
A Proofs of Lemmas 2 and 4

A.1 Proof of Lemma 2

Lemma 2. If (Mp)
M
p=1 is �-dissimilar, then for every p, q ∈ [M ], and (s, a) ∈ S ×A,

���Q�
p(s, a)−Q�

q(s, a)
��� ≤ 2H�,

consequently,
���gapp(s, a)− gapq(s, a)

��� ≤ 4H�.

Proof. For the first claim, we prove a stronger statement by backward induction on h, namely, for
every p, q ∈ [M ], every h ∈ [1, H + 1], and (s, a) ∈ Sh ×A,

���Q�
p(s, a)−Q�

q(s, a)
��� ≤ 2(H − h+ 1)�.

Base case: For h = H + 1, we have Q�
p(s, a) = 0 for every (s, a) ∈ Sh × A, and p ∈ [M ]. It

follows trivially that
���Q�

p(s, a)−Q�
q(s, a)

��� = 0 ≤ 2(H − h+ 1)�.

Inductive case: Suppose by inductive hypothesis that for some h ∈ [1, H] and, for every (s, a) ∈
Sh+1 ×A and p, q ∈ [M ],

���Q�
p(s, a)−Q�

q(s, a)
��� ≤ 2(H − h)�.

We first prove the following auxiliary statement: for every s ∈ Sh+1 and p, q ∈ [M ],
���V �

p (s)− V �
q (s)

��� ≤ 2(H − h)�. (6)

Let ap = argmaxa∈A Q�
p(s, a) and aq = argmaxa∈A Q�

q(s, a). The above auxiliary statement
can be easily proven by contradiction: without loss of generality, suppose that V �

p (s) − V �
q (s) =

Q�
p(s, ap) − Q�

q(s, aq) > 2(H − h)�. Since Q�
q(s, ap) ≥ Q�

p(s, ap) − 2(H − h)�, it follows that
Q�

q(s, ap) > Q�
q(s, aq), which contradicts the fact that aq = argmaxa∈A Q�

q(s, a).

We now return to the inductive proof, and we show that given the inductive hypothesis, for every
(s, a) ∈ Sh ×A and p, q ∈ [M ],
���Q�

p(s, a)−Q�
q(s, a)

���

≤
��Rp(s, a)−Rq(s, a)

��+

������
�

s�∈Sh+1

�
Pp(s

� | s, a)V �
p (s

�)− Pq(s
� | s, a)V �

q (s
�)
�
������

≤�+

������
�

s�∈Sh+1

�
Pp(s

� | s, a)V �
p (s

�)− Pq(s
� | s, a)V �

p (s
�)
�
������
+

������
�

s�∈Sh+1

Pq(s
� | s, a)

�
V �
p (s

�)− V �
q (s

�)
�
������

≤�+ �Pp(· | s, a)− Pq(· | s, a))�1
�

max
s�∈Sh+1

���V �
p (s

�)
���
�
+ �Pq(· | s, a)�1

�
max

s�∈Sh+1

���V �
p (s

�)− V �
q (s

�)
���
�

≤�+
�

H
·H + 2(H − h)�

=2(H − h+ 1)�,

where the first inequality follows from Eq. (1) and the triangle inequality; the second inequality
follows from Definition 1 and the triangle inequality; the third inequality follows from Hölder’s
inequality; and the fourth inequality uses Definition 1 and Eq. (6).

For the second claim, we note that from the first claim, we have for any p, q, s,
���V �

p (s)− V �
q (s)

��� =
����max
a∈A

Q�
p(s, a)−max

a∈A
Q�

p(s, a)

���� ≤ 2H�,

therefore, for any p, q, s, a,
���gapp(s, a)− gapq(s, a)

��� ≤
���V �

p (s)− V �
q (s)

���+
���Q�

p(s, a)−Q�
p(s, a)

��� ≤ 4H�.

14



A.2 Proof of Lemma 4

Lemma 4. For any (s, a) ∈ I�, we have that: (1) for all p ∈ [M ], (s, a) /∈ Zp,opt, where we recall

that Zp,opt =
�
(s, a) : gapp(s, a) = 0

�
is the set of optimal state-action pairs with respect to p; (2)

for all p, q ∈ [M ], gapp(s, a) ≥ 1
2gapq(s, a).

Proof. For any (s, a) ∈ I�, there exists some p0 such that gapp0
(s, a) ≥ 96H�. Therefore, for every

p ∈ [M ],
gapp(s, a) ≥ gapp0

(s, a),

From Lemma 2 we know that
���gapp(s, a)− gapp0

(s, a)
��� ≤ 4H�. Therefore, for all p,

gapp(s, a) ≥ gapp0
(s, a)− 4H� ≥ 92H� > 0.

This proves the first item.

For the second item, for all p, q ∈ [M ],

gapp(s, a)

gapq(s, a)
=

gapq(s, a)− 4H�

gapq(s, a)
≥ 1− 4H�

gapq(s, a)
≥ 1− 4

92
≥ 1

2
.

B Additional Definitions Used in the Proofs

In this section, we define a few useful notations that will be used in our proofs. For state-action pair
(s, a) ∈ S ×A, player p ∈ [M ], episode k ∈ [K]:

1. Define nk(s, a) (resp. nk
p(s, a), P̂k, P̂k

p , R̂k, R̂k
p) to be the value of n(s, a) (resp. np(s, a),

P̂, P̂p, R̂, R̂p) at the beginning of episode k of MULTI-TASK-EULER.

2. Denote by Q
k

p (resp. Qk

p
, V

k

p, V
k
p , ind-bkp(s, a), agg-bkp(s, a)) the values of Qp (resp.

Q
p
, V p, V p, ind-bp(s, a), agg-bp(s, a)) right after MULTI-TASK-EULER finishes its op-

timistic value iteration (line 15) at episode k.
3. Define the surplus [36] (also known as the Bellman error) of (s, a) at episode k and player

p as:
Ek

p (s, a) := Q
k

p(s, a)−Rp(s, a)− (PpV
k

p)(s, a).

4. Define wk
p(s, a) :=

nk
p(s,a)

nk(s,a)
be the proportion of player p on (s, a) at the beginning of

episode k; this induces (s, a)’s mixture expected reward:

R̄k(s, a) :=

M�

q=1

wk
q (s, a)Rq(s, a),

and mixture transition probability:

P̄k(· | s, a) :=
M�

q=1

wk
q (s, a)Pq(· | s, a).

5. Define ρkp(s, a) := P((sh, ah) = (s, a) | πk(p),Mp) to be the occupancy measure of πk(p)
over Mp on (s, a), where h ∈ [H] is the layer s is in (so that s ∈ Sh). It can be seen that
ρkp , when restricted to Sh ×A, is a probability distribution on this set.

Define ρk(s, a) :=
�M

p=1 ρ
k
p(s, a); it can be seen that ρk(s, a) ∈ [0,M ]. Define n̄k

p(s, a) :=�k
j=1 ρ

j
p(s, a), and n̄k(s, a) :=

�k
j=1 ρ

j(s, a).3

3These are the cumulative occupancy measures up to episode k, inclusively; this is in contrast with the
definition of nk(s, a) and nk

p(s, a), which do not count the trajectories observed at episode k.
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6. Define Nk(s) :=
�

a∈A nk(s, a) and Nk
p (s) :=

�
a∈A nk

p(s, a) to be the total number of
encounters of state s by all players, and by player p only, respectively, at the beginning of
episode k.

7. Define N1 � M ln(SAK
δ ), and N2 � ln(MSAK

δ ); define τ(s, a) :=

min
�
k : n̄k(s, a) ≥ N1

�
, and τp(s, a) := min

�
k : n̄k

p(s, a) ≥ N2

�
. With high proba-

bility, so long as k ≥ τ(s, a) (resp. k ≥ τp(s, a)), nk(s, a) and n̄k(s, a) (resp. nk
p(s, a) and

n̄k
p(s, a)) are within a constant factor of each other; see Lemma 11.

8. Define ˇgapp(s, a) :=
gapp(s,a)

4H ∨ gapp,min

4H ; recall the definitions of gapp(s, a) and gapp,min
in Section 2.

Define Reg(K, p) :=
�K

k=1

�
V �
0,p − V

πk(p)
0,p

�
as player p’s contribution to the collective regret; in

this notation, Reg(K) =
�M

p=1 Reg(K, p).

Define the clipping function clip(α,Δ) := α1(α ≥ Δ).

We also adopt the following conventions in our proofs:

1. As �-dissimilarity with � > 2H does not impose any constraints on
�
Mp

�M
p=1

, throughout
the proof, we only focus on the regime that � ≤ 2H .

2. We will use πk(p) and πk
p interchangeably. To avoid notational clutter, we will also some-

times slightly abuse notation and use V πk

p,h , V πk

p to denote V
πk(p)
p,h , V πk(p)

p respectively.

C Proof of the Upper Bounds

This section establishes the regret guarantees of MULTI-TASK-EULER (Theorems 5 and 6). The
proof follows a similar outline as STRONG-EULER’s analysis [36], with important modifications
tailored to the multitask setting. The proof has the following structure:

1. Subsection C.1 defines a “clean” event E that we show happens with probability 1−δ. When
E happens, the observed samples are representative enough so that standard concentration
inequalities apply. This will serve as the basis of our subsequent arguments.

2. Subsection C.2 shows that when E happens, the value function upper and lower bounds are
valid; furthermore, MULTI-TASK-EULER satisfies strong optimism [36], in that all players’
surpluses are always nonnegative for all state-action pairs at all time steps.

3. Subsection C.3 establishes a distribution-dependent upper bound on MULTI-TASK-EULER’s
surpluses when E happens, which is key to our regret theorems. In comparison with
STRONG-EULER [36] in the single task setting, MULTI-TASK-EULER exploits inter-task
similarity, so that its surpluses on state-action pair (s, a) for player p are further controlled
by a new term that depends on the dissimilarity parameter �, along with nk(s, a), the total
visitation counts of (s, a) by all players.

4. Subsection C.4 uses the strong optimism property and the surplus bounds established in the
previous two subsections to conclude our final gap-independent and gap-dependent regret
guarantees, via the clipping lemma of [36] (see also Lemma 20).

5. Finally, Subsection C.5 collects miscellaneous technical lemmas used in the proofs.

C.1 A clean event

Below we define a “clean” event E in which all concentration bounds used in the analysis hold, which
we will show happens with high probability. Specifically, we will define E = Eind ∩Eagg ∩Esample,
where Eind, Eagg, Esample are defined respectively below.

In subsequent definitions of events, we will abbreviate ∀k ∈ [K], h ∈ [H], p ∈ [M ], s ∈ Sh, a ∈
A, s� ∈ Sh+1 as ∀k, h, p, s, a, s�. Also, recall that L(n) � ln(MSAn

δ ).
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Define event Eind as:

Eind = Eind,rw ∩ Eind,val ∩ Eind,prob ∩ Eind,var, (7)

Eind,rw =



∀k, h, p, s, a �

���R̂k
p(s, a)−Rp(s, a)

��� ≤
�

L(nk(s, a))

2nk(s, a)



 , (8)

Eind,val =



∀k, h, p, s, a �

���(P̂k
pV

�
p − PpV

�
p )(s, a)

��� ≤ 4

�
varPp(·|s,a)[V

�
p ]L(n

k
p(s, a))

nk
p(s, a)

+
2HL(nk

p(s, a))

nk
p(s, a)



 ,

(9)

Eind,prob =



∀k, h, p, s, a, s� �

���(P̂k
p − Pp)(s

� | s, a)
��� ≤ 4

�
L(nk

p(s, a)) · Pp(s� | s, a)
nk
p(s, a)

+
2L(nk

p(s, a))

nk
p(s, a)



 ,

(10)

Eind,var =

�
∀k, h, p, s, a �

�������
1

nk
p(s, a)

nk
p(s,a)�

i=1

(V �
p (s

�
i)− (PpV

�
p )(s, a))

2 − varPp(·|s,a)[V
�
p ]

�������
, (11)

≤ 4

�
H2varPp(·|s,a)[V

�
p ]L(n

k
p(s, a))

nk
p(s, a)

+
2H2L(nk

p(s, a))

nk
p(s, a)

�
,

where in Equation (11), s�i denotes the next state player p transitions to, for the i-th episode it
experiences (s, a). Eind captures the concentration behavior of each player’s individual model
estimates.
Lemma 9. P(Eind) ≥ 1− δ

3 .

Proof. The proof follows a similar reasoning as the proof of e.g., [36, Proposition F.9] using Freed-
man’s Inequality. We would like to show that each of Eind,rw, Eind,val, Eind,prob, Eind,var happens
with probability 1− δ

12 , which would give the lemma statement by a union bound. For brevity, we
only show that P(Eind,var) ≥ 1 − δ

12 , and the other probability statements follow from a similar
reasoning.

Fix h ∈ [H], (s, a) ∈ Sh ×A, and p ∈ [M ]. We will show

P


∃k ∈ [K]�

�������
1

nk
p(s, a)

nk
p(s,a)�

i=1

(V �
p (s

�
i)− (PpV

�
p )(s, a))

2 − varPp(·|s,a)[V
�
p ]

�������

≥ 4

�
H2varPp(·|s,a)[V

�
p ]L(n

k
p(s, a))

nk
p(s, a)

+
2H2L(nk

p(s, a))

nk
p(s, a)


 ≤ δ

12MSA
.

(12)

For every j ∈ N+, define stopping time kj as the j-th episode when (s, a) is experienced by player p,
if such episode exists; otherwise, kj is defined as ∞. it suffices to show that

P


∃j ∈ N+� kj < ∞∧

������
1

j

j�

i=1

(V �
p (s

�
i)− (PpV

�
p )(s, a))

2 − varPp(·|s,a)[V
�
p ]

������

≥ 4

�
H2varPp(·|s,a)[V

�
p ]L(j)

j
+

2H2L(j)

j


 ≤ δ

12MSA
.

(13)
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Define Gj as the σ-algebra generated by all observations up to time step
kj . We have that

�
Gj

�∞
j=0

is a filtration. It can be seen that the sequence�
Xj := (V �

p (s
�
j)− (PpV

�
p )(s, a))

2 − varPp(·|s,a)[V
�
p ]
�∞

j=1
is a martingale difference se-

quence adapted to
�
Gj

�∞
j=0

; in addition, for every j,
��Xj

�� ≤ H2, and E
�
X2

j | Gj−1

�
≤

E
�
(V �

p (s
�
j)− (PpV

�
p )(s, a))

4 | Gj−1

�
≤ H2varPp(·|s,a)[V

�
p ]. This implies that for any λ ≥ 0,



Yj(λ) = exp


λ

1

H2
(

j�

i=1

Xi)−
�
(eλ − λ− 1)

j

H2
varPp(·|s,a)[V

�
p ]

�





∞

j=0

is a nonnegative supermartingale [14], and by optional sampling theorem, E
�
Yj(λ)1(kj < ∞)

�
≤

E
�
Y0(λ)

�
= 1. As a result, for any fixed thresholds a, v ≥ 0 [see 14, Theorem 1.6],

P




j�

i=1

Xi ≥ a ∧
j�

i=1

H2varPp(·|s,a)[V
�
p ] ≤ v ∧ kj < ∞


 ≤ exp

�
− a2

2v + 2aH2/3

�

Now, by the doubling argument of [4, Lemma 2] (observe that
�j

i=1 E
�
X2

i | Gi−1

�
∈ [0, H4j]), we

have that for all j ∈ N+:

P


kj < ∞∧

������
1

j

j�

i=1

(V �
p (s

�
i)− (PpV

�
p )(s, a))

2 − varPp(·|s,a)[V
�
p ]

������

≥ 4

�
H2varPp(·|s,a)[V

�
p ]L(j)

j
+

2H2L(j)

j


 ≤ ln(4j) · δ

48j2MSA
.

A union bound over all j ∈ N+ yields Equation (13).

Define event Eagg as:
Eagg = Eagg,rw ∩ Eagg,val ∩ Eagg,prob ∩ Eagg,var, (14)

Eagg,rw =



∀k, h, p, s, a �

���R̂k(s, a)− R̄k(s, a)
��� ≤

�
L(nk(s, a))

2nk(s, a)



 , (15)

Eagg,val =

�
∀k, h, p, s, a �

���(P̂kV �
p − P̄kV �

p )(s, a)
��� , (16)

≤ 4

����
��M

q=1 w
k
q (s, a)varPq(·|s,a)[V

�
p ]
�
L(nk(s, a))

nk(s, a)
+

2HL(nk(s, a))

nk(s, a)

�
, (17)

Eagg,prob =



∀k, h, p, s, a, s� �

���(P̂k − P̄k)(s� | s, a)
��� ≤ 4

�
P̄k(s� | s, a) · L(nk(s, a))

nk(s, a)
+

2L(nk(s, a))

nk(s, a)



 ,

(18)

Eagg,var =

�
∀k, h, p, s, a �

�������
1

nk(s, a)

nk(s,a)�

i=1

(V �
p (s

�
i)− (Ppi

V �
q )(s, a))

2 −
M�

q=1

wk
q (s, a)varPq(·|s,a)[V

�
p ]

�������
,

(19)

≤ 4

����H2
��M

q=1 w
k
q (s, a)varPq(·|s,a)[V

�
p ]
�
L(nk(s, a))

nk(s, a)
+

2H2L(nk(s, a))

nk(s, a)

�
,
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where in Equation (19), s�i denotes the next state for the i-th time some player experiences (s, a).
Eagg captures the concentration behavior of the aggregate model estimates.

Lemma 10. P(Eagg) ≥ 1− δ
3 .

Proof. The proof follows a similar reasoning as the proof of e.g., [36, Proposition F.9] using Freed-
man’s Inequality. We would like to show that each of Eagg,rw, Eagg,val, Eagg,prob, Eagg,var happen
with probability 1− δ

12 , which would give the lemma statement by a union bound. For brevity, we
show that P(Eagg,var) ≥ 1− δ

12 , and the other probability statements follow from a similar reasoning.

Fix h ∈ [H], (s, a) ∈ Sh × A and p ∈ [M ]; denote by pi the identity of the player when (s, a) is
experienced for the i-th time for some player. It suffices to show that

P


∃k ∈ [K]�

�������
1

nk(s, a)

nk(s,a)�

i=1

�
(V �

p (s
�
i)− (PpiV

�
p )(s, a))

2 − varPpi
(·|s,a)[V

�
p ]
�
�������

≥ 4

����H2
��nk(s,a)

i=1 varPpi
(·|s,a)[V �

p ]
�
L(nk(s, a))

(nk(s, a))2
+

2H2L(nk(s, a))

nk(s, a)


 ≤ δ

12MSA
,

(20)

because 1
nk(s,a)

�nk(s,a)
i=1 varPpi

(·|s,a)[V �
p ] =

�M
q=1 w

k
q (s, a)varPq(·|s,a)[V

�
p ].

For episode k and player index p, denote its corresponding micro-episode index as (k − 1)M + p.
For every j ∈ N+, define stopping time kj as follows: it is the index of the j-th micro-episode
when (s, a) is experienced by some player, if such micro-episode exists; and kj is defined to be ∞
otherwise. With this notation, it suffices to show:

P


∃j ∈ N+� kj < ∞∧

������
1

j

j�

i=1

�
(V �

p (s
�
i)− (PpiV

�
p )(s, a))

2 − varPpi
(·|s,a)[V

�
p ]
�
������

≥ 4

����H2
��j

i=1 varPpi
(·|s,a)[V �

p ]
�
L(j)

j2
+

2H2L(j)

j


 ≤ δ

12MSA
,

(21)

Define Gj as the σ-algebra generated by all observations up to micro-
episode kj . We have that

�
Gj

�∞
j=0

is a filtration. It can be seen that�
Xj := (V �

p (s
�
j)− (Ppj

V �
p )(s, a))

2 − varPpj
(·|s,a)[V �

p ]
�∞

j=1
is a martingale difference se-

quence adapted to
�
Gj

�∞
j=0

; in addition, for every j,
��Xj

�� ≤ H2, and E
�
X2

j | Gj−1

�
≤

E
�
(V �

p (s
�
j)− (Ppj

V �
p )(s, a))

4 | Gj−1

�
≤ H2varPpj

(·|s,a)[V �
p ]. Using the same reasoning as in

the proof of Lemma 9 (and observing that
�j

i=1 E
�
X2

i | Gi−1

�
∈ [0, H4j]), we have that for all

j ∈ N+:

P


kj < ∞∧

������
1

j

j�

i=1

�
(V �

p (s
�
i)− (Ppi

V �
p )(s, a))

2 − varPp(·|s,a)[V
�
p ]
�
������

≥ 4

�
H
�j

i=1 varPpi
(·|s,a)[V �

p ]L(j)

j2
+

2H2L(j)

j


 ≤ ln(4j) · δ

48j2MSA
.

A union bound over all j ∈ N+ implies that Equation (21) holds.
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Define

Esample = Eind,sample ∩ Eagg,sample,

Eagg,sample =

�
∀s, a, k � n̄k(s, a) ≥ N1 =⇒ nk(s, a) ≥ 1

2
n̄k(s, a)

�
,

Eind,sample =

�
∀s, a, k, p � n̄k

p(s, a) ≥ N2 =⇒ nk
p(s, a) ≥

1

2
n̄k
p(s, a)

�
,

where we recall from Section B that N1 � M ln(SAK
δ ), and N2 � ln(MSAK

δ ).

Lemma 11. P(Esample) ≥ 1− δ
3 .

Proof. We first show P(Eagg,sample) ≥ 1 − δ
6 . Specifically, fix h ∈ [H] and (s, a) ∈ Sh × A,

define random variable Xk =
�M

p=1

�
1
�
(skh,p, a

k
h,p

�
= (s, a))− ρkp(s, a)

�
. Also, define Gk as the

σ-algebra generated by all observations up to episode k. It can be readily seen that {Xk}Kk=1 is a
martingale difference sequence adapted to filtration {Gk}Kk=0. Freedman’s inequality (specifically,
Lemma 2 of [4]) implies that for every fixed k, with probability 1− δ

6K ,

���nk(s, a)− n̄k−1(s, a)
��� ≤ 4

�
n̄k−1(s, a) ·M ln

�
6SAK2

δ

�
+ 4M ln

�
6SAK2

δ

�
, (22)

If Equation (22) happens, then by AM-GM inequality that
�

n̄k−1(s, a) ·M ln
�

6SAK2

δ

�
≤

1
4 n̄

k−1(s, a) + 16M ln
�

6SAK2

δ

�
, we have

n̄k−1(s, a)− nk(s, a) ≤ 1

4
n̄k−1(s, a) + 20M ln

�
6SAK2

δ

�
,

implying that

nk(s, a) ≥ 3

4
n̄k−1(s, a)− 20M ln

�
6SAK2

δ

�
.

Additionally, as n̄k−1(s, a) ≥ n̄k(s, a)−M always holds, we have

nk(s, a) ≥ 3

4
n̄k(s, a)− 21M ln

�
6SAK2

δ

�
.

In summary, for any fixed k, with probability 1− δ
6K , if n̄k(s, a) ≥ N1 := 84M ln

�
6SAK2

δ

�
,

nk(s, a) ≥ 1

2
n̄k(s, a).

Taking a union bound over all k ∈ [K], we have P(Eagg,sample) ≥ 1− δ
6 .

It follows similarly that P(Eind,sample) ≥ 1 − δ
6 ; the only difference in the proof is that, we need

to take an extra union bound over all p ∈ [M ] - hence an additional factor of M within ln(·) in the
definition of N2. The lemma statement follows from a union bound over these two statements.

Lemma 12. P(E) ≥ 1− δ.

Proof. Follows from Lemmas 9, 10, and 11, along with a union bound.
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C.2 Validity of value function bounds

In this section, we show that if the clean event E happens, then for all k and p, the value function
estimates Q

k

p , Qk

p
, V

k

p , V k
p are valid upper and lower bounds of the optimal value functions Q�

p, V �
p

(Lemma 15). As a by-product, we also give a general bound on the surplus (Lemma 14) which will
be refined and used in the subsequent regret bound calculations. Before going into the proof of the
above two lemmas, we need a technical lemma below (Lemma 13) that gives necessary concentration
results which motivate the bonus constructions; its proof can be found at Section C.2.1.
Lemma 13. Fix p ∈ [M ]. Suppose E happens, and suppose that for episode k and step h, we have
that for all s� ∈ Sh+1, V k

p(s
�) ≤ V �(s�) ≤ V

k

p(s
�). Then, for all (s, a) ∈ Sh ×A:

1. ���R̂k
p(s, a)−Rp(s, a)

��� ≤ brw

�
nk
p(s, a), 0

�
, (23)

���R̂k(s, a)−Rp(s, a)
��� ≤ brw

�
nk(s, a), �

�
. (24)

2. ���(P̂k
p − Pp)(V

�
p )(s, a)

��� ≤ bprob

�
P̂k
p(· | s, a), nk

p(s, a), V
k

p, V
k
p, 0
�
, (25)

���(P̂k − Pp)(V
�
p )(s, a)

��� ≤ bprob

�
P̂k(· | s, a), nk(s, a), V

k

p, V
k
p, �
�
. (26)

3. For any V1, V2 : Sh+1 → R such that V
k

p ≤ V1 ≤ V2 ≤ V k
p ,���(P̂k

p − Pp)(V2 − V1)(s, a)
��� ≤ bstr

�
P̂k
p(· | s, a), nk

p(s, a), V
k

p, V
k
p, 0
�
, (27)

���(P̂k − Pp)(V2 − V1)(s, a)
��� ≤ bstr

�
P̂k(· | s, a), nk(s, a), V

k

p, V
k
p, �
�
. (28)

Lemma 14. If event E happens, and suppose that for episode k and step h, we have that for all
s� ∈ Sh+1, V k

p(s
�) ≤ V �

p (s
�) ≤ V

k

p(s
�). Then, for (s, a) ∈ Sh ×A,

Q
k

p(s, a)−
�
Rp(s, a) + (PpV

k

p)(s, a)
�
∈
�
0, (H − h+ 1) ∧ 2ind-bkp(s, a) ∧ 2agg-bkp(s, a)

�
,

(29)
and�

Rp(s, a) + (PpV
k
p)(s, a)

�
−Qk

p
(s, a) ∈

�
0, (H − h+ 1) ∧ 2ind-bkp(s, a) ∧ 2agg-bkp(s, a)

�
,

(30)
where we recall that

ind-bkp(s, a) = brw

�
nk
p(s, a), 0

�
+bprob

�
P̂k
p(· | s, a), nk

p(s, a), V
k

p, V
k
p, 0
�
+bstr

�
P̂k
p(· | s, a), nk

p(s, a), V
k

p, V
k
p, 0
�
,

agg-bkp(s, a) = brw

�
nk(s, a), �

�
+bprob

�
P̂k(· | s, a), nk(s, a), V

k

p, V
k
p, �
�
+bstr

�
P̂k(· | s, a), nk(s, a), V

k

p, V
k
p, �
�
.

Proof. We only show Equation (29) for brevity; Equation (30) follows from an exact symmetrical
reasoning.

Recall that Q
k

p(s, a) = min
�

ind-Q
k

p(s, a), agg-Q
k

p(s, a), H
�

. We compare each term in the min(·)
operator with (Rp(s, a) + (PpV

k

p)(s, a)):

• For ind-Q
k

p(s, a), using Lemma 13 and our assumption on V
k

p and V k
p on Sh+1, we have:

ind-Q
k

p(s, a)−
�
Rp(s, a) + (PpV

k

p)(s, a)
�

= (R̂k
p −Rp)(s, a) + brw

�
nk
p(s, a), 0

�

+ ((P̂k
p − Pp)V

�
p )(s, a) + bprob

�
P̂k
p(· | s, a), nk

p(s, a), V
k

p, V
k
p, 0
�

+ (P̂k
p − Pp)(V

k

p − V �
p ))(s, a) + bstr

�
P̂k
p(· | s, a), nk

p(s, a), V
k

p, V
k
p, 0
�

∈ [0, 2ind-bkp(s, a)].
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• For agg-Q
k

p(s, a), using Lemma 13 and our assumptions on V
k

p and V k
p over Sh+1, we

have:

agg-Q
k

p(s, a)−
�
Rp(s, a) + (PpV

k

p)(s, a)
�

= (R̂k
p −Rp)(s, a) + brw

�
nk(s, a), �

�

+ ((P̂k − Pp)V
�
p )(s, a) + bprob

�
P̂k(· | s, a), nk(s, a), V

k

p, V
k
p, �
�

+ ((P̂k − Pp)(V
k

p − V �
p ))(s, a) + bstr

�
P̂k(· | s, a), nk(s, a), V

k

p, V
k
p, �
�

∈ [0, 2agg-bkp(s, a)],

• For H − h+ 1, we have:

(H − h+ 1)− (Rp(s, a) + (PpV
k

p)(s, a)) ∈ [0, H − h+ 1],

where we use the observation that R(s, a) ∈ [0, 1], and (PpV
k

p)(s, a) ∈ [0, H − h], and
their sum is in [0, H].

Combining the above three establishes that

Q
k

p(s, a)− (R(s, a) + (PpV
k

p)(s, a)) ∈
�
0, (H − h+ 1) ∧ 2ind-bkp(s, a) ∧ 2agg-bkp(s, a)

�
.

Lemma 15. Under event E, for every k ∈ [K], and every p ∈ [M ], and for every h ∈ [H], For all
(s, a) ∈ Sh ×A,

Qk

p
(s, a) ≤ Qπk

p (s, a) ≤ Q�
p(s, a) ≤ Q

k

p(s, a), (31)

and
V k

p(s) ≤ V πk

p (s) ≤ V �
p (s) ≤ V

k

p(s), (32)

Proof. The proof of this lemma extends [36, Proposition F.1] to our multitask setting.

For every k and p, we show the above holds for all layers h ∈ [H] and every (s, a) ∈ Sh ×A; to this
end, we do backward induction on layer h.

Base case: For layer h = H + 1, we have V k
p(⊥) = V πk

p (⊥) = V �
p (⊥) = V

k

p(⊥) = 0.

Inductive case: By our inductive hypothesis, for layer h+ 1 and every s ∈ Sh+1,

V k
p(s) ≤ V πk

p (s) ≤ V �
p (s) ≤ V

k

p(s).

We will show that Equations (31) and (32) holds holds for all (s, a) ∈ Sh ×A.

We first show Equation (31). First, Qπk

p (s, a) ≤ Q�
p(s, a) for all (s, a) ∈ Sh ×A is trivial.

To show Q�
p(s, a) ≤ Q

k

p(s, a) for all (s, a) ∈ Sh ×A, by Lemma 14 and inductive hypothesis, we
have:

Q�
p(s, a) = Rp(s, a) + (PpV

�
p )(s, a) ≤ Rp(s, a) + (PpV

k

p)(s, a) ≤ Q
k

p(s, a).

Likewise, we show Qπk

p (s, a) ≥ Qk

p
(s, a) for all (s, a) ∈ Sh ×A, using Lemma 14 and inductive

hypothesis:

Qπk

p (s, a) = Rp(s, a) + (PpV
πk

p )(s, a) ≥ Rp(s, a) + (PpV
k

p)(s, a) ≥ Qk

p
(s, a).

This completes the proof of Equation (31) for layer h.

We now show Equation (32) for layer h. Again V πk

p (s) ≤ V �
p (s) for all s ∈ Sh is trivial.
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To show V �
p (s) ≤ V

k

p(s) for all s ∈ Sh, observe that

V �
p (s) = max

a∈A
Q�

p(s, a) ≤ max
a∈A

Q
k

p(s, a) = V
k

p(s).

To show V πk

p (s) ≥ V k
p(s) for all s ∈ Sh, observe that

V πk

p (s) = Qπk

p (s,πk(p)(s)) ≥ Qk

p
(s,πk(p)(s)) = V k

p(s).

This completes the induction.

C.2.1 Proof of Lemma 13

Proof of Lemma 13. Equations (23), (25), and (27) essentially follow the same reasoning as in [36];
we still include their proofs for completeness. Equations (24), (26), and (28) are new, and require a
more involved analysis. Our proof also relies on a technical lemma, namely Lemma 16; we defer its
statement and proof to the end of this subsection.

1. Equation (23) follows directly from the definition of Eind,rw. Equation (24) follows from
the definition of Eagg,rw, and the fact that

��R̄k(s, a)−Rp(s, a)
�� ≤ �.

2. We prove Equation (25) as follows:

���(P̂k
pV

� − PpV
�
p )(s, a)

���

≤O



�

varPp(·|s,a)[V
�]L(nk

p(s, a))

nk
p(s, a)

+
HL(nk

p(s, a))

nk
p(s, a)




≤O




����varP̂k
p(·|s,a)[V

�]L(nk
p(s, a))

nk
p(s, a)

+
HL(nk

p(s, a))

nk
p(s, a)




≤O




����varP̂k
p(·|s,a)[V

k

p] L(n
k
p(s, a))

nk
p(s, a)

+

�����V �
p − V

k

p�2P̂k
p(·|s,a)

L(nk
p(s, a))

nk
p(s, a)

+
HL(nk

p(s, a))

nk
p(s, a)




≤O




����varP̂k
p(·|s,a)[V

k

p] L(n
k
p(s, a))

nk
p(s, a)

+

�����V k

p − V k
p�2P̂k

p(·|s,a)
L(nk

p(s, a))

nk
p(s, a)

+
HL(nk

p(s, a))

nk
p(s, a)




≤bprob

�
P̂k
p(· | s, a), nk

p(s, a), V
k

p, V
k
p, 0
�
,

where the first inequality is from the definition of Eind,val; the second inequality is from
Equation (33) of Lemma 16; the third inequality is from Lemma 23; the fourth inequality
is from our assumption that for all s� ∈ Sh+1, V k

p(s
�) ≤ V �(s�) ≤ V

k

p(s
�), and thus���(V �

p − V k
p)(s

�)
��� ≤
���(V k

p − V k
p)(s

�)
��� for all s� in the support of P̂k

p(· | s, a).
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We prove Equation (26) as follows:���(P̂k − Pp)(V
�
p )(s, a)

���

≤�+
���(P̂k − P̄k)(V �

p )(s, a)
���

≤�+O




����
��M

q=1 w
k
q (s, a)varPq(·|s,a)[V

�
p ]
�
L(nk(s, a))

nk(s, a)
+

HL(nk(s, a))

nk(s, a)




≤�+O



�

varP̂k(·|s,a)[V
�
p ] L(n

k(s, a))

nk(s, a)
+

�
L(nk(s, a))

nk(s, a)
· �H +

HL(nk(s, a))

nk(s, a)
+

HL(nk(s, a))

nk(s, a)




≤2�+O




����varP̂k(·|s,a)[V
k

p] L(n
k(s, a))

nk(s, a)
+

�����V k

p − V �
p �2P̂k(·|s,a) L(n

k(s, a))

nk(s, a)
+

HL(nk(s, a))

nk(s, a)




≤2�+O




����varP̂k(·|s,a)[V
k

p] L(n
k(s, a))

nk(s, a)
+

�����V k

p − V k
p�2P̂k(·|s,a) L(n

k(s, a))

nk(s, a)
+

HL(nk(s, a))

nk(s, a)




≤bprob

�
P̂k(· | s, a), nk(s, a), V

k

p, V
k
p, �
�
,

where the first inequality is from the observation that �P̄k(· | s, a) − Pp(· | s, a)�1 ≤ �
H

and Lemma 24; the second inequality is from the definition of Eagg,val; the third inequality
is from Equation (34) of Lemma 16; the fourth inequality is from Lemma 23 and the

observation that for constant c > 0, c
�

L(nk(s,a))
nk(s,a)

· �H ≤ � + c2

4
L(nk(s,a))
nk(s,a)

by AM-GM

inequality; the fifth inequality is from our assumption that for all s� ∈ Sh+1, V k
p(s

�) ≤
V �(s�) ≤ V

k

p(s
�), and thus

���(V �
p − V k

p)(s
�)
��� ≤
���(V k

p − V k
p)(s

�)
��� for all s� in the support of

P̂k(· | s, a).
3. We prove Equation (27) as follows:���(P̂k

p − Pp)(V2 − V1)(s, a)
���

≤
�

s�∈Sh+1

���(P̂k
p − Pp)(s

� | s, a)
��� · (V2 − V1)(s

�)

≤O




�

s�∈Sh+1



�

L(nk
p(s, a)) · Pp(s� | s, a)

nk
p(s, a)

+
L(nk

p(s, a))

nk
p(s, a)


 · (V2 − V1)(s

�)




≤O




�

s�∈Sh+1



�

L(nk
p(s, a)) · P̂k

p(s
� | s, a)

nk
p(s, a)

+
L(nk

p(s, a))

nk
p(s, a)


 · (V2 − V1)(s

�)




≤O


 �

s�∈Sh+1

�
P̂k
p(s

� | s, a)(V k

p − V k
p)(s

�) ·
�

L(nk
p(s, a))

nk
p(s, a)

+
�

s�∈Sh+1

HL(nk
p(s, a))

nk
p(s, a)




≤O




����S�V k

p − V k
p�2P̂k

p(·|s,a)
L(nk

p(s, a))

nk
p(s, a)

+
SHL(nk

p(s, a))

nk
p(s, a)




≤bstr

�
P̂k
p(· | s, a), n(s, a), V

k

p, V
k
p, 0
�
,
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where the first inequality is from the elementary fact that
���n

i=1 ai
�� ≤�n

i=1|ai|; the second
inequality is from the definition of Eind,prob; the third inequality is from the definition of
Eind,prob and Lemma 25; the fourth inequality is by algebra and 0 ≤ (V2 − V1)(s

�) ≤
min(H, (V

k

p − V k
p)(s

�)) for all s� ∈ Sh+1; the fifth inequality is by Cauchy-Schwarz.

We now prove Equation (28):���(P̂k − Pp)(V2 − V1)(s, a)
���

≤
���(P̄k − Pp)(V2 − V1)(s, a)

���+
���(P̂k − P̄k)(V2 − V1)(s, a)

���

≤�+
�

s�∈Sh+1

���(P̂k − P̄k)(s� | s, a)
��� · (V2 − V1)(s

�)

≤�+O




�

s�∈Sh+1



�

L(nk(s, a)) · P̄k(s� | s, a)
nk(s, a)

+
L(nk(s, a))

nk(s, a)


 · (V2 − V1)(s

�)




≤�+O




�

s�∈Sh+1



�

L(nk(s, a)) · P̂k(s� | s, a)
nk(s, a)

+
L(nk(s, a))

nk(s, a)


 · (V2 − V1)(s

�)




≤�+O


 �

s�∈Sh+1

�
P̂k(s� | s, a)(V k

p − V k
p)(s

�) ·
�

L(nk(s, a))

nk(s, a)
+

�

s�∈Sh+1

HL(nk(s, a))

nk(s, a)




≤�+O




����S�V k

p − V k
p�2P̂k(·|s,a) L(n

k(s, a))

nk(s, a)
+

SHL(nk(s, a))

nk(s, a)




≤bstr

�
P̂k(· | s, a), n(s, a), V k

p, V
k
p, �
�
,

where the first inequality is triangle inequality; the second inequality is from the elementary
fact that

���n
i=1 ai

�� ≤ �n
i=1|ai|, along with �P̄k(· | s, a) − Pp(· | s, a)�1 ≤ �

H and
Lemma 24; the third inequality is from the definition of Eagg,prob; the fourth inequality
is from the definition of Eagg,prob and Lemma 25; the fifth inequality is by algebra and

0 ≤ (V2 − V1)(s
�) ≤ min(H, (V

k

p − V k
p)(s

�)) for all s� ∈ Sh+1; the last inequality is by
Cauchy-Schwarz.

Lemma 13 relies on the following technical lemma on the concentrations of the conditional variances.
Specifically, Equation (33) is well-known (see, e.g., [2, 30]); Equations (34) and (35) are new, and
allow for heterogeneous data aggregation in the multi-task RL setting. We still include the proof of
Equation (33) here, as it helps illustrate our ideas for proving the two new inequalities.
Lemma 16. If event E happens, then for any s, a, k, p, we have:

1. �����

�
varP̂k

p(·|s,a)

�
V �
p

�
−
�
varPp(·|s,a)

�
V �
p

������ � H

�
L(nk

p(s, a))

nk
p(s, a)

, (33)

2. �������

�
varP̂k(·|s,a)

�
V �
p

�
−

����
M�

q=1

wk
q (s, a)varPq(·|s,a)

�
V �
p

�
�������
�

√
H�+H

�
L(nk(s, a))

nk(s, a)
,

(34)
and �����

�
varP̂k(·|s,a)

�
V �
p

�
−
�
varPp(·|s,a)

�
V �
p

������ �
√
H�+H

�
L(nk(s, a))

nk(s, a)
, (35)
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Proof. 1. By the definition of E, we have
�������

1

nk
p(s, a)

nk
p(s,a)�

i=1

(V �
p (s

�
i)− (PpV

�
p )(s, a))

2 − varPp(·|s,a)[V
�
p ]

�������
�
�

H2varPp(·|s,a)[V
�
p ]L(n

k
p(s, a))

nk
p(s, a)

+
H2L(nk

p(s, a))

nk
p(s, a)

;

this, when combined with Lemma 25, implies that
�������

���� 1

nk
p(s, a)

nk
p(s,a)�

i=1

(V �
p (s

�
i)− (PpV �

p )(s, a))
2 −

�
varPp(·|s,a)[V

�
p ]

�������
≤ H

�
L(nk

p(s, a))

nk
p(s, a)

. (36)

Now, observe that

varP̂k
p(·|s,a)

�
V �
p

�
=

1

nk
p(s, a)

nk
p(s,a)�

i=1

(V �
p (s

�
i)− (PpV

�
p )(s, a))

2 − ((P̂k
pV

�
p )(s, a)− (PpV

�
p )(s, a))

2.

Recall that by the definition of event E, we have

���(P̂k
pV

�
p )(s, a)− (PpV

�
p )(s, a)

��� ≤ H∧



�

H2L(nk
p(s, a))

nk
p(s, a)

+
HL(nk

p(s, a))

nk
p(s, a)


 ≤ 2H

�
L(nk

p(s, a))

nk
p(s, a)

,

where the second inequality uses Lemma 26. Using the elementary fact that |A−B| ≤ C ⇒
√
A ≤√

B +
√
C, we get that

�������

�
varP̂k

p(·|s,a)

�
V �
p

�
−

���� 1

nk(s, a)

nk(s,a)�

i=1

(V �
p (s

�
i)− (PpV �

p )(s, a))
2

�������

≤
���(P̂k

pV
�
p )(s, a)− (PpV

�
p )(s, a)

��� � H

�
L(nk

p(s, a))

nk
p(s, a)

.

(37)

Combining Equations (36) and (37), using algebra, we get
�����

�
varP̂k

p(·|s,a)

�
V �
p

�
−
�
varPp(·|s,a)

�
V �
p

������ � H

�
L(nk

p(s, a))

nk
p(s, a)

,

establishing Equation (33).

2. We first show Equation (34). By the definition of E, we have
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For the first term on the left hand side, observe that for each i, |(Ppi
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2H-Lipschitzness of function f(x) = x2 on [−H,H]. By averaging over all i’s and taking square
root, we have�������
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Equation (34) is a direct consequence of Equations (38), (39) and (40) along with algebra.

We now show Equation (35) using Equation (34). By Lemma 24, for ev-
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establishing Equation (35).

C.3 Simplifying the surplus bounds

In this section, we show a distribution-dependent bound on the surplus terms, namely Lemma 19,
which is key to establishing our regret bound. It can be seen as an extension of Proposition B.4
of [36] to our multitask setting using the MULTI-TASK-EULER algorithm, under the �-dissimilarity
assumption. Before we present Lemma 19 (Section C.3.1), we first show and prove two auxiliary
lemmas, Lemma 17 and Lemma 18.

Lemma 17 (Bounds on V
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p , generalization of [36], Lemma F.8). If E happens, then for all
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Proof. First, Lemmas 15 and 14 together imply that if E holds, Equations (29) and (30) holds for all
p, k, s, a. Under this premise, we show Equation (41) by backward induction.

Base case: for h = H + 1, we have that LHS is (V
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p − V k
p)(⊥) = 0 which is equal to the RHS.

inductive case: Suppose Equation (41) holds for all s ∈ Sh+1. Now consider s ∈ Sh. By the
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where the first inequality is from Equations (29) and (30) for (s, a) and player p at episode k, and the
second inequality is from the inductive hypothesis; the third inequality is by algebra. This completes
the induction.

We now show Equation (42). By the definition of ind-bkp(s, a) and algebra,
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Lemma 18. If E happens, we have the following statements holding for all p, k, s, a:

1. For two terms that appear in ind-bkp(s, a), they are bounded respectively as:
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2. For two terms that appear in agg-bkp(s, a), they are bounded respectively as:
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Proof. First, Lemmas 15 and 14 together imply that if E happens, the value function upper and lower
bounds are valid. Conditioned on E happening, we prove the two items respectively.

1. For Equation (43), using the definition of Eind,prob and AM-GM inequality, when E happens, we
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where the first inequality is from Lemma 23 and the observation that when E happens,���(V k
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C.3.1 Distribution-dependent bound on the surplus terms

Lemma 19 (Surplus bound). If E happens, then for all p, k, s, a:
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Proof of Lemma 19. First, Lemmas 15 and 14 together imply that if E holds, for all p, k, s, a,
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where the first inequality is by expanding the definition of ind-bkp(s, a) and algebra; the second
inequality is from Equations Equation (43) and (44) of Lemma 18, along with algebra; the third
inequality is by the basic fact that
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Bounding agg-bkp(s, a): We have:
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where the first inequality is by expanding the definition of agg-bkp(s, a) and algebra; the second
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which will conclude the proof. To this end, we simplify the left hand side of Equation (49) using
Lemma 17:
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p − V k
p�2Pp(·|s,a) +

�
SHL(nk(s, a))

nk(s, a)
∧H

�

�E





H

H�

t=h+1

E





1 ∧

�
SL(nk

p(st, at))

nk
p(st, at)


 | sh+1







2

| (sh, ah) = (s, a),πk(p),Mp


+

�
SHL(nk(s, a))

nk(s, a)
∧H

�

�H3E




H�

t=h+1

E





1 ∧

�
SL(nk

p(st, at))

nk
p(st, at)




2

| sh+1


 | (sh, ah) = (s, a),πk(p),Mp


+

�
SHL(nk(s, a))

nk(s, a)
∧H

�

�E




H�

t=h

H3 ∧ H3SL(nk
p(st, at))

nk
p(st, at)

| (sh, ah) = (s, a),πk(p),Mp




�E




H�

t=h

Bk,fut(st, at) | (sh, ah) = (s, a),πk(p),Mp


 ,

where the first inequality is from Equation (42) of Lemma 17; the second inequality is by Cauchy-
Schwarz and E[X]2 ≤ E[X2] for any random variable X; and the third inequality is by the law of
total expectation and algebra.

C.4 Concluding the regret bounds

In this section, we present the proofs of Theorems 5 and 6.

To bound the collective regret of MULTI-TASK-EULER, we first recall the following general result
from [36], which is useful to establish instance-dependent regret guarantees for episodic RL.
Lemma 20 (Clipping lemma, [36], Lemma B.6). Fix player p ∈ [M ]; suppose for each episode k,
it follows πk(p), the greedy policy with respect to Q

k

p . In addition, there exists some event E and a

collection of functions
�
Bk,lead

p , Bk,fut
p

�
k∈[K]

⊂ (S × A → R) , such that if E happens, then for

all k ∈ [K], h ∈ [H] and (s, a) ∈ Sh ×A, the surplus of Q
k

p satisfies that

0 ≤ Ek
p (s, a) � Bk,lead

p (s, a) + E




H�

t=h

Bk,fut
p (st, at) | (sh, ah) = (s, a),πk(p),Mp


 ,

then, on E:

Reg(K, p) �
�

s,a

�

k

ρkp(s, a) clip
�
Bk,lead

p (s, a), ˇgapp(s, a)
�
+H

�

s,a

�

k

ρkp(s, a) clip

�
Bk,fut

p (s, a),
gapp,min

8SAH2

�
,

here, recall that clip(α,Δ) = α1(α ≥ Δ), and ˇgapp(s, a) =
gapp(s,a)

4H ∨ gapp,min

4H .
Remark 21. Our presentation of the clipping lemma is slightly different than the original one [36,
Lemma B.6], in that:

1. We consider layered MDPs, while [36] consider general stationary MDPs where one state
may be experienced at multiple different steps in [H]. Specifically, in a layered MDP, the
occupancy distributions ωk,h defined in [36] is only supported over Sh ×A. As a result, in
the presentation here, we no longer need to sum over h – this is already captured in the sum
over all s across all layers.

2. Our presentation here is in the context of multitask RL, which is with respect to a player p ∈
[M ], its corresponding MDP Mp, and its policies used throughout the process

�
πk(p)

�K
k=1

.
As a result, all quantities have p as subscripts.
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We are now ready to prove Theorems 5 and 6, MULTI-TASK-EULER’s main regret theorems.

C.4.1 Proof of Theorem 5

Proof of Theorem 5. From Lemma 20 and Lemma 19, we have that when E happens,

Reg(K) =

M�

p=1

Reg(K, p)

≤
�

s,a

�

k,p

ρkp(s, a) clip
�
Bk,lead(s, a), ˇgapp(s, a)

�

� �� �
(A)

+H
�

s,a

�

k,p

ρkp(s, a) clip

�
Bk,fut(s, a),

gapp,min

8SAH2

�

� �� �
(B)

,

(50)

We bound each term separately. We can directly use Lemma 22 to bound term (B) as:

H
�

s,a

�

k,p

ρkp(s, a) clip

�
Bk,fut(s, a),

gapp,min

8SAH2

�
� MH4S2A

�
ln

�
MSAK

δ

��2

. (51)

For term (A), we will group the sum by (s, a) ∈ I� and (s, a) /∈ I� separately.

Case 1: (s, a) ∈ I�. In this case, we have that for all p, ˇgapp(s, a) =
gapp(s,a)

4H ≥ 24�. We simplify
the corresponding term as follows:

�

(s,a)∈I�

�

k,p

ρkp(s, a) clip
�
Bk,lead(s, a), ˇgapp(s, a)

�

≤
�

(s,a)∈I�

�

k,p

ρkp(s, a) clip


H ∧


5�+O



�

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)





 ,

minp gapp(s, a)

4H




≤
�

(s,a)∈I�

�

k,p

ρkp(s, a)


H ∧ clip


5�+O



�

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)


 ,

minp gapp(s, a)

4H







�
�

(s,a)∈I�

�

k,p

ρkp(s, a)


H ∧

�
(1 + varPp(·|s,a)[V

πk

p ])L(nk(s, a))

nk(s, a)




where the first inequality is from the definition of Bk,lead; the second inequality is from the basic
fact that clip(A ∧ B,C) ≤ A ∧ clip(B,C); the third inequality uses Lemma 27 with a1 = 5�,

a2 =

�
(1+varPp(·|s,a)[V πk

p ])L(nk(s,a))

nk(s,a)
, and Δ =

minp gapp(s,a)

4H , along with the observation that

clip(5�,
minp gapp(s,a)

16H ) = 0, since for all (s, a) ∈ I� and all p ∈ [M ], gapp(s, a) ≥ 96�H .

We now decompose the inner sum over k,
�K

k=1, to
�τ(s,a)−1

k=1 and
�K

k=τ(s,a). The first part is
bounded by:

�

(s,a)∈I�

τp(s,a)−1�

k=1

M�

p=1

ρkp(s, a)


H ∧

�
(1 + varPp(·|s,a)[V

πk

p ])L(nk(s, a))

nk(s, a)


 ≤

�

(s,a)∈I�

τp(s,a)−1�

k=1

M�

p=1

ρkp(s, a)H ≤ SAHN1,

which is � MHSA ln
�

SAK
δ

�
.
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For the second part,

�

(s,a)∈I�

K�

k=τ(s,a)

M�

p=1

ρkp(s, a)


H ∧

�
(1 + varPp(·|s,a)[V

πk

p ])L(nk(s, a))

nk(s, a)




�
�

(s,a)∈I�

K�

k=τ(s,a)

M�

p=1

ρkp(s, a)

�
(1 + varPp(·|s,a)[V

πk

p ])L(n̄k(s, a))

n̄k(s, a)

�

���� �

(s,a)∈I�

K�

k=τ(s,a)

M�

p=1

ρkp(s, a) ·
L(n̄k(s, a))

n̄k(s, a)
·

���� �

(s,a)∈I�

K�

k=1

M�

p=1

ρkp(s, a)
�
1 + varPp(·|s,a)[V

πk

p ]
�
,

where the first inequality is by dropping the “H∧” operator; the second inequality is by Cauchy-
Schwarz.

We bound each factor as follows: for the first factor,

�

(s,a)∈I�

K�

k=τ(s,a)

M�

p=1

ρkp(s, a) ·
L(n̄k(s, a))

n̄k(s, a)
=

�

(s,a)∈I�

K�

k=τ(s,a)

ρk(s, a) · L(n̄
k(s, a))

n̄k(s, a)

≤L(MK)
�

(s,a)∈I�

K�

k=τ(s,a)

ρk(s, a)

n̄k(s, a)

≤
�

(s,a)∈I�

L(MK) ·
� n̄K(s,a)

1

1

u
du

≤|I�|L(MK)2 � |I�|
�
ln

�
MSAK

δ

��2

,

where the first inequality is because L is monotonically increasing, and n̄k(s, a) ≤ MK; the
second inequality is from the observation that ρk(s, a) ∈ [0,M ], n̄k(s, a) ≥ 2M , and u �→ 1

u is
monotonically decreasing; the last two inequalities are by algebra.

For the second factor,

�

(s,a)∈I�

K�

k=1

M�

p=1

ρkp(s, a)
�
1 + varPp(·|s,a)[V

πk

p ]
�
�MKH +

M�

p=1

K�

k=1

�

(s,a)∈S×A
ρkp(s, a)varPp(·|s,a)[V

πk

p ]

�MKH +

M�

p=1

K�

k=1

Var




H�

h=1

rkh,p | πk(p)




�MKH2.
(52)

where the first inequality is by the fact that ρkp are probability distributions over every layer h ∈ [H];
the last two inequalities are by a law of total variance identity (see, e.g., [3, Equation (26)]). To
summarize, the second part is at most

�

(s,a)∈I�

K�

k=τ(s,a)

M�

p=1

ρkp(s, a)


H ∧

�
(1 + varPp(·|s,a)[V

πk

p ])L(nk(s, a))
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 �

�
MKH2|I�| ln

�
MSAK

δ

�
.

Combining the bounds for the first and the second parts, we have:

�

(s,a)∈I�

�

k,p

ρkp(s, a) clip
�
Bk,lead(s, a), ˇgapp(s, a)

�
�
��
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�
ln

�
MSAK

δ

�
.
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Case 2: (s, a) /∈ I�. We simplify the corresponding term as follows:

�
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�
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ρkp(s, a) clip
�
Bk,lead(s, a), ˇgapp(s, a)

�

�
�

(s,a)/∈I�

�

k,p

ρkp(s, a) clip


H ∧




����
�
1 + varPp(·|s,a)[V
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For each p and (s, a), we now decompose the inner sum over k,
�K

k=1, to
�τp(s,a)−1

k=1 and
�K

k=τp(s,a)
.

The first part is bounded by:

�
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which is � MHSA ln
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�
.

For the second part,
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We bound each factor as follows: for the first factor,
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u
du

≤
���IC

�
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�
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�
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��2

.

where the first inequality is because L is monotonically increasing, and n̄k
p(s, a) ≤ K; the second

inequality is from the observation that ρk(s, a) ∈ [0, 1], n̄k(s, a) ≥ 2, and u �→ 1
u is monotonically

decreasing; the last two inequalities are by algebra.
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The second factor is again bounded by (52). Therefore, the second part of the sum is at most

�

(s,a)/∈I�
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�
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Combining the bounds for the first and the second parts, we have:

�
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Now, combining the bounds for cases 1 and 2, we have that

(A) ≤
��

MKH2|I�|+M
�
KH2

��IC
�

��+MHSA

�
· ln
�
MSAK

δ

�
. (53)

In conclusion, by the regret decomposition Equation (50), and Equations (53) and (51), we have:

Reg(K) ≤
�
�
MH2|I�|K +M

�
H2
��IC

�

��K +MH4S2A ln

�
MSAK

δ

��
ln

�
MSAK

δ

�
.

C.4.2 Proof of Theorem 6

Proof of Theorem 6. From Lemma 20, we have that when E happens,

Reg(K) =
M�

p=1

Reg(K, p)

≤
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s,a
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ρkp(s, a) clip
�
Bk,lead(s, a), ˇgapp(s, a)
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Bk,fut(s, a),

gapp,min

8SAH2

�
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,

We focus on each term separately. We directly use Lemma 22 to bound term (B) as:

H
�

s,a

�

k,p

ρkp(s, a) clip

�
Bk,fut(s, a),

gapp,min

8SAH2

�
� MH4S2A ln

�
MSAK

δ

�
· ln MSA
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. (54)

For the (s, a)-th term in term (A), we will consider the cases of (s, a) ∈ I� and (s, a) /∈ I� separately.
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Case 1: (s, a) ∈ I�. In this case, we have that for all p, ˇgapp(s, a) =
gapp(s,a)

4H ≥ 24�. We simplify
the corresponding term as follows:�
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Bk,lead(s, a), ˇgapp(s, a)
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,
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where the first inequality is by the definition of Bk,lead; the second inequality is from that
varPp(·|s,a)[V

πk

p ] ≤ H2; the third inequality is from that clip(A ∧ B,C) ≤ A ∧ clip(B,C); the

third inequality uses Lemma 27 with a1 = 5�, a2 =
�

H2L(nk(s,a))
nk(s,a)

, and Δ =
minp gapp(s,a)

4H , along

with the observation that clip(5�, minp gapp(s,a)

16H ) = 0, since for all (s, a) ∈ I� and all p ∈ [M ],
gapp(s, a) ≥ 96�H .

We now decompose the inner sum over k,
�K

k=1, to
�τ(s,a)−1

k=1 and
�K

k=τ(s,a). The first part’s

contribution is at most N1 ·H � MH ln
�

SAK
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�
. For the second part, its contribution is at most:
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�

where the second inequality is from Lemma 28 with fmax = H , C = H2, Δ =
minp gapp(s,a)

16H ,
N = MSA, ξ = δ, Γ = 1, n = n̄K(s, a) ≤ K. In summary, for all (s, a) ∈ I�,
�
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ρkp(s, a) clip
�
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Case 2: (s, a) /∈ I�. In this case, for each p ∈ [M ], we simplify the corresponding term as follows:
�
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We now decompose the inner sum over k,
�K

k=1, to
�τp(s,a)−1

k=1 and
�K

k=τp(s,a)
. The first part’s

contribution is at most N2 ·H � H ln
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�
.

For the second part, its contribution is at most:
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where the second inequality is from Lemma 28 with fmax = H , C = H2, Δ =
ˇgapp(s,a)

16H , N =

MSA, ξ = δ, Γ = 1, n = n̄K
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summing over p, we get:
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�
,

In summary, combining the regret bounds of cases 1 and 2 for term (A), along with Equation (54) for
term (B), and observe that ˇgapp(s, a) = gapp,min if (s, a) ∈ Zp,opt, and ˇgapp(s, a) = gapp(s, a)
otherwise, we have that on event E, MULTI-TASK-EULER satisfies:

Reg(K) � ln
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Lemma 22 (Bounding the lower order terms). If E happens, then
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Proof. We expand the left hand side using the definition of Bk,fut, and the fact that gapp,min ≥
gapmin:
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�
(55)
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We now decompose the sum
�K
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k=1 and
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. The first part can be bounded by

τp(s,a)−1�

k=1

ρkp(s, a)


H3 ∧ clip

�
H3SL(nk

p(s, a))

nk
p(s, a)

,
gapmin

8SAH2

�
 ≤

τp(s,a)−1�

k=1

H3ρkp(s, a) ≤ H3N2,
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which is at most O
�
H3 · ln

�
MSAK

δ

��
. For the second part, it can be bounded by:

K�

k=τp(s,a)

ρkp(s, a)


H3 ∧ clip

�
H3SL(nk

p(s, a))

nk
p(s, a)

,
gapmin

8SAH2

�


≤H3 · 1 +
� n̄K

p (s,a)

1


H3 ∧ clip

�
H3SL(u)

u
,
gapmin

8SAH2

�
 du

�H3 +H3 ln

�
MSA

δ

�
+H3S ln

�
MSAK

δ

��
ln

�
MSAK

δ

�
∧ ln

�
MHSA

gapmin

��
,

where the second inequality is from Lemma 28 with fmax = H3, C = H3S, Δ = gapmin

8SAH2 ,
N = MSA, ξ = δ, Γ = 1, n = n̄K

p (s, a) ≤ K. In addition, observe that H ≤ S by our layered
MDP assumption, we have

�

k

ρkp(s, a) clip

�
Bk,lead(s, a),

gapmin

8SAH2

�
� H3S ln

�
MSAK

δ

��
ln

�
MSAK

δ

�
∧ ln

�
MSA

gapmin

��

Summing over s ∈ S , a ∈ A, and p ∈ [M ], we get

�

s,a

�

k,p

ρkp(s, a) clip

�
Bk,lead(s, a),

gapmin

8SAH2

�
� MH3S2A ln

�
MSAK

δ

��
ln

�
MSAK

δ

�
∧ ln

�
MSA

gapmin

��
.

C.5 Miscellaneous lemmas

This subsection collects a few miscellaneous lemmas used throughout the upper bound proofs.

Lemma 23 ([36], Lemma F.5). For random variables X and Y ,
���
�
var[X]−

�
var[Y ]

��� ≤
�

E
�
(X − Y )2

�
.

Lemma 24. Suppose distributions P and Q are supported over [0, B], and �P − Q�1 ≤ � ≤ 2.
Then: ��EX∼P [X]− EX∼Q[X]

�� ≤ B�,
��varX∼P [X]− varX∼Q[X]

�� ≤ 3B2�.

Proof. First,

��EX∼P [X]− EX∼Q[X]
�� =
�����

� B

0

x(pX(x)− qX(x))dx

����� ≤
� B

0

|x|
��pX(x)− qX(x)

�� dx ≤ B�P−Q�1 ≤ B�.

Second, observe that ���EX∼P [X
2]− EX∼Q[X

2]
��� ≤ B2�.

Meanwhile,
���(EX∼P [X])2 − (EX∼Q[X])2

��� ≤
��EX∼P [X]− EX∼Q[X]

��·
��EX∼P [X] + EX∼Q[X]

�� ≤ 2B·B� = 2B2�.

Combining the above, we have
��varX∼P [X]− varX∼Q[X]

�� ≤ 3B2�.

Lemma 25. For A,B,C,D,E, F ≥ 0:
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1. If |A−B| ≤
√
BC + C, then we have

���
√
A−

√
B
��� ≤ 2

√
C.

2. If D ≤ E + F
√
D, then

√
D ≤

√
E + F .

Proof. 1. First, A−B ≤ |A−B| ≤
√
BC +C; this implies that A ≤ B + 2

√
BC +C, and

therefore
√
A ≤

√
B +

√
C.

On the other hand, B ≤ A+C+
√
BC; therefore, applying item 1 with D = B, E = A+C,

and F =
√
C, we have

√
B ≤

√
A+ C +

√
C ≤

√
A+ 2

√
C.

2. The roots of x2 − Fx − E = 0 are F±
√
F 2+4E
2 , and therefore D must satisfy

√
D ≤

F+
√
F 2+4E
2 ≤ F+F+2

√
E

2 = F +
√
E.

Lemma 26. For a ≥ 0, 1 ∧ (a+
√
a) ≤ 1 ∧ 2

√
a.

Proof. We consider the cases of a ≥ 1 and a < 1 respectively. If a ≥ 1, LHS = 1 = RHS.
Otherwise, a ≤ 1; in this case, LHS = 1 ∧ (a+

√
a) ≤ 1 ∧ (

√
a+

√
a) = RHS.

Lemma 27 (Special case of [36], Lemma B.5). For a1, a2,Δ ≥ 0, clip(a1 + a2,Δ) ≤
2 clip(a1,Δ/4) + 2 clip(a2,Δ/4).

Lemma 28 (Integral calculation, [36], Lemma B.9). Let f(u) ≤ min(fmax, clip(g(u),Δ)), where
Δ ∈ [0,Γ], and g(u) is nonincreasing. Let N ≥ 1 and ξ ∈ (0, 1

2 ). Then:

1. If g(u) �
�

C log Nu
ξ

u for some C > 0 such that lnC � lnN , then

� n

Γ

f(u/4)du �
�

Cn ln
Nn

ξ
∧ C

Δ
ln

�
Nn

ξ

�
.

2. If g(u) � C ln Nu
ξ

u for some C > 0 such that lnC � lnN , then
� n

Γ

f(u/4)du � fmax ln
N

ξ
+ C ln

Nn

ξ
·
�
ln

Nn

ξ
∧ ln

NΓ

Δ

�
.

D Proof of the Lower Bounds

D.1 Auxiliary Lemmas

Lemma 29 (Regret decomposition, [36], Section H.2). For any MPERL problem instance and any
algorithm, we have

E
�
Reg(K)

�
≥

M�

p=1

�

(s,a)∈S1×A
E
�
nK+1
p (s, a)

�
gapp(s, a), (57)

where we recall that nK+1
p (s, a) is the number of visits of (s, a) by player p at the beginning of the

(K + 1)-th episode (after the first K episodes). Furthermore, for any (s, a) ∈ S1 ×A, we have

M�

p=1

E
�
nK+1
p (s, a)

�
gapp(s, a) ≥ E

�
nK+1(s, a)

��
min
p∈[M ]

gapp(s, a)

�
, (58)

where we recall that nK+1(s, a) =
�M

p=1 n
K+1
p (s, a).

Proof. Eq. (58) follows straightforwardly from the fact that for every (s, a, p) ∈ S1 × A × [M ],
minp�∈[M ] gapp�(s, a) ≤ gapp(s, a).

41



We now prove Eq. (57). Let πk
p denote πk(p). We have

E
�
Reg(K)

�
= E




M�

p=1

K�

k=1

�

s∈S1

p0(s
k
1,p = s)

�
V �
p (s)− V

πk
p

p (s)

�


≥ E




M�

p=1

K�

k=1

�

s∈S1

p0(s
k
1,p = s)

�
V �
p (s)−Q�

p(s,π
k
p(s))

�



= E




M�

p=1

K�

k=1

�

s∈S1

p0(s)gapp(s,π
k
p(s))




= E




M�

p=1

K�

k=1

�

s∈S1

1
�
sk1,p = s

�
gapp(s,π

k
p(s))




= E




M�

p=1

K�

k=1

�

(s,a)∈S1×A
1
�
sk1,p,π

k
p(s) = (s, a)

�
gapp(s, a)




=

M�

p=1

�

(s,a)∈S1×A
E
�
nK
p (s, a)

�
gapp(s, a)

(59)

where the first equality is from the definition of collective regret; the first inequality is from the
simple fact that V π

p (s) = Qπ
p (s,π(s)) ≤ Q�

p(s,π(s)) for any policy π; the second equality is
from the definition of suboptimality gaps; and the third equality is from the basic observation that
sk1,p ∼ p0.

Lemma 30 (Divergence decomposition [23, 44]). For two MPERL problem instances, M and
M�, which only differ in the transition probabilities

�
Pp(· | s, a)

�
p∈[M ],(s,a)∈S×A, and for a fixed

algorithm, let PM and PM� be the probability measures on the outcomes of running the algorithm on
M and M�, respectively. Then,

KL(PM,PM�) =

M�

p=1

�

(s,a)∈S×A
EM

�
nK+1
p (s, a)

�
KL
�
PM
p (· | s, a),PM�

p (· | s, a)
�
,

where PM
p (· | s, a) and PM�

p (· | s, a) are the transition probabilities of the problem instance M and
M�, respectively.

Lemma 31 (Bretagnolle-Huber inequality, [23], Theorem 14.2). Let P and Q be two distributions
on the same measurable space, and A be an event. Then,

P(A) +Q(AC) ≥ 1

2
exp

�
−KL(P,Q)

�
.

Lemma 32 (see, e.g., [43], Lemma 25). For any x, y ∈ [ 14 ,
3
4 ], KL

�
Ber(x),Ber(y)

�
≤ 3(x− y)2.

Lemma 33. Let X be a Binomial random variable and X ∼ Bin(n, p), where n ≥ 1
p . Then,

E
�
X

3
2

�
≤ 2(np)

3
2 .

Proof. Let Y = X2, and f(Y ) = Y
3
4 . We have E [Y ] = E

�
X2
�
= var [X] + E [X]

2
= (np)2 +

np(1−p) ≤ (np)2+np ≤ 2(np)2, where the last inequality follows from the assumption that n ≥ 1
p .

By Jensen’s inequality, we have E
�
X

3
2

�
= E

�
f(Y )

�
≤ f

�
E [Y ]

�
≤
�
2n2p2

� 3
4 ≤ 2(np)

3
2 .

42



D.2 Gap independent lower bounds

Theorem 34 (Restatement of Theorem 7). For any A ≥ 2, H ≥ 2, S ≥ 4H , K ≥ SA, M ∈ N, and
l, lC ∈ N such that l + lC = SA and l ≤ SA− 4(S +HA), there exists some � such that for any
algorithm Alg, there exists an �-MPERL problem instance with S states, A actions, M players and
an episode length of H such that

���I �
192H

��� ≥ l, and

E
�
RegAlg(K)

�
≥ Ω

�
M

√
H2lCK +

√
MH2lK

�
.

Proof. The construction and techniques in this proof are inspired by [43, Section E.1] and [36].

Fix any algorithm Alg; we consider two cases:

1. l > MlC ;

2. MlC ≥ l.

Case 1: l > MlC . Let S1 = S − 2(H − 1), and b = � l
S1

� ≥ 1. Let Δ =
�

l+1
384MK , and let

� = 1
2HΔ. We note that under the assumption that K ≥ SA, and the observation that l ≤ SA, we

have Δ ≤ 1
4 . We define (b+1)S1 �-MPERL problem instances, each indexed by an element in [b+1]S1 .

It suffices to show that, on at least one of the problem instances, E
�
RegAlg(K)

�
≥ Ω

�√
MH2lK

�
.

Construction. For a = (a1, . . . , aS1) ∈ [b + 1]S1 , we define the following �-MPERL problem
instance, M(a) =

�
Mp

�M
p=1

, with S states, A actions, and an episode length of H , such that for
each p ∈ [M ], Mp is constructed as follows:

• S1 = [S1], and p0 is a uniform distribution over the states in S1.

• For h ∈ [2, H], Sh = {S1 + 2h− 3, S1 + 2h− 2}.

• A = [A].

• For each (s, a) ∈ S × A, the reward distribution rp(s, a) is a Bernoulli distribution,
Ber(Rp(s, a)), and we will specify Rp(s, a) subsequently.

• For each state s ∈ [S1],

Pp(S1 + 1 | s, a) =





1
2 +Δ, if a = as;
1
2 , if a ∈ [b+ 1] \ as;
0, if a /∈ [b+ 1];

and for each a ∈ A, Pp(S1 + 2 | s, a) = 1− Pp(S1 + 1 | s, a), and Rp(s, a) = 0.

• For h ∈ [2, H], and a ∈ A, let

– Pp

�
S1 + 2h− 1 | S1 + 2h− 3, a

�
= 1, Pp

�
S1 + 2h | S1 + 2h− 3, a

�
= 0, and

Rp(S1 + 2h− 3, a) = 1.
– Pp

�
S1 + 2h | S1 + 2h− 2, a

�
= 0, Pp

�
S1 + 2h− 1 | S1 + 2h− 2, a

�
= 1, and

Rp(S1 + 2h− 2, a) = 0.

It can be easily verified that M(a) =
�
Mp

�M
p=1

is a 0-MPERL problem instance, and hence an
�-MPERL problem instance—the reward distributions and the transition probabilities are the same
for all players, i.e., for every p, q ∈ [M ], and every (s, a) ∈ S ×A,

��Rp(s, a)−Rq(s, a)
�� = 0 ≤ �,

��Pp(· | s, a)− Pq(· | s, a)
�� = 0 ≤ �

H
.
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Suboptimality gaps. We now calculate the suboptimality gaps of the state-action pairs in the above
MDPs. For each p ∈ [M ] and each (s, a) ∈ S ×A,

gapp(s, a) = V �
p (s)−Q�

p(s, a) = max
a�

Q�
p(s, a

�)−Q�
p(s, a).

In M(a), it can be easily observed that for every p ∈ [M ], and every (s, a) ∈
�
S \ S1

�
× A,

gapp(s, a) = 0. Now, for every p ∈ [M ], (s, a) ∈ S1 ×A, we have

gapp(s, a) = max
a�

Q�
p(s, a

�)−Q�
p(s, a) = (H−1)

�
max
a�

Pp(S1 + 1 | s, a�)− Pp(S1 + 1 | s, a)
�
.

It follows that, for every p ∈ [M ] and every state s ∈ [S1],

gapp(s, a) =





0, if a = as;

(H − 1)Δ, if a ∈ [b+ 1] \ as;
(H − 1)

�
1
2 +Δ

�
, if a /∈ [b+ 1].

Subpar state-action pairs. It can be verified that in M(a),
���I �

192H

��� ≥ l. Specifically, since

(H − 1)Δ = (H − 1) 2�H ≥ � ≥ �
2 = 96H �

192H , we have that the number of subpar state-action pairs
is at least S1b = S1� l

S1
� ≥ l.

It suffices to prove that

Ea∼Unif([b+1]S1)EM(a)

�
RegAlg(K)

�
≥ 1

640

√
MH2lK,

where we recall that a = (a1, . . . , aS1); furthermore, it suffices to show that, for any s� ∈ [S1],

Ea∼Unif([b+1]S1)EM(a)

�
NK+1(s�)− nK+1(s�, as�)

�
≥ MK

4S1
, (60)

where NK+1(s�) =
�

a∈A nK+1(s�, a); this is because it follows from Eq. (60) that

Ea∼Unif([b+1]S1)EM(a)

�
RegAlg(K)

�
≥
�

s�∈S1

(H − 1)
Δ

4
· Ea∼Unif([b+1]S1)EM(a)

�
NK+1(s�)− nK+1(s�, as�)

�

≥
�

s�∈S1

H

2
· Δ
4

· MK

4S1

≥ 1

640

√
MH2lK,

where the first inequality uses Lemma 29 (the regret decomposition lemma).

Without loss of generality, let us choose s� = 1. To prove Eq. (60), we use a standard technique
and define a set of helper problem instances. Specifically, for any (a2, a3, . . . , aS1

) ∈ [b+ 1]S1−1,
we define a problem instance M(0, a2, . . . , as1) such that it agrees with M(a1, a2, . . . , as1) on
everything but Pp(· | 1, a1)’s, i.e., in M(0, a2, . . . , as1), for every p ∈ [M ],

Pp(S1 + 1 | 1, a1) =
1

2
.

Now, for each (j, a2, . . . , as1) ∈
�
[0] ∪ [b+ 1]

�
× [b+ 1]S1−1, let Pj,a2,...,aS1

denote the probability
measure on the outcomes of running Alg on the problem instance M(j, a2, . . . , as1). Further, for
each j ∈ {0} ∪ [b+ 1], we define

Pj =
1

(b+ 1)S1−1

�

a2,...,aS1
∈[b+1]S1−1

Pj,a2,...,aS1
;

and we use Ej to denote the expectation with respect to Pj .
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In subsequent calculations, for any index m ∈
�
[0] ∪ [b+ 1]

�
× [b + 1]S1−1, we also denote by

Pm

�
· | NK+1(1)

�
and Em

�
· | NK+1(1)

�
the probability and expectation, respectively, conditional

on a realization of NK+1(1) under Pm. Observe that, for any j ∈ {0} ∪ [b+ 1],

Pj(· | NK+1(1)) =
Pj(·, NK+1(1))

Pj(NK+1(1))

=

1
(b+1)S1−1

�
a2,...,aS1

∈[b+1]S1−1 Pj,a2,...,aS1
(·, NK+1(1))

Pj(NK+1(1))

=
1

(b+ 1)S1−1

�

a2,...,aS1
∈[b+1]S1−1

Pj,a2,...,aS1
(·, NK+1(1))

Pj,a2,...,aS1
(NK+1(1))

=
1

(b+ 1)S1−1

�

a2,...,aS1
∈[b+1]S1−1

Pj,a2,...,aS1
(· | NK+1(1)), (61)

where the first equality is from the definition of conditional probability; the second equality is from
the definition of Pj ; the third equality uses the fact that Pj(N

K+1(1)) = Pj,a2,...,aS1
(NK+1(1)) for

any a2, . . . , aS1 , which is true because NK+1(1) is independent of a2, . . . , aS1 conditional on j; and
the last equality, again, is from the definition of conditional probability.

We have, for each j ∈ [b+ 1],

Ej

�
nK+1(1, j) | NK+1(1)

�
− E0

�
nK+1(1, j) | NK+1(1)

�

≤NK+1(1)

����Pj

�
· | NK+1(1)

�
− P0

�
· | NK+1(1)

�����
1

≤NK+1(1) · 1

(b+ 1)S1−1

�

a2,...,aS1
∈[b+1]S1−1

����Pj,a2,...,aS1

�
· | NK+1(1)

�
− P0,a2,...,aS1

�
· | NK+1(1)

�����
1

≤NK+1(1) · 1

(b+ 1)S1−1

�

a2,...,aS1
∈[b+1]S1−1

�
2KL

�
Ber(

1

2
+Δ),Ber(

1

2
)

�
E0,a2,...,aS1

�
nK+1(1, j) | NK+1(1)

�

≤NK+1(1) · 1

(b+ 1)S1−1

�

a2,...,aS1
∈[b+1]S1−1

�
6Δ2E0,a2,...,aS1

�
nK+1(1, j) | NK+1(1)

�

≤NK+1(1)

�
(6)

l + 1

384MK
· E0

�
nK+1(1, j) | NK+1(1)

�

=
1

8
NK+1(1)

�
l + 1

MK
· E0

�
nK+1(1, j) | NK+1(1)

�
. (62)

where the first inequality is based on Lemma 24 and the fact that, conditional on NK+1(1),
nK+1(1, j) has distribution supported on [0, NK+1(1)]; the second inequality follows from Equa-
tion (61) and the triangle inequality; the third inequality uses Pinsker’s inequality and Lemma 30 (the
divergence decomposition lemma); the fourth inequality uses Lemma 32 and the fact that Δ ≤ 1

4 ;
and the last inequality follows from Jensen’s inequality.

Since NK+1(1) has the same distribution under both P0 and any Pj (which is Bin(K, 1
S1

)), taking
expectation with respect to NK+1(1), we have that, for any j ∈ [b+ 1],

Ej

�
nK+1(1, j)

�
− E0

�
nK+1(1, j)

�
≤E0

�
1

8
NK+1(1)

�
l + 1

MK
· E0

�
nK+1(1, j) | NK+1(1)

�
�
.
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In subsequent derivations, we can now avoid bounding the conditional expectation. Specifically, we
have

1

b+ 1

�

j∈[b+1]

Ej

�
nK+1(1, j)

�

≤ 1

b+ 1

�

j∈[b+1]

E0

�
nK+1(1, j)

�
+

1

b+ 1

�

j∈[b+1]

E0

�
1

8
NK+1(1)

�
l + 1

MK
· E0

�
nK+1(1, j) | NK+1(1)

�
�

≤ 1

b+ 1
E0


 �

j∈[b+1]

nK+1(1, j)


+ E0


1
8
NK+1(1)

���� l + 1

MK
· 1

b+ 1

�

j∈[b+1]

E0

�
nK+1(1, j) | NK+1(1)

�



≤ 1

b+ 1
E0

�
NK+1(1)

�
+ E0

�
1

8

�
l + 1

MK
· 1

b+ 1

�
NK+1(1)

� 3
2

�

≤ 1

b+ 1
E0

�
NK+1(1)

�
+

1

8

�
S1

MK
· E0

��
NK+1(1)

� 3
2

�
, (63)

where the first inequality follows from Eq. (62) and algebra; the second inequality uses linearity of
expectation and Jensen’s inequality; the third inequality uses the facts that

�
j∈[b+1] n

K+1(1, j) ≤
NK+1(1) and, for every z ∈ [0] ∪ [b+ 1],

�

j∈[b+1]

Ez

�
nK+1(1, j) | NK+1(1)

�
≤
�

j∈A
Ez

�
nK+1(1, j) | NK+1(1)

�
= NK+1(1);

and the last inequality uses the linearity of expectation and the construction that b = � l
S1

�, which
implies that l ≤ bS1 and therefore l + 1 ≤ bS1 + 1 ≤ bS1 + S1 = (b+ 1)S1.

It follows from Equation (63) that

1

b+ 1

�

j∈[b+1]

Ej

�
nK+1(1, j)

�
≤ 1

b+ 1
· MK

S1
+

1

8

�
S1

MK
· E0

��
NK+1(1)

� 3
2

�

≤ MK

2S1
+

1

4

�
S1

MK

�
MK

S1

�3

≤ 3MK

4S1
,

where the second inequality uses the fact that 1
b+1 ≤ 1

2 and Lemma 33 under the assumption that
K ≥ S1.

It then follows that

1

b+ 1

�

j∈[b+1]

Ej

�
NK+1(1)− nK+1(1, j)

�
≥ 1

b+ 1

�

j∈[b+1]

Ej

�
NK+1(1)

�
− 3MK

4S1
=

MK

4S1
,

and we have

Ea∼Unif([b+1]S1)EM(a)

�
NK+1(1)− nK+1(1, a1)

�
≥ MK

4S1
.

Case 2: MlC ≥ l. Again, let S1 = S − 2(H − 1). Let u = � l
S1

� and v = A − u = A − � l
S1

�.

Furthermore, let Δ =
�

vS1

384K , and � = 2HΔ. We note that under the assumption that K ≥ SA

and the fact that vS1 ≤ SA, we have Δ ≤ 1
4 . We will define vS1×M �-MPERL problem instances,

each indexed by an element in [v]S1×M . It suffices to show that, on at least one of the instances,
E
�
RegAlg(K)

�
≥ Ω

�
M

√
H2lCK

�
.
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Facts about v. There are two helpful facts about v that can be easily verified:

• vS1 ≥ 1
2 l

C . This is true because, by definition, vS1 ≥ S1A − l − S1 = S1A − (SA −
lC) − S1 = lC − (SA − S1A) − S1 = lC −

�
2(H − 1)A+ S1

�
; since, by assumption,

l ≤ SA− 4(S +HA), we have lC ≥ 4(HA+ S) ≥ 2
�
2(H − 1)A+ S1

�
; it then follows

that vS1 ≥ lC −
�
2(H − 1)A+ S1

�
≥ 1

2 l
C .

• v ≥ 2. This is true because, as shown above, vS1 ≥ 1
2 l

C and lC ≥ 4(HA + S), which
imply that v ≥ 2(HA+S)

S1
≥ 2S1

S1
= 2.

Construction. For a = (a1,1, . . . , a1,M , a2,1, . . . , aS1,M ) ∈ [v]S1×M , we define the following
�-MPERL problem instance, M(a) =

�
Mp

�M
p=1

, with S states, A actions, and an episode length of
H , such that for each p ∈ [M ], Mp is constructed in the same way as it is for case 1, except for the
transition probabilities of (s, a) ∈ S1 ×A:

• For each state s ∈ [S1],

Pp(S1 + 1 | s, a) =





1
2 +Δ, if a = as,p;
1
2 , if a ∈ [v] \ as,p;
0, if a /∈ [v];

and for each a ∈ A, Pp(S1 + 2 | s, a) = 1− Pp(S1 + 1 | s, a), and Rp(s, a) = 0.

We now verify that M(a) is an �-MPMAB problem instance. It can be easily observed that the reward
distributions are the same for all players, i.e., for every p, q ∈ [M ] and every (s, a) ∈ S ×A,

��Rp(s, a)−Rq(s, a)
�� = 0 ≤ �.

Regarding the transition probabilities, for every (s, a) ∈
�
(S1 ×

�
A \ [v]

�
)
�
∪
��

S \ S1

�
×A

�
, we

observe that the transition probabilities are the same for all players. Furthermore, for every p, q ∈ [M ]
and every (s, a) ∈ S1 × [v],

���Pp

�
· | s, a

�
− Pq

�
· | s, a

����
1
≤ 2Δ =

�

H
.

Therefore, M(a) is an �-MPMAB problem instance.

Suboptimality gaps. Similar to the arguments in Case 1, it can be shown that for every p ∈ [M ],
and every (s, a) ∈

�
S \ S1

�
×A, gapp(s, a) = 0. And, for every p ∈ [M ], and every s ∈ S1,

gapp(s, a) =





0, if a = as,p;

(H − 1)Δ, if a ∈ [v] \ as,p;
(H − 1)

�
1
2 +Δ

�
, if a /∈ [v].

Subpar state-action pairs. Based on the above construction, for every (s, a) ∈ S1×
�
A \ [v]

�
and

every p ∈ [M ], gapp(s, a) = (H − 1)
�
1
2 +Δ

�
≥ 3(H − 1)Δ = 3(H−1)

2H � ≥ 3
4� ≥ 96H

�
�

192H

�
,

where the first inequality uses the fact that Δ ≤ 1
4 . Therefore, there are at least (A− v)S1 = uS1 ≥ l

state-action pairs in I �
192H

, i.e.,
���I �

192H

��� ≥ l.

Now, it suffices to prove that

Ea∼Unif([v]S1×M)EM(a)

�
RegAlg(K)

�
≥ 1

240
M

√
H2lCK,

where we recall that a = (a1,1, . . . , a1,M , a2,1, . . . , aS1,M ). It suffices to show, for any s� ∈ [S1] and
any p� ∈ [M ],

Ea∼Unif([v]S1×M)EM(a)

�
NK+1

p� (s�)− nK+1
p� (s�, as�)

�
≥ K

4S1
, (64)
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where NK+1
p� (s�) =

�
a∈A nK+1

p� (s�, a). To see this, by Lemma 29, we have

Ea∼Unif([v]S1×M)EM(a)

�
RegAlg(K)

�
≥

M�

p=1

�

s�∈S1

(H − 1)Δ · Ea∼Unif([v]S1×M)EM(a)

�
NK+1

p (s�)− nK+1
p (s�, as�)

�

≥ H − 1

4
MK

�
vS1

384K

≥ 1

160
M
�
H2(vS1)K

≥ 1

240
M

√
H2lCK,

where the last inequality uses the fact that vS1 ≥ 1
2 l

C .

Without loss of generality, let us choose s� = 1 and p� = 1. Similar to case 1, we define a
set of helper problem instances: for any (a1,2, . . . , aS1,M ) ∈ [v]S1×M−1, we define a problem
instance M(0, a1,2, . . . , aS1,M ) such that it agrees with M(a1,1, a1,2, . . . , aS1,M ) on everything but
P1(· | 1, a1), namely, in M(0, a1,2, . . . , aS1,M ), P1(S1 + 1 | 1, a1) = 1

2 .

For each (j, a1,2, . . . , aS1,M ) ∈
�
[0] ∪ [v]

�
× [v]S1×M−1, let Pj,a1,2,...,aS1,M

denote the probability
measure on the outcomes of running Alg on the problem instance M(j, a1,2, . . . , aS1,M ). Further,
for each j ∈ {0} ∪ [v], we define

Pj =
1

vS1×M−1

�

a1,2,...,aS1,M∈[v]S1×M−1

Pj,a1,2,...,aS1,M
;

and we use Ej to denote the expectation with respect to Pj . In subsequent calculations, for any

m ∈
�
[0] ∪ [v]

�
× [v]S1×M−1, we also denote by Pm

�
· | NK+1

1 (1)
�

and Em

�
· | NK+1

1 (1)
�

the

probability and expectation conditional on a realization of NK+1
1 (1) under Pm. Similar to case 1, it

can be shown that, for any j ∈ {0} ∪ [v],

Pj(· | NK+1(1)) =
1

vS1×M−1

�

a1,2,...,aS1,M∈[v]S1×M−1

Pj,a1,2,...,aS1,M

�
· | NK+1(1)

�
. (65)

Now, for each j ∈ [v], we have

Ej

�
nK+1
1 (1, j) | NK+1

1 (1)
�
− E0

�
nK+1
1 (1, j) | NK+1

1 (1)
�

≤NK+1
1 (1)

����Pj

�
· | NK+1

1 (1)
�
− P0

�
· | NK+1

1 (1)
�����

1

≤NK+1
1 (1) · 1

vS1×M−1

�

a1,2,...,aS1,M∈[v]S1×M−1

����Pj,a1,2,...,aS1,M

�
· | NK+1

1 (1)
�
− P0,a1,2,...,aS1,M

�
· | NK+1

1 (1)
�����

1

≤NK+1
1 (1) · 1

vS1×M−1

�

a1,2,...,aS1,M∈[v]S1×M−1

�
2KL

�
Ber(

1

2
+Δ),Ber(

1

2
)

�
E0,a2,...,aS1

�
nK+1
1 (1, j) | NK+1

1 (1)
�

≤NK+1
1 (1) · 1

vS1×M−1

�

a1,2,...,aS1,M∈[v]S1×M−1

�
6Δ2E0,a2,...,aS1

�
nK+1
1 (1, j) | NK+1

1 (1)
�

≤NK+1
1 (1) ·

�
6vS1

384MK
· E0

�
nK+1
1 (1, j) | NK+1

1 (1)
�

=
1

8
NK+1

1 (1)

�
vS1

MK
· E0

�
nK+1
1 (1, j) | NK+1

1 (1)
�
. (66)

where the first inequality is based on Lemma 24 and the fact that, conditional on NK+1
1 (1),

nK+1
1 (1, j) has distribution supported on [0, NK+1

1 (1)]; the second inequality follows from Equa-
tion (65) and the triangle inequality; the third inequality uses Pinsker’s inequality and Lemma 30 (the
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divergence decomposition lemma); the fourth inequality uses Lemma 32 and the fact that Δ ≤ 1
4 ;

and the last inequality follows from Jensen’s inequality.

Using arguments similar to the ones shown for case 1, we have that

1

v

�

j∈[v]

Ej

�
nK+1
1 (1, j)

�

≤1

v
E0

�
nK+1
1 (1, j)

�
+ E0


1
8
NK+1

1 (1)

����vS1

K
· 1
v

�

j∈[v]

E0

�
nK+1
1 (1, j) | NK+1

1 (1)
�



≤1

v
E0

�
NK+1(1)

�
+

1

8

�
S1

K
· E0

��
NK+1

1 (1)
� 3

2

�

≤1

v
· K
S1

+
1

4

�
S1

K

�
K

S1

�3

≤ 3K

4S1
,

where the second to last inequality is from Lemma 33 under the assumption that K ≥ S1, and the
last inequality uses the fact that v ≥ 2.

It then follows that

1

v

�

j∈[v]

Ej

�
NK+1

1 (1)− nK+1
1 (1, j)

�
≥ 1

v

�

j∈[v]

Ej

�
NK+1

1 (1)
�
− K

4S1
=

K

4S1
,

and we thereby have shown that

Ea∼Unif([v]S1×M)EM(a)

�
NK+1

1 (1)− nK+1
1 (1, a1)

�
≥ K

4S1
.

D.3 Gap dependent lower bound

Theorem 35 (Restatement of Theorem 8). Fix � ≥ 0. For any S ∈ N, A ≥ 2, H ≥ 2, M ∈ N,
such that S ≥ 2(H − 1), let S1 = S − 2(H − 1); and let

�
Δs,a,p

�
(s,a,p)∈[S1]×[A]×[M ]

be any set of
values such that

• for every (s, a, p) ∈ [S1]× [A]× [M ], Δs,a,p ∈ [0, H/48];

• for every (s, p) ∈ [S1]× [M ], there exists at least one action a ∈ [A] such that Δs,a,p = 0;

• and, for every (s, a) ∈ [S1]× [A] and p, q ∈ [M ],
��Δs,a,p −Δs,a,q

�� ≤ �/4.

There exists an �-MPERL problem instance with S states, A actions, M players and an episode
length of H , such that S1 = [S1], |Sh| = 2 for all h ≥ 2, and

gapp(s, a) = Δs,a,p, ∀(s, a, p) ∈ [S1]× [A]× [M ].

For this problem instance, any sublinear regret algorithm Alg for the �-MPERL problem must have
regret at least

E
�
RegAlg(K)

�
≥ Ω



lnK




�

p∈[M ]

�

(s,a)∈IC

(�/192H)
:

gapp(s,a)>0

H2

gapp(s, a)
+

�

(s,a)∈I(�/192H)

H2

minp gapp(s, a)







.

Proof. The construction and techniques in this proof are inspired by [36] and [43].
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Proof outline. We will construct an �-MPERL problem instance, M, and show that, for any
sublinear regret algorithm and sufficiently large K, the following two claims are true:

1. for any (s, a) ∈ S ×A such that for all p, gapp(s, a) > 0,

EM

�
nK(s, a)

�
≥ Ω




H2

�
minp gapp(s, a)

�2 lnK


 ; (67)

2. for any (s, a) ∈ IC
�

192H
and any p ∈ [M ] such that gapp(s, a) > 0,

EM

�
nK
p (s, a)

�
≥ Ω




H2

�
gapp(s, a)

�2 lnK


 . (68)

The rest then follows from Lemma 29 (the regret decomposition lemma).

Construction of M. Given any set of values
�
Δs,a,p

�
(s,a,p)∈[S1]×[A]×[M ]

that satisfies the assump-

tions in the theorem statement, we can construct a collection of MDPs
�
Mp

�M
p=1

, such that for each

p ∈ [M ], Mp is as follows, and M =
�
Mp

�M
p=1

is an �-MPERL problem instance:

• S1 = [S1], and p0 is a uniform distribution over the states in S1.

• For h ∈ [2, H], Sh = {S1 + 2h− 3, S1 + 2h− 2}.

• A = [A].

• For all (s, a) ∈ S × A, the reward distribution rp(s, a) is a Bernoulli distribution,
Ber(Rp(s, a)), and we specify Rp(s, a) subsequently.

• For every (s, a) ∈ S1 × [A], set Δ̄p
s,a =

Δs,a,p

H−1 . Then, let

Pp

�
S1 + 1 | s, a

�
=

1

2
− Δ̄p

s,a, Pp

�
S1 + 2 | s, a

�
=

1

2
+ Δ̄p

s,a,

and Rp(s, a) = 0. Since Δs,a,p ∈ [0, H/48], Δ̄p
s,a ≤ H

48(H−1) ≤ 1
24 , where the last

inequality follows from the assumption that H ≥ 2. Therefore, Pp

�
S1 + 1 | s, a

�
∈ [0, 1],

and Pp

�
S1 + 2 | s, a

�
∈ [0, 1].

• For h ∈ [2, H], and a ∈ [A], let

– Pp

�
S1 + 2h− 1 | S1 + 2h− 3, a

�
= 1, Pp

�
S1 + 2h | S1 + 2h− 3, a

�
= 0, and

Rp(S1 + 2h− 3, a) = 1.
– Pp

�
S1 + 2h | S1 + 2h− 2, a

�
= 0, Pp

�
S1 + 2h− 1 | S1 + 2h− 2, a

�
= 1, and

Rp(S1 + 2h− 2, a) = 0.

By the assumption that for every (s, p) ∈ [S1]× [M ], there exists at least one action a ∈ [A] such
that Δs,a,p = 0, we have that there is at least one action a such that Δ̄p

s,a = 0. We verify that for
every (s, a, p) ∈ [S1]× [A]× [M ],

gapp(s, a) = V �
p (s)−Q�

p(s, a)

= max
a�

Q�
p(s, a

�)−Q�
p(s, a)

= (H − 1)Δ̄p
s,a

= Δs,a,p.
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We now verify that the above MPERL problem instance M =
�
Mp

�M
p=1

is an �-MPERL problem
instance:

1. The reward distributions are the same for all players, namely, for all p, q,
��Rp(s, a)−Rq(s, a)

�� = 0 ≤ �, ∀(s, a) ∈ S ×A.

2. Further, by the assumption that for every (s, a) ∈ [S1] × [A] and p, q ∈ [M ],��Δs,a,p −Δs,a,q

�� ≤ �/4, we have that

���Δ̄p
s,a − Δ̄q

s,a

��� =
��Δs,a,p −Δs,a,q

��
H − 1

≤ �

4(H − 1)
≤ �

2H
.

It then follows that

�Pp

�
· | s, a

�
− Pq

�
· | s, a

�
�1 = 2

���Δ̄p
s,a − Δ̄q

s,a

��� ≤ �

H
.

Meanwhile, for every (s, a) ∈
�
S \ S1

�
×A

�Pp

�
· | s, a

�
− Pq

�
· | s, a

�
�1 = 0 ≤ �

H
.

In summary, for every (s, a) ∈ S ×A,

�Pp

�
· | s, a

�
− Pq

�
· | s, a

�
�1 ≤ �

H
.

We are now ready to prove the two claims:

1. Proving claim 1 (Equation (67)):

Fix any (s0, a0) ∈ [S1]×[A] such that Δ̄min
s0,a0

= minp Δ̄
p
s0,a0

> 0. It can be easily observed
that gapp(s0, a0) > 0 for all p. Define p0 = argminp Δ̄

p
s0,a0

. We can construct a new
problem instance, M�, which agrees with M, except that

∀p ∈ [M ],Pp

�
S1 + 1 | s0, a0

�
=

1

2
−Δ̄p

s0,a0
+2Δ̄min

s0,a0
,Pp

�
S1 + 2 | s0, a0

�
=

1

2
+Δ̄p

s0,a0
−2Δ̄min

s0,a0
.

M� is an �-MPERL problem instance. To see this, we note that the only change is in
Pp

�
· | s0, a0

�
for all p ∈ [M ]. In this new instance, it is still true that for every p, q ∈ [M ],

�Pp

�
· | s0, a0

�
− Pq

�
· | s0, a0

�
�1 = 2

���Δ̄p
s0,a0

− Δ̄q
s0,a0

��� ≤ �

H
.

Fix any sublinear regret algorithm Alg for the �-MPERL problem. By Lemma 30 (the
divergence decomposition lemma), we have

KL(PM,PM�) =

M�

p=1

EM

�
nK
p (s0, a0)

�
KL
�
PM
p (· | s0, a0),PM�

p (· | s0, a0)
�
,

where PM and PM� are the probability measures on the outcomes of running Alg on M and
M�, respectively; PM

p (· | s0, a0), PM�
p (· | s0, a0) are the transition probabilities for (s0, a0)

and player p in M and M�, respectively.

We observe that, for any p ∈ [M ],

KL
�
PM
p (· | s0, a0),PM�

p (· | s0, a0)
�

=KL

�
Ber

�
1

2
− Δ̄p

s0,a0

�
,Ber

�
1

2
− Δ̄p

s0,a0
+ 2Δ̄min

s0,a0

��

≤12(Δ̄min
s0,a0

)2,
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where the last inequality follows from Lemma 32 and the assumption that Δs,a,p ≤ H
48 .

In addition,
�M

p=1 EM

�
nK
p (s0, a0)

�
= EM

�
nK(s0, a0)

�
. It then follows that

KL(PM,PM�) ≤12EM

�
nK(s0, a0)

�
(Δ̄min

s0,a0
)2. (69)

Now, in the original �-MPERL problem instance, M, by Equation (57) and Markov’s
Inequality, we have

EM

�
RegAlg(K)

�
≥ K

4S1

�
(H − 1)Δ̄min

s0,a0

�
PM

�
nK
p0
(s0, a0) ≥

K

4S1

�
;

where we note that Δ̄p0
s0,a0

= Δ̄min
s0,a0

. In M�, the new �-MPERL problem instance, we have

EM�

�
RegAlg(K)

�
≥
�
(H − 1)Δ̄min

s0,a0

�
EM�


�

a�=a0

np0(s0, a)




=
�
(H − 1)Δ̄min

s0,a0

�
EM�

�
NK

p0
(s0)− np0

(s0, a0)
�

≥ K

4S1

�
(H − 1)Δ̄min

s0,a0

�
PM�

�
NK

p0
(s0)− np0

(s0, a0) ≥
K

4S1

�

≥ K

4S1

�
(H − 1)Δ̄min

s0,a0

�
PM�

�
NK

p0
(s0) ≥

K

2S1
, np0

(s0, a0) ≤
K

4S1

�

≥ K

4S1

�
(H − 1)Δ̄min

s0,a0

��
PM�

�
np0

(s0, a0) ≤
K

4S1

�
− exp(− K

8S1
)

�
,

where the first inequality is by Equation (57); the second inequality is by Markov’s Inequal-
ity; the third inequality is by simple algebra; and the last inequality is by Chernoff bound
that PM�

�
NK

p0
(s0) <

K
2S1

�
≤ exp(− K

8S1
), and P(A ∩ B) ≥ P(B) − P(AC) for events

A,B.

It then follows that

EM

�
RegAlg(K)

�
+ EM�

�
RegAlg(K)

�

=
K

2

�
(H − 1)Δ̄min

s0,a0

��
PM

�
nK
p0
(s0, a0) ≥

K

2

�
+ PM�

�
nK
p0
(s0, a0) <

K

2

�
− exp(− K

8S1
)

�

≥K

2

�
(H − 1)Δ̄min

s0,a0

��1

2
exp

�
−KL(PM,PM�)

�
− exp(− K

8S1
)

�

≥K

2

�
(H − 1)Δ̄min

s0,a0

��1

2
exp

�
−12EM

�
nK(s0, a0)

�
(Δ̄min

s0,a0
)2
�
− exp(− K

8S1
)

�
,

where the first inequality follows from Lemma 31 (the Bretagnolle-Huber inequality), and the
second inequality follows from Eq. (69). Observe that EM

�
nK(s0, a0)

�
≤ K

S1
; in addition,

by our assumption that Δs,a,p ≤ H
48 for every (s, a, p), we have Δ̄min

s0,a0
≤ 1

24 . These

together implies that 1
4 exp

�
−12EM

�
nK(s0, a0)

�
(Δ̄min

s0,a0
)2
�
≥ exp(− K

8S1
). Therefore,

we have

EM

�
RegAlg(K)

�
+EM�

�
RegAlg(K)

�
≥ K

2

�
(H − 1)Δ̄min

s0,a0

�
·1
4
exp

�
−12EM

�
nK(s0, a0)

�
(Δ̄min

s0,a0
)2
�
.

Now, under the assumption that Alg is a sublinear regret algorithm, we have

K

8

�
(H − 1)Δ̄min

s0,a0

�
exp

�
−12EM

�
nK(s0, a0)

�
(Δ̄min

s0,a0
)2
�

≤ 2CKα.
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It follows that

EM

�
nK(s0, a0)

�
≥ 1

12
�
Δ̄min

s0,a0

�2 ln

�
(H − 1)Δ̄min

s0,a0
K1−α

16C

�

=
(H − 1)2

12
�
minp gapp(s0, a0)

�2 ln

�
minp gapp(s0, a0)K

1−α

16C

�

≥ H2

24
�
minp gapp(s0, a0)

�2 ln

�
minp gapp(s0, a0)K

1−α

16C

�
.

We then have

EM

�
nK(s0, a0)

�
≥ Ω




H2

�
minp gapp(s0, a0)

�2 lnK


 .

2. Proving Claim 2 (Equation (68)):

Fix any (s0, a0) ∈ IC
�

192H
and p0 ∈ [M ] such that Δ̄p0

(s0,a0)
> 0, which means that

gapp0
(s0, a0) > 0. We have that for all p ∈ [M ],

Δ̄p
s0,a0

=
Δp

s0,a0

H − 1
=

gapp(s0, a0)

H − 1
≤ 24H(�/(192H))

(H − 1)
≤ �

8(H − 1)
≤ �

4H
. (70)

We can construct a new problem instance, M�, which agrees with M except that

Pp0

�
S1 + 1 | s0, a0

�
=

1

2
− Δ̄p0

s0,a0
+ 2Δ̄p0

s0,a0
=

1

2
+ Δ̄p0

s0,a0
,

Pp0

�
S1 + 2 | s0, a0

�
=

1

2
+ Δ̄p0

s0,a0
− 2Δ̄p0

s0,a0
=

1

2
− Δ̄p0

s0,a0
.

M� is an �-MPERL problem instance. To see this, we note that the only change is in
Pp0

�
· | s0, a0

�
. In this new instance, it is still true that for any q �= p0,

�Pp0
(· | s0, a0)− Pq(· | s0, a0)�1 ≤ 2

���Δ̄p0
s0,a0

+ Δ̄q
s0,a0

��� ≤ �

H
.

where the last inequality uses Equation (70) that Δ̄p
s0,a0

≤ �
4H for every p ∈ [M ].

Fix any sublinear regret algorithm Alg. By Lemma 30 (the divergence decomposition
lemma), we have

KL(PM,PM�) = EM

�
nK
p0
(s0, a0)

�
KL
�
PM
p0
(· | s0, a0),PM�

p0
(· | s0, a0)

�
.

Using a similar reasoning as before, we can show that

KL(PM,PM�) ≤12EM

�
nK
p0
(s0, a0)

�
(Δ̄p0

s0,a0
)2. (71)

Similar to case 1, we have the following argument. In the original �-MPERL problem in-
stance, M, we have EM

�
RegAlg(K)

�
≥ K

4S1

�
(H − 1)Δ̄p0

s0,a0

�
PM

�
nK
p0
(s0, a0) ≥ K

4S1

�
;

and in M�, the new �-MPERL problem instance, we have EM�

�
RegAlg(K)

�
≥

K
4S1

�
(H − 1)Δ̄p0

s0,a0

��
PM�

�
nK
p0
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K
4S1

�
− exp(− K

8S1
)

�
.
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It then follows that

EM

�
RegAlg(K)

�
+ EM�

�
RegAlg(K)

�

≥K
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�
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�
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�
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.

Now, under the assumption that Alg is a sublinear regret algorithm, we have

K
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�
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�
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�
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�
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It follows that
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We then have that

EM

�
nK
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(s0, a0)

�
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�
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(s0, a0)
�2 lnK


 .

Combing the two claims: We note that in M, for any (s, a, p) ∈
�
S \ S1

�
× A × [M ],

gapp(s, a) = 0. It then follows from Lemma 29 (the regret decomposition lemma) and the
fact that for any (s, a, p) ∈ I�/192H × [M ], gapp(s, a) > 0, that

E
�
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≥
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