Bounds all around: training energy-based models with bidirectional bounds - Supplementary Material

Cong Geng, Jia Wang, Zhiyong Gao
Shanghai Jiao Tong University
\{gengcong, jiawang, zhiyong.gao\}@sjtu.edu.cn

Jes Frellsen, Søren Hauberg*
Technical University of Denmark
\{jefr, sohau\}@dtu.dk

A Theoretical part

A. 1 Proof of Theorem 1

Proof

$$
\begin{align*}
& \log \left[\mathbb{E}_{\mathbf{x} \sim g(\mathbf{x})}[f(x)]\right]-\mathbb{E}_{\mathbf{x} \sim g(\mathbf{x})}[\log f(x)]=\log \int f(x) g(x) d x-\int(\log f(x)) g(x) d x \\
& =\log \left[f(\eta) \int g(x) d x\right]-\int(\log f(x)) g(x) d x=\log f(\eta) \int g(x) d x-\int(\log f(x)) g(x) d x \\
& =\int[\log f(\eta)-\log f(x)] g(x) d x=\int g(x) \int_{0}^{1} \frac{d[\log f(t \eta+(1-t) x)]}{d t} d t d x \\
& =\int g(x) \int_{0}^{1} \nabla_{\tilde{x}} \log f(\tilde{x})(\eta-x) d t d x \\
& \leq \int g(x)\left(\int_{0}^{1}\left|\nabla_{\tilde{x}} \log f(\tilde{x})\right|^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{1}|\eta-x|^{q} d t\right)^{\frac{1}{q}} d x \\
& \leq \int g(x)|\eta-x|\left(\int_{0}^{1}\left|\nabla_{\tilde{x}} \log f(\tilde{x})\right|^{p} d t\right)^{\frac{1}{p}} d x \\
& \leq\left(\int g(x) \int_{0}^{1}\left|\nabla_{\tilde{x}} \log f(\tilde{x})\right|^{p} d t d x\right)^{\frac{1}{p}}\left(\int g(x)|\eta-x|^{q} d x\right)^{\frac{1}{q}}, \tag{1}
\end{align*}
$$

where $\tilde{x}=t \eta+(1-t) x$. The second equation is derived by mean value theorem for definite integrals. The first inequality is derived by Holder's inequality, so $p, q \geq 1$ and $\frac{1}{p}+\frac{1}{q}=1$. Because $g(x)$ has finite support, there exists an $M \geq 0$ that satisfying: $|\eta-x| \leq M$, then we can get:

$$
\begin{align*}
\log \left[\mathbb{E}_{\mathbf{x} \sim g(\mathbf{x})}[f(x)]\right]-\mathbb{E}_{\mathbf{x} \sim g(\mathbf{x})}[\log f(x)] & \leq M\left(\int g(x) \int_{0}^{1}\left|\nabla_{\tilde{x}} \log f(\tilde{x})\right|^{p} d t d x\right)^{\frac{1}{p}} \tag{2}\\
& \leq M\left(\int g(x)\left|\nabla_{\hat{x}} \log f(\hat{x})\right|^{p} d x\right)^{\frac{1}{p}}
\end{align*}
$$

where $\hat{x}=t_{0} \eta+\left(1-t_{0}\right) x$ for a $t_{0}\left(0 \leq t_{0} \leq 1\right)$ using the mean value theorem. Because $f(x)$ is L-Lipschitz continuous, then $\log f(x)$ is also Lipschitz continuous, so there exists an $m \geq 0$ satisfying

$$
\begin{equation*}
\left|\nabla_{\hat{x}} \log f(\hat{x})\right|^{p} \leq\left|\nabla_{x} \log f(x)\right|^{p}+m, \text { for } \forall x, \tag{3}
\end{equation*}
$$

so we can get

$$
\begin{align*}
\log \left[\mathbb{E}_{\mathbf{x} \sim g(\mathbf{x})}[f(x)]\right]-\mathbb{E}_{\mathbf{x} \sim g(\mathbf{x})}[\log f(x)] & \leq M\left(\int g(x)\left|\nabla_{x} \log f(x)\right|^{p} d x+m\right)^{\frac{1}{p}} \tag{4}\\
& \leq M\left(\mathbb{E}_{\mathbf{x} \sim g(\mathbf{x})}\left[\left|\nabla_{x} \log f(x)\right|^{p}\right]+m\right)^{\frac{1}{p}}
\end{align*}
$$

A. 2 Proof of Eq. (18)

Proof For a vector $u \in R^{1 \times n}$ and a matrix $J \in R^{n \times m}$, we have

$$
\begin{align*}
|u J|_{2}^{2} & =u J J^{T} u^{T}=\operatorname{tr}\left(J J^{T} u^{T} u\right) \\
& \geq \lambda\left(J J^{T}\right) \operatorname{tr}\left(u^{T} u\right), \tag{5}
\end{align*}
$$

where λ is the smallest eigenvalue of $J J^{T}$. The inequality holds because $J J^{T}$ is a real symmetric matrix and $u^{T} u$ is positive semidefinite (Neudecker 1992). Then we set $J=\mathbf{J}_{\mathbf{z}}, u=\nabla_{\mathbf{x}} E_{\theta}(G(\mathbf{z}))+$ $\nabla_{G(\mathbf{z})} \log p_{g}(G(\mathbf{z}))$, we can obtain:

$$
\begin{align*}
& \left|\nabla_{\mathbf{x}} E_{\theta}(G(\mathbf{z})) \mathbf{J}_{\mathbf{z}}+\nabla_{G(\mathbf{z})} \log p_{g}(G(\mathbf{z})) \mathbf{J}_{\mathbf{z}}\right|_{2}^{2} \geq \lambda\left(\mathbf{J}_{\mathbf{z}} \mathbf{J}_{\mathbf{z}}^{T}\right) \operatorname{tr}\left(u^{T} u\right) \\
& \quad=\lambda\left(\mathbf{J}_{\mathbf{z}} \mathbf{J}_{\mathbf{z}}^{T}\right)|u|_{2}^{2}=\lambda\left(\mathbf{J}_{\mathbf{z}} \mathbf{J}_{\mathbf{z}}^{T}\right)\left|\nabla_{\mathbf{x}} E_{\theta}(G(\mathbf{z}))+\nabla_{G(\mathbf{z})} \log p_{g}(G(\mathbf{z}))\right|_{2}^{2} \tag{6}
\end{align*}
$$

Because $\lambda\left(\mathbf{J}_{\mathbf{z}} \mathbf{J}_{\mathbf{z}}^{T}\right)$ is the square of the smallest singular value of $\mathbf{J}_{\mathbf{z}}$, which we represent by s_{1}. So we can obtain:

$$
\begin{equation*}
\left|\nabla_{\mathbf{x}} E_{\theta}(G(\mathbf{z}))+\nabla_{G(\mathbf{z})} \log p_{g}(G(\mathbf{z}))\right|_{2} \leq \frac{\left|\nabla_{\mathbf{x}} E_{\theta}(G(\mathbf{z})) \mathbf{J}_{\mathbf{z}}+\nabla_{G(\mathbf{z})} \log p_{g}(G(\mathbf{z})) \mathbf{J}_{\mathbf{z}}\right|_{2}}{s_{1}} \tag{7}
\end{equation*}
$$

This proves Eq. 18.

B Model Architecture

In order apply the change-of-variables formula to get a density for the generator, we assume that $G: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D}$ spans an immersed d-dimensional manifold in \mathbb{R}^{D}. This assumption place some restrictions on the architecture of the generator neural network.

The governing assumption is that the Jacobian of G exist and has full rank. Existence is ensured as long as the chosen activation functions have at least one derivative almost everywhere. Smooth activations naturally satisfy this assumption, but it is worth noting that e.g. the ReLU activation function has a single point where the derivative is not defined. As long as the linear map preceding the activation is not degenerate, then the non-smooth region has measure zero, and the change-of-variables technique still applies.
We cannot guarantee that the Jacobian has full rank through clever choices of neural architectures. However, we note that one requirement is that no hidden layer may have dimensionality below the d dimensions of the latent space. This is a natural requirement for the generator anyway. In our model, we aim to maximize the entropy of the generator, which encourages the generator to create as diverse samples as possible. In practice this ensures that the Jacobian has full rank as a degenerate Jacobian implies a reduction of entropy. Note that this is not a theoretical guarantee against degenerate Jacobians during optimization, but in practice we have at no point experienced problems in this regard.

B. 1 Practical experimental settings

For the toy and MNIST datasets, we use multi-layer perceptrons (MLPs) networks, while for CIFAR10 and ANIMEFACE datasets, we use a DCGAN network and Resnet architecture, respectively.

C Training Details

In Table 6, we specify the hyperparameters used when training our models for each dataset. We choose $p=2$ in Eq (20) for our implementation. We normalize the data to be in $[-1,1]$ and do not

Table 1: The network architecture trained for toy datasets

Operation	Input	Output
Energy		
Linear, PReLU	2	100
Linear, PReLU	100	100
Linear	100	1
Generator		
Linear, PReLU, BN	2	100
Linear, PReLU, BN	100	100
Linear	100	2

Table 2: The network architecture trained for MNIST dataset

Operation		Input
Output		
Linear, PReLU	2352	2000
Linear, PReLU	2000	1000
Linear, PReLU	1000	500
Linear, PReLU	500	250
Linear, PReLU	250	250
Linear	250	1
Generator		
Linear, BN, PReLU	128	
Linear, BN, PReLU	500	1000
Linear, BN, PReLU	1000	2000
Linear, Tanh	2000	2352

Table 3: The network architecture for CIFAR-10 dataset

Operation	Kernel	Strides	Channels	Output size
	Energy			
Conv2D, LReLU	3	1	64	32
Conv2D, LReLU	4	2	64	16
Conv2D, LReLU	3	1	128	16
Conv2D, LReLU	4	2	128	8
Conv2D, LReLU	3	1	256	8
Conv2D, LReLU	4	2	256	4
Conv2D, LReLU	3	1	512	4
Flatten				8192
Linear				1
Linear			512	8192
Reshape		2	256	8
ConvTranspose2D, BN, ReLU	4	2	128	16
ConvTranspose2D, BN, ReLU	4	2	64	32
ConvTranspose2D, BN, ReLU	4	2	3	32
Conv2D, Tanh	3	1		

Table 4: The energy network architecture for ANIMEFACE dataset

Operation	Kernel	Strides	Channels	Output size
(ResBlock0)				
Left: Conv2D, BN, LReLU	3	1	64	64
Conv2D	3	1	64	64
AvgPool2D	2	2	64	32
Right: AvgPool2D, BN	2	2	3	32
Conv2D	1	1	64	32
Overall: Add			64	32
(ResBlock1)				
Left: BN, LReLU,Conv2D	3	1	128	32
BN, LReLU,Conv2D	3	1	128	32
AvgPool2D	2	2	128	16
Right: BN, Con2D	1	1	128	32
AvgPool2D	2	2	128	16
Overall: Add			128	16
(ResBlock2)				
Left: BN, LReLU,Conv2D	3	1	256	16
BN, LReLU,Conv2D	3	1	256	16
AvgPool2D	2	2	256	8
Right: BN, Con2D	1	1	256	16
AvgPool2D	2	2	256	8
Overall: Add			256	8
(ResBlock3)				
Left: BN, LReLU,Conv2D	3	1	512	8
BN, LReLU,Conv2D	3	1	512	8
AvgPool2D	2	2	512	4
Right: BN, Con2D	1	1	512	8
AvgPool2D	2	2	512	4
Overall: Add			512	4
(ResBlock4)				
Left: BN, LReLU,Conv2D	3	1	1024	4
BN, LReLU,Conv2D	3	1	1024	4
Right: BN, Con2D	1	1	1024	4
Overall: Add			1024	4
LReLU			1024	4
Sum				1024
Linear				1

use dequantization. During training we augment only using random horizontal flips. For cifar10 we used the official train-test split from PyTorch, and for animeface we used a $85: 15$ train-test split. For our upper bound, we set $\frac{M}{s_{1}^{2}}=\frac{0.001}{z_{d i m}}$, where s_{1} is the smallest singular value of Jacobian and $z_{\text {dim }}$ is the latent dimension. We observe this setting can get a satisfying generation for all datasets. If we replace the z_{dim} with $\|v\|_{2}^{2}$ in high-dimensional data, where v is a random vector sampled in Eq 19, it will further improve the generation. For out-of-distribution detection and capacity usage, we set $\frac{M}{s_{1}^{2}}=\frac{0.1}{z_{\text {dim }}}$, because if we increase this value, it will help the density estimation of the energy function. We also observe that the network's design affect performance. For example, removing batch normalization in the energy function can stabilize training on the Animeface dataset. The relationship between such design decisions in the context of EBMs should be explored in future work.

References

H. Neudecker. A matrix trace inequality. Journal of mathematical analysis and applications, 166(1): 302-303, 1992.

Table 5: The generator network architecture for ANIMEFACE dataset

Operation	Kernel	Strides	Channels	Output size
Linear				16384
Reshape			1024	4
(ResBlock0)				
Left: BN, ReLU, NN-Upsampling, Conv2D	3	1	512	8
BN, ReLU, Conv2D	3	1	512	8
Right: NN-Upsampling, Conv2D	1	1	512	8
Overall: Add			512	8
(ResBlock1)				
Left: BN, ReLU, NN-Upsampling, Conv2D	3	1	256	16
BN, ReLU, Conv2D	3	1	256	16
Right: NN-Upsampling, Conv2D	1	1	256	16
Overall: Add			256	16
(ResBlock2)				
Left: BN, ReLU, NN-Upsampling, Conv2D	3	1	128	32
BN, ReLU, Conv2D	3	1	128	32
Right: NN-Upsampling, Conv2D	1	1	128	32
Overall: Add			128	32
(ResBlock3)				
Left: BN, ReLU, NN-Upsampling, Conv2D	3	1	64	64
BN, ReLU, Conv2D	3	1	64	64
Right: NN-Upsampling, Conv2D	1	1	64	64
Overall: Add			64	64
BN, ReLU, Conv2D, Tanh	3	1	3	64

Table 6: Selection of most important hyper-parameters and their setting.

Datasets	Optimization	Learning rate	Batch size	Iterations/Epochs	latent dim
Toy	Adam(0.0,0.9)	$2 \mathrm{e}-4$	200	150000	2
MNIST	Adam(0.0,0.9)	$2 \mathrm{e}-4$	64	$60($ epochs $)$	128
CIFAR-10	Adam(0.0,0.999)	$5 \mathrm{e}-5$	64	200000	128
ANIMEFACE	Adam(0.0,0.999)	$5 \mathrm{e}-5$	64	100000	128

