$$

The second inequality is the orthogonal decomposition of $e(i)$ and $\|e(i)\| \leq c\|y\|$ given by (4.3). The third inequality is by (B.14), (B.15) and (B.16) from Lemma B.4. The fourth inequality is by $\lambda=\Omega(\gamma), i-\tau \geq T / 4$ and the fact that $\tau /(i-\tau)$ is small $(p=\Omega(n))$. The last inequality is by

$$
\begin{aligned}
\|y\| & =\Theta(\sqrt{n}) . \text { Therefore, } \\
\hat{S}(T) & =\sum_{i=0}^{T}(1-\eta \lambda)^{T-i} e(i)^{\top} X X^{\top} \sum_{j<i} e(j) \\
& =\sum_{i=T / 2}^{T}(1-\eta \lambda)^{T-i} e(i)^{\top} X X^{\top} \sum_{j<i} e(j)+(1-\eta \lambda)^{T / 2} \sum_{i=0}^{T / 2}(1-\eta \lambda)^{T / 2-i} e(i)^{\top} X X^{\top} \sum_{j<i} e(j) \\
& \geq \sum_{i=T / 2}^{T}(1-\eta \lambda)^{T-i} c \frac{\sqrt{p \gamma}}{\eta}\|y\|+(1-\eta \lambda)^{T / 2} \sum_{i=0}^{T / 2}(1-\eta \lambda)^{T / 2-i} c^{\prime} T \gamma\|y\|^{2} \\
& \geq \frac{c}{2} \frac{\sqrt{p \gamma}}{\eta} \frac{\|y\|}{\eta \lambda}-(1-\eta \lambda)^{T / 2} \frac{c^{\prime} T \gamma\|y\|^{2}}{\eta \lambda} \\
& \geq \frac{c}{4} \frac{\sqrt{p \gamma}}{\eta} \frac{\|y\|}{\eta \lambda}
\end{aligned}
$$

where the last inequality is by $(1-\eta \lambda)^{T / 2} \ll 1$ when $p=\Omega(n)$. On the other hand,

$$
\|\hat{s}(T)\| \leq \sum_{i=0}^{T}(1-\eta \lambda)^{T-i}\|e(i)\| \leq \frac{c}{\eta \lambda}\|y\| .
$$

Combining the above inequalities gives the proof.
Proof of Theorem 4.6. First, notice that $\lambda(t)=0$ when $t>T$. By Theorem 4.3 we have that the prediction error converges to zero exponentially fast, or $\|e(t+1)\| \leq(1-\eta \gamma / 2)\|e(t)\|$. It follows that $\hat{S}(t) \rightarrow \hat{S}(\infty)$ and $\hat{s}(t) \rightarrow \hat{s}(\infty)$ as $t \rightarrow \infty$. By Lemma B.3, we know it suffices to show $\hat{S}(\infty) \geq C \frac{\sqrt{p \gamma}}{\eta}\|\hat{s}(\infty)\|$ with some constant $C$. Since

$$
\hat{S}(\infty)=\sum_{i=0}^{\infty}(1-\eta \lambda)^{(T-i)+} e(i)^{\top} X X^{\boldsymbol{\top}} \sum_{j<i} e(j)=\hat{S}(T)+\sum_{i>T} e(i)^{\boldsymbol{\top}} X X^{\top} \sum_{j<i} e(j)
$$

and

$$
\hat{s}(\infty)=\sum_{i=0}^{\infty}(1-\eta \lambda)^{(T-i)_{+}} e(i)=\hat{s}(T)+\sum_{i>T} e(i),
$$

by Lemma B. 5 , it suffices to show

$$
\begin{equation*}
\sum_{i>T} e(i)^{\top} X X^{\top} \sum_{j<i} e(j) \geq C \frac{\sqrt{p \gamma}}{\eta} \sum_{i>T}\|e(i)\| . \tag{B.18}
\end{equation*}
$$

We write $g=X X^{\top} \sum_{j<T} e(j)$. Then we have

$$
\begin{align*}
\|g\| & \geq \lambda_{\min }\left(X X^{\boldsymbol{\top}}\right)\left[\left\|\sum_{\tau \geq j<T} e(j)\right\|-\sum_{j<\tau}\|e(j)\|\right] \\
& \geq \lambda_{\min }\left(X X^{\boldsymbol{\top}}\right)\left[\sum_{\tau \geq j<T} a(j)-\sum_{j<\tau}\|e(j)\|\right]  \tag{B.19}\\
& \geq \gamma\left[(T-\tau)\left(\frac{\lambda-\gamma}{\lambda+\gamma}\right)\|y\|-\tau c\|y\|\right]
\end{align*}
$$

and

$$
\begin{align*}
\|g\| & \leq\left\|X X^{\boldsymbol{\top}}\right\|\left(\sum_{j<\tau}\|e(j)\|+\sum_{\tau \geq j<T}\|e(j)\|\right)  \tag{B.20}\\
& \leq(1+\epsilon) \gamma\left[\tau c\|y\|+(T-\tau)\left(\frac{\lambda+\gamma / 2}{\lambda-\gamma / 2}\right)\|y\|\right]
\end{align*}
$$

where we use the bounds (B.14) and (B.16) from Lemma B.4. We further denote $\alpha(t)=\bar{g}^{\top} e(t)$ where $\bar{g}=g /\|g\|$. Following the same calculation in (B.17), we have

$$
\begin{aligned}
g^{\top} e(T) & =e(T)^{\top} X X^{\top} \sum_{j<T} e(j) \\
& \geq(T-\tau) \gamma\left[\left(\frac{\lambda-\gamma}{\lambda+\gamma}\right)^{2}\|y\|^{2}-\left(\frac{\gamma}{\lambda+\gamma}\right)^{2}\|y\|^{2}-\epsilon\left(\frac{\lambda+\gamma / 2}{\lambda-\gamma / 2}\right)^{2}\|y\|^{2}-\frac{2 c \tau}{T-\tau}\|y\|^{2}\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{\alpha(T)}{\|e(T)\|} & \geq \frac{g^{\top} e(T)}{\|g\|\|e(T)\|} \\
& \geq \frac{(T-\tau) \gamma\left[\left(\frac{\lambda-\gamma}{\lambda+\gamma}\right)^{2}\|y\|^{2}-\left(\frac{\gamma}{\lambda+\gamma}\right)^{2}\|y\|^{2}-\epsilon\left(\frac{\lambda+\gamma / 2}{\lambda-\gamma / 2}\right)^{2}\|y\|^{2}-\frac{2 c \tau}{T-\tau}\|y\|^{2}\right]}{(1+\epsilon) \gamma\left[\tau c\|y\|+(T-\tau)\left(\frac{\lambda+\gamma / 2}{\lambda-\gamma / 2}\right)\|y\|\right] \times\left(\frac{\lambda+\gamma / 2}{\lambda-\gamma / 2}\right)\|y\|} \\
& \geq \frac{\left[\left(\frac{\lambda-\gamma}{\lambda+\gamma}\right)^{2}-\left(\frac{\gamma}{\lambda+\gamma}\right)^{2}-\epsilon\left(\frac{\lambda+\gamma / 2}{\lambda-\gamma / 2}\right)^{2}-\frac{2 c \tau}{T-\tau}\right]}{(1+\epsilon)\left[\frac{\tau c}{T-\tau}+\left(\frac{\lambda+\gamma / 2}{\lambda-\gamma / 2}\right)\right] \times\left(\frac{\lambda+\gamma / 2}{\lambda-\gamma / 2}\right)} .
\end{aligned}
$$

Notice that $T / \tau=\Omega(\sqrt{p / n})$, so that when $p / n, \lambda / \gamma$ are large and $\epsilon$ is small, we have

$$
\begin{equation*}
\alpha(T) \geq \frac{3}{4}\|e(T)\| \tag{B.21}
\end{equation*}
$$

In order to obtain the lower bound on $\alpha(t)$ for all $t \geq T$, we multiply $\bar{g}^{\top}$ on both sides of (B.3). Notice $\lambda(t)=0$ and apply the bounds (B.10), (B.11), (B.12) and (B.13). We have that

$$
\begin{aligned}
\alpha(t+1) \geq & (1-\eta \gamma) \bar{g}^{\top} e(t)-\eta\left\|\frac{1}{p} X W(0)^{\top} W(0) X^{\top}-\gamma I_{d}\right\|\|e(t)\| \\
& -\eta\left(\left\|J_{1}(t)\right\|+\left\|J_{2}(t)\right\|+\left\|J_{3}(t)\right\|\right)\|e(t)\| \\
\geq & (1-\eta \gamma) \alpha(t)-\frac{\eta \gamma}{4}\|e(t)\|
\end{aligned}
$$

or for $t \geq T$,

$$
\begin{equation*}
\alpha(t) \geq(1-\eta \gamma)^{t-T} \alpha(T)-\frac{\eta \gamma}{4} \sum_{i=T}^{t-1}(1-\eta \gamma)^{t-i}\|e(i)\| \tag{B.22}
\end{equation*}
$$

Taking the sum over $t>T$, we have

$$
\begin{align*}
\sum_{t>T} \alpha(t) & \geq \sum_{t>T}(1-\eta \gamma)^{t-T} \alpha(T)-\frac{\eta \gamma}{4} \sum_{t>T} \sum_{i=T}^{t-1}(1-\eta \gamma)^{t-i}\|e(i)\| \\
& \geq \frac{1-\eta \gamma}{\eta \gamma} \alpha(T)-\frac{\eta \gamma}{4} \sum_{i>T}\|e(i)\| \sum_{t>i}(1-\eta \gamma)^{t-i} \\
& \geq \frac{1-\eta \gamma}{\eta \gamma}\left(\alpha(T)-\frac{\eta \gamma}{4} \sum_{i>T}\|e(i)\|\right)  \tag{B.23}\\
& \geq \frac{1-\eta \gamma}{\eta \gamma}\left(\alpha(T)-\frac{1}{2}\|e(T)\|\right) \\
& \geq \frac{1-\eta \gamma}{4 \eta \gamma}\|e(T)\|
\end{align*}
$$

The second inequality follows from switching the order of sums. The fourth inequality is by exponential convergence after $T$ steps. The last inequality is by (B.21). With the above inequalities, we
are ready to bound the left hand side of (B.18), obtaining

$$
\begin{align*}
\sum_{i>T} e(i)^{\top} X X^{\top} \sum_{j<i} e(j) & =\sum_{i>T} e(i)^{\top} X X^{\top} \sum_{j<T} e(j)+\sum_{i>T} e(i)^{\top} X X^{\top} \sum_{j \geq T} e(j) \\
& \geq \sum_{t>T} \alpha(t)\|g\|-2 \gamma\left(\sum_{i \geq t}\|e(i)\|\right)^{2} \\
& \geq \frac{1-\eta \gamma}{4 \eta \gamma}\|e(T)\| \gamma\left[(T-\tau)\left(\frac{\lambda-\gamma}{\lambda+\gamma}\right)\|y\|-\tau c\|y\|\right]-2 \gamma \frac{4}{\eta^{2} \gamma^{2}}\|e(T)\|^{2} \\
& \geq \frac{1-\eta \gamma}{4 \eta \gamma}\|e(T)\| \gamma\left[(T-\tau)\left(\frac{\lambda-\gamma}{\lambda+\gamma}\right)\|y\|-\tau c\|y\|-\frac{64}{\eta \gamma(1-\eta \gamma)}\|y\|\right] \\
& \geq \frac{1-\eta \gamma}{4 \eta \gamma}\|e(T)\| \gamma \frac{T}{2}\|y\|=\frac{1-\eta \gamma}{4 \eta \gamma}\|e(T)\| \gamma \frac{C_{T}}{2} \frac{\sqrt{p}}{\eta \sqrt{n \gamma}}\|y\| \\
& \geq C \frac{1-\eta \gamma}{4 \eta \gamma} \frac{\sqrt{p \gamma}}{\eta}\|e(T)\| \tag{B.24}
\end{align*}
$$

The second inequality is by (B.23) and (B.19). The third inequality is by $\|e(T)\| \leq 2\|y\|$. The last inequality is by $\|y\|=\Theta(\sqrt{n})$. On the other hand,

$$
\begin{equation*}
\sum_{i>T}\|e(i)\| \leq \sum_{i>T}(1-\eta \gamma / 2)^{i-T}\|e(T)\|=\frac{1-\eta \gamma / 2}{\eta \gamma / 2}\|e(T)\| \tag{B.25}
\end{equation*}
$$

Combining (B.24) and (B.25) implies (B.18), as desired.

## C Technical Lemmas

In this section, we list technical lemmas that are used in our proofs, with references. The first is a variant of the Restricted Isometry Property that bounds the spectral norm of a random Gaussian matrix around 1 with high probability.
Lemma C. 1 (Hand \& Voroninski, 2018). Let $A \in \mathbb{R}^{m \times n}$ has i.i.d. $\mathcal{N}(0,1 / m)$ entries. Fix $0<\varepsilon<$ $1, k<m$, and a subspace $T \subseteq \mathbb{R}^{n}$ of dimension $k$, then there exists universal constants $c_{1}$ and $\gamma_{1}$, such that with probability at least $1-\left(c_{1} / \varepsilon\right)^{k} e^{-\gamma_{1} \varepsilon m}$,

$$
(1-\varepsilon)\|v\|_{2}^{2} \leq\|A v\|_{2}^{2} \leq(1+\varepsilon)\|v\|_{2}^{2}, \quad \forall v \in T
$$

Let us take $k=n$ in Lemma C. 1 to get the following corollary.
Corollary C.2. Let $A \in \mathbb{R}^{m \times n}$ has i.i.d. $\mathcal{N}(0,1 / m)$ entries. For any $0<\varepsilon<1$, there exists universal constants $c_{2}$ and $\gamma_{2}$, such that with probability at least $1-\left(c_{2} / \varepsilon\right)^{d} e^{-\gamma_{2} \varepsilon m}$,

$$
\left\|A^{\top} A-I_{m}\right\| \leq \varepsilon
$$

Then following lemma gives tail bounds for $\chi^{2}$ random variables.
Lemma C. 3 (Laurent \& Massart, 2000). Suppose $X \sim \chi_{p}^{2}$, then for all $t \geq 0$ it holds

$$
\mathbb{P}\{X-p \geq 2 \sqrt{p t}+2 t\} \leq e^{-t}
$$

and

$$
\mathbb{P}\{X-p \leq-2 \sqrt{p t}\} \leq e^{-t}
$$

For two independent random Gaussian vectors, their inner product can be controlled with the following tail bound.

Lemma C. 4 (Gao \& Lafferty, 2020). Let $X, Y \in \mathbb{R}^{p}$ be independent random Gaussian vectors where $X_{r} \sim \mathcal{N}(0,1)$ and $Y_{r} \sim \mathcal{N}(0,1)$ for all $r \in[p]$, then it holds

$$
\mathbb{P}\left(\left|X^{\top} Y\right| \geq \sqrt{2 p t}+2 t\right) \leq 2 e^{t}
$$

## References

Gao, C. \& Lafferty, J. (2020). Model repair: Robust recovery of over-parameterized statistical models. arXiv preprint arXiv:2005.09912.

Hand, P. \& Voroninski, V. (2018). Global guarantees for enforcing deep generative priors by empirical risk. In Conference On Learning Theory (pp. 970-978).: PMLR.

Laurent, B. \& Massart, P. (2000). Adaptive estimation of a quadratic functional by model selection. Annals of Statistics, (pp. 1302-1338).

