
Appendix

A Margin Bound

A.1 Toy Example

Let fW (x) = W3ρ(W2ρ(Ŵ
1
x)) denote a neural network with Wi being the weight matrix of the

i-th layer and assume that one could only perturb any element in the first weight matrix within an `∞
norm ball of radius ε, i.e., Ŵ

1
∈ IB∞W1(ε). We also define an error vector as ei, which stands for the

entry-wise error after propagating through the i-th layer. Since no perturbations happened prior to the
first layer, we would directly take input vector x and derive an upper bound on the entry-wise error
e1. While every element in the first weight matrix is allowed to change its magnitude by at most ε,
the maximum error for any entry by matrix-vector multiplication becomes

[e1]i := |Ŵ 1
i,:x−Wi,:x| ≤

∑
j

|Ŵ 1
i,j −W 1

i,j ||[x]j | ≤
∑
j

ε|[x]j | = ε ‖x‖1 (4)

Since the following layer weight is not subject to perturbation, we simply take the magnitude of each
element in the subsequent weight matrix to calculate the next error vector. In this case, we have the
next layer’s error e2 with W2 as [e2]i =

∑
j |W 2

i,j | [e1]j = ε ‖x‖1
∑
j |W 2

i,j |. Eventually, with error
propagation over layers, we arrive at the final layer and are able to assess the maximum change of
any entry in output value. By recalling the pairwise class margin f ijW (x), we would like to inspect
the relative change in error between any two classes. Specifically, we derive an upper bound on the
pairwise margin between any two classes α and β. In the above example, the difference in entry-wise
maximum error can be deduced in the following manner:

[e3]α − [e3]β =
∑
k

(|W 3
α,k| − |W 3

β,k|)[e2]k
(i)

≤
∑
k

(|W 3
α,k −W 3

β,k|)ε ‖x‖1
∑
l

|W 2
k,l| (5)

(ii)

≤ ε ‖x‖1 maxk
∥∥W 2

k,:

∥∥
1

∑
k

(|W 3
α,k −W 3

β,k|) = ε ‖x‖1
∥∥∥(W2)T

∥∥∥
1,∞

∥∥W 3
α,: −W 3

β,:

∥∥
1
,

(6)

where inequality (i) comes from triangle inequality and inequality (ii) results from taking the row
in W2 with maximum `1 norm. It is worth noting that there exist possible scenarios for the above
inequalities to hold and therefore achieving the worst-case error. Specifically, using the example in
Section 3.2, as we trace down the associated inequality bound in (i), we see that the first inequality
can be achieved when the final weight layer possesses all positive weights and that the row associated
with label α is greater than label β in all individual entries. Furthermore, as long as the second
weight matrix W2 has equal `1 norm throughout all rows, we can then tighten the bound to give the
worst-case error in (ii). Nevertheless, we could see from the above example that the difference of
maximum error between entries in output would be propagating at the rate of weight matrices’ (1,∞)
norm.

A.2 Single-Layer Bound

We shall first prove when N 6= L and follow similar reasoning to prove the case when N = L.
Consider the difference between set of pairwise margin f ij

Ŵ
(x)− f ijW (x), we have

f ij
Ŵ

(x)− f ijW (x)

= {WL
i,: −WL

j,:}(ẑL−1 − zL−1) (7)
(a)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

∥∥∥ρ(WL−1ẑL−2)− ρ(WL−1zL−2)
∥∥∥
∞

(8)

(b)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

∥∥∥WL−1(ẑL−2 − zL−2)
∥∥∥
∞

(9)

(c)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

∥∥(WL−1)T
∥∥
1,∞

∥∥∥(ẑL−2 − zL−2)
∥∥∥
∞

(10)
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(d)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

∥∥(WL−1)T
∥∥
1,∞ ...

∥∥(WN+1)T
∥∥
1,∞

∥∥∥(Ŵ
N
−WN )zN−1

∥∥∥
∞

(11)

(e)

≤ εN
∥∥WL

i,: −WL
j,:

∥∥
1

∥∥zN−1
∥∥
1

ΠL−N−1
k=1

∥∥(WL−k)T
∥∥
1,∞ , (12)

where inequality (a) results from applying Hölder inequality, and inequality (b) comes from the
contractive property (1-Lipschitz) of activation function ρ(·). Inequality (c) and (d) come from
triangle inequality applied element-wise on vector WL−1(ẑL−2 − zL−2) combined with induction

while inequality (e) simply comes from the fact that every element in matrix Ŵ
N
−WN has at most

ε in magnitude.

With similar reasoning, we proof the scenario when N = L as following

f ij
Ŵ

(x)− f ijW (x)

= {WL
i,: −WL

j,:}zL−1 − {ŴL
i,: − ŴL

j,:}zL−1 (13)
(i)

≤ 2εL1
T zL−1 (14)

= 2εL
∥∥zL−1

∥∥
1
, (15)

where inequality (i) comes from problem definition (within element-wise `∞ norm ball) and since
the activation function ρ(·) is non-negative, we could transform the inner product to its `1 norm.

A.3 Multi-Layer Scenario

A.3.1 Key Prerequisite

Before going through the proof for all-perturbed bound, we shall be introducing a maximization
problem and search for its solution. Recall that we have defined in Section 3.1 the notion of output
vector under weight perturbation setting, we now consider maximizing its `1 norm over a given
perturbed matrix set Ŵ and give the following solution. Using the notation in Section 3.1, we have ẑk
as the output vector under perturbation setting and write the optimal vector that achieve its maximum
`1 norm as zk

∗
. We then obtain the following solution∥∥zk

∗∥∥
1

= max
Ŵ

∥∥∥ẑk
∥∥∥
1
,

where zk
∗

= ρ(Wk∗ ...ρ(W1∗x) with

{
Wm∗

i,j = Wm
i,j + εm, ∀i, j ∀m ∈ {2, ..., L}

W1∗

i,j = W 1
i,j + sgn([x]j)ε1, ∀i, j

The reasoning behind uses the non-negative property of activation function, for any element in a
matrix W, the choice to maximize it’s `1 norm matrix-vector product is to go in the direction identical
to the sign of the vector’s element-wise value since the activation function is applied after the first
layer, we would then obtain the solution above.

A.3.2 All-Perturbed Bound

In the following proof for Theorem 2, we apply similar steps in Appendix A.2 and consider the
difference between set of pairwise margin under natural and weight perturbation setting, recall in
Theorem 2 we defined that fW (x) = WL(..WN ...ρ(W1x)...) and f

Ŵ
(x) = Ŵ

L
(..Ŵ

N
...ρ(Ŵ

1
x)...)

Thus for any set of pairwise margin f ij
Ŵ

(x) and f ijW (x), we have

f ij
Ŵ

(x)− f ijW (x)

= {ŴL
i,: − ŴL

j,:}ẑ
L−1 − {WL

i,: −WL
j,:}zL−1 (16)

(a)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

∥∥∥ρ(Ŵ
L−1

ẑL−2)− ρ(WL−1zL−2)
∥∥∥
∞

+ 2εL1
T ẑL−1 (17)

(b)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

{∥∥∥WL−1(ẑL−2 − zL−2)
∥∥∥
∞

+
∥∥∥(Ŵ

L−1
−WL−1)ẑL−2

∥∥∥
∞

}
+ 2εL

∥∥∥ẑL−1
∥∥∥
1

(18)
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(c)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

{∥∥(WL−1)T
∥∥
1,∞

∥∥∥ρ(Ŵ
L−2

ẑL−3)− ρ(WL−2zL−3)
∥∥∥
∞

+ εL−1

∥∥∥ẑL−2
∥∥∥
1

}
+ 2εL

∥∥∥ẑL−1
∥∥∥
1

(19)

(d)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

{
ε1 ‖x‖1 ΠL−2

l=1

∥∥(WL−l)T
∥∥
1,∞ +

L−3∑
j=1

(
ΠL−1
k=j+2

∥∥(Wk)T
∥∥
1,∞

)
εj+1

∥∥∥ẑj
∥∥∥
1

+ εL−1

∥∥∥ẑL−2
∥∥∥
1

}
+ 2εL

∥∥∥ẑL−1
∥∥∥
1

(20)

(e)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

{
ε1 ‖x‖1 ΠL−2

l=1

∥∥(WL−l)T
∥∥
1,∞ +

L−3∑
j=1

(
ΠL−1
k=j+2

∥∥(Wk)T
∥∥
1,∞

)
εj+1

∥∥∥zj
∗
∥∥∥
1

+ εL−1

∥∥∥zL−2
∗
∥∥∥
1

}
+ 2εL

∥∥∥zL−1
∗
∥∥∥
1

(21)

In the above proof, inequality (a) comes from the problem definition (perturbation of final layer
within εL) and inequality (b) results from the contractive property of ρ(·) (1-Lipschitz) combined
with the use of triangle inequality. Inequality (c) was achieved through triangle inequality applied on
elements of WL−1(ẑL−2− zL−2) and using the fact that Ŵ

L−1
−WL−1 has every element less than

or equal to εL−1 in magnitude. By the process of induction and maximizing the `1 norm of perturbed
output under weight perturbation ẑk, we arrive at inequality (d) and (e).

A.3.3 Multi-Layer Bound

We now proceed to utilize similar reasoning to establish the multi-layer bound when weight perturba-
tion is imposed according to an index set I

f ij
Ŵ

(x)− f ijW (x)

= {W̃L
i,: − W̃L

j,:}ẑ
L−1 − {WL

i,: −WL
j,:}zL−1 (22)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

∥∥∥ρ(W̃
L−1

ẑL−2)− ρ(WL−1zL−2)
∥∥∥
∞

+ 1(L ∈ I)2εL1
T ẑL−1 (23)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

{∥∥∥WL−1(ẑL−2 − zL−2)
∥∥∥
∞

+
∥∥∥(W̃

L−1 −WL−1)ẑL−2
∥∥∥
∞

}
+ 1(L ∈ I)2εL

∥∥∥ẑL−1
∥∥∥
1

(24)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

{∥∥(WL−1)T
∥∥
1,∞

∥∥∥ρ(W̃
L−2

ẑL−3)− ρ(WL−2zL−3)
∥∥∥
∞

+ 1(L− 1 ∈ I)εL−1

∥∥∥ẑL−2
∥∥∥
1

}
+ 1(L ∈ I)2εL

∥∥∥ẑL−1
∥∥∥
1

(25)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

{
1(1 ∈ I)ε1 ‖x‖1 ΠL−2

l=1

∥∥(WL−l)T
∥∥
1,∞ + 1(L− 1 ∈ I)εL−1

∥∥∥ẑL−2
∥∥∥
1

+

L−3∑
j=1

1(j + 1 ∈ I)
(
ΠL−1
k=j+2

∥∥(Wk)T
∥∥
1,∞

)
εj+1

∥∥∥ẑj
∥∥∥
1

}
+ 1(L ∈ I)2εL

∥∥∥ẑL−1
∥∥∥
1

(26)

≤
∥∥WL

i,: −WL
j,:

∥∥
1

{ ∑
`∈I\{L,L−1}

(
ΠL−1
k=`+1

∥∥(Wk)T
∥∥
1,∞

)
ε`

∥∥∥z`−1
∗
∥∥∥
1

+ 1(L− 1 ∈ I)εL−1

∥∥∥zL−2
∗
∥∥∥
1

}
+ 1(L ∈ I)2εL

∥∥∥zL−1
∗
∥∥∥
1

(27)

The proof for multi-layer bound follows same reasoning from the all-perturbed setting except indicator
function was added to check whether a certain layer m is in the index set I and at last we rewrite the
expression using the members of set I .
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A.4 Convolutional Neural Network

We now offer a similar proof for convolutional neural networks. Consider a network structure where
there are N convolution layers followed by M dense layer for a K-class classification problem with
activation function ρ(·) applied after each layer. We note that each convolution operation can be
described as matrix multiplication of a doubly block Toeplitz matrix. With such formulation, we
present the theorem as follows

Theorem 5 (all-layer perturbation) Let fW (x0) = WM+N (...ρ(WN+1z)...) and z =
ρ(TN ...ρ(T1x0)) where Ti stands for the Toeplitz matrix of convolution operation in the i-th layer,
denote an composite M +N -Layer neural network. We further define the perturbed neural network
as f

Ŵ
(x0) = W̃

M+N
(...ρ(W̃

N+1
z̃)...) and z̃ = ρ(T̃

N
...ρ(T̃

1
x0)) Then, if x0 ∈ [0, 1]d, for any

pairwise margin between f ij
Ŵ

(x0) and f ijW (x0),

f ij
Ŵ

(x0) ≤ f ijW (x0) +
M+N−1∑
k=1

∆(εk; zk−1
∗
; f)︸ ︷︷ ︸

Dense Layer Error

+ 2εM+N

∥∥∥zM+N−1∗
∥∥∥
1︸ ︷︷ ︸

Final Layer Error

where zk
∗

= ρ(Wk∗ ...ρ(T1∗x)) with Ti
∗

and Wj∗ defined as

Ti
∗

r,s = Tir,s + εi

Wj∗

r,s = Wj
r,s + εj

and z0
∗
= x0.

Proof :

f ij
Ŵ

(x0)− f ijW (x0)

= {ŴM+N
i,: − ŴM+N

j,: }ẑM+N−1 − {WM+N
i,: −WM+N

j,: }zM+N−1 (28)

≤
∥∥WM+N

i,: −WM+N
j,:

∥∥
1

∥∥∥ρ(Ŵ
M+N−1

ẑM+N−2)− ρ(WM+N−1zM+N−2)
∥∥∥
∞

+ 2εM+N1T ẑM+N−1

(29)

≤
∥∥WM+N

i,: −WM+N
j,:

∥∥
1

{∥∥∥WM+N−1(ẑM+N−2 − zM+N−2)
∥∥∥
∞

+
∥∥∥(Ŵ

M+N−1
−WM+N−1)ẑM+N−2

∥∥∥
∞

}
+ 2εM+N

∥∥∥ẑM+N−1
∥∥∥
1

(30)

≤
∥∥WM+N

i,: −WM+N
j,:

∥∥
1

{∥∥(WM+N−1)T
∥∥
1,∞

∥∥∥ρ(Ŵ
M+N−2

ẑM+N−3)− ρ(WM+N−2zM+N−3)
∥∥∥
∞

+ εM+N−1

∥∥∥ẑM+N−2
∥∥∥
1

}
+ 2εM+N

∥∥∥ẑM+N−1
∥∥∥
1

(31)

≤
∥∥WM+N

i,: −WM+N
j,:

∥∥
1

{
ε1 ‖x0‖1 ΠN

s=1

∥∥(T)T
∥∥
1,∞ΠM+N−2

l=N+1

∥∥(WL−l)T
∥∥
1,∞

+

M+N−3∑
j=1

(
ΠM+N−1
k=j+2

∥∥∥(Ak)T
∥∥∥
1,∞

)
εj+1

∥∥∥ẑj
∥∥∥
1

+ εL−1

∥∥∥ẑM+N−2
∥∥∥
1

}
+ 2εM+N

∥∥∥ẑM+N−1
∥∥∥
1

(32)

≤
∥∥WM+N

i,: −WM+N
j,:

∥∥
1

{
ε1 ‖x0‖1 ΠN

s=1

∥∥(T)T
∥∥
1,∞ΠM+N−2

l=N+1

∥∥(WL−l)T
∥∥
1,∞

+

M+N−3∑
j=1

(
ΠM+N−1
k=j+2

∥∥∥(Ak)T
∥∥∥
1,∞

)
εj+1

∥∥∥zj
∗
∥∥∥
1

+ εL−1

∥∥∥zM+N−2∗
∥∥∥
1

}
+ 2εM+N

∥∥∥zM+N−1∗
∥∥∥
1

(33)

Notice that in the proof Ak is defined as Ak =

{
Wk k ≥ N + 1

Tk k < N + 1
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B Surrogate Loss

B.1 Case on Ramp Loss

We now provide a proof for Lemma 2. Recall the definition of ramp function in Section 3.4.1, we have
that ramp loss for a given data point (x, y) and neural network fW (·) is written as `ramp(fW (x), y) =
φγ(M(fW (x), y)), where the function φγ : R 7→ [0, 1] is defined as

φγ(t) =


1 if t ≤ 0

0 if t ≥ γ
1− t

γ if t ∈ [0, γ]

(34)

Then for any (x, y), using ReLU as activation function, we have

max
Ŵ

1(y 6= arg max
y′

[f
Ŵ

(x)]y′)

(a)

≤ φγ(min
Ŵ

M(f
Ŵ

(x), y)) (35)

(b)

≤ φγ(min
y′ 6=y

min
Ŵ

[f
Ŵ

(x)]y − [f
Ŵ

(x)]y′) (36)

(c)

≤ φγ
(

min
y′ 6=y

[fW (x)]y − [fW (x)]y′ −max
y′ 6=y

εN
∥∥WL

y′,: −WL
y,:

∥∥
1

∥∥zN−1
∥∥
1

ΠL−N−1
k=1

∥∥(WL−k)T
∥∥
1,∞

)
(37)

(d)

≤ φγ
(

min
y′ 6=y

[fW (x)]y − [fW (x)]y′ − 2 max
k∈[K]

εN
∥∥WL

k,:

∥∥
1

∥∥zN−1
∥∥
1

ΠL−N−1
k=1

∥∥(WL−k)T
∥∥
1,∞

)
(38)

(e)

≤ φγ
(
M(fW (x), y)− 2 max

k∈[K]
εN
∥∥WL

k,:

∥∥
1

∥∥zN−1
∥∥
1

ΠL−N−1
k=1

∥∥(WL−k)T
∥∥
1,∞

)
(39)

(f)

≤ φγ
(
M(fW (x), y)− 2 max

k∈[K]
εN
∥∥WL

k,:

∥∥
1
‖x‖1 ΠN−1

m=1 ‖W
m‖1,∞ΠL−N−1

k=1

∥∥(WL−k)T
∥∥
1,∞

)
(40)

:= ˆ̀(fW (x), y) (41)
(g)

≤ 1
(
M(fW (x), y)− 2 max

k∈[K]
εN
∥∥WL

k,:

∥∥
1
‖x‖1 ΠN−1

m=1 ‖W
m‖1,∞ΠL−N−1

k=1

∥∥(WL−k)T
∥∥
1,∞ ≤ γ

)
,

(42)

where inequality (a) is due to the property of ramp loss while inequality (b) is by the definition of
margin and inequality (c) comes from applying Theorem 1. Inequality (d) results from using triangle
inequality and taking its maximum, inequality (e) is by the definition of margin and inequality (f)
comes from the fact that with ReLU we have ‖ρ(Ax)‖1 ≤ ‖Ax‖1. Lastly, inequality (g) is a direct
consequence from property of ramp loss.

B.1.1 Ramp Loss on Multiple Layer Bound

We now follow a similar course and prove robust ramp loss using the multi-layer bound in Theorem
3. We consider the robust loss form proposed in Section 3.4.1 and have that,

max
Ŵ

`ramp(f
Ŵ

(x), y)

(a)

≤ φγ(min
Ŵ

M(f
Ŵ

(x), y)) (43)

(b)

≤ φγ
(

min
y′ 6=y

[fW (x)]y − [fW (x)]y′ −max
y′ 6=y

ηy
′y

W (x|I)
)

(44)

(c)

≤ φγ
(
M(fW (x), y)−max

y′ 6=y
ηy
′y

W (x|I)
)

:= ˆ̀(fW (x), y) (45)
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B.2 Cross Entropy

We further consider the case of cross entropy and prove an upper bound for it. We denote the loss
function as CE(·), and during training, hard label was applied. Recall the definition of f̃W (x) in
Section 3.4.1, we have the difference of loss function between natural and perturbation settings as,

CE(f̃
Ŵ

(x), y)− CE(f̃W (x), y)

= −y ln
[f̃

Ŵ
(x)]y

[f̃W (x)]y
(46)

= ln
[f̃W (x)]y

[f̃
Ŵ

(x)]y
(47)

= ln
(
e[fW (x)]y−[fŴ (x)]y

∑
k∈[K] e

[f
Ŵ

(x)]k∑
k∈[K] e

[fW (x)]k
} (48)

(a)

≤ ln
(

max
y′ 6=y

e[fW (x)]y−[fŴ (x)]y · e[fŴ (x)]y′−[fW (x)]y′
)

(49)

(b)

≤ ln
(
e
maxy′ 6=y f

y′y
Ŵ

(x)−fy
′y

W (x)) (50)
(c)
= max

y′ 6=y
ηy
′y

W (x|I), (51)

where inequality (a) comes from taking the maximum in the set of all ratios
{
e
[f

Ŵ
(x)]k

e[fW (x)]k

}
and inequality

(b) comes from monotonicity of exponential function. Finally, the last expression (c) can be referred
to Theorem 3. Thus with the above proof, we could establish the following robust surrogate loss for
cross entropy, denoted as ĈE(fW (x), y) :

ĈE(fW (x), y) = CE(fW (x), y) + maxy′ 6=y η
y′y
W (x|I)

C Generalization Bound on Rademacher Complexity

C.1 Proof on Single Layer Bound

To show the Rademacher complexity and generalization gap on single layer robust surrogate loss,
we first introduce a result proven in [4] and another classical result in statistical learning theory
and proceed to give a proof on Theorem 4. Given a set S = {(xi, yi)}ni=1 of i.i.d training samples,
denote X := [x1, x2, . . . , xn] ∈ Rd×n as the matrix composed of training data and let dmax =
max{d, d1, . . . , dL} as the maximum dimension among all weight matrices.

Lemma 3 ([13]) Assume that the range of loss function `(·) is [0,1]. Then, for any δ ∈ (0, 1), with
probability as least 1− δ, we have for all f ∈ F

R(f) ≤ Rn(f) + 2R(`F ) + 3

√
log 2

δ

2n ,

where R(f) and Rn(f) stand for population risk and empirical risk, respectively.

Lemma 4 ([4]) Consider the neural network hypothesis class,

F = {fW (x) |W = (W1,W2, ...,WL),
∥∥Wh

∥∥
σ
≤ sh,

∥∥(Wh)T
∥∥
2,1
≤ bh h ∈ [L]}

We have an upper bound on the Rademacher complexity,

R(F) ≤ 4
n3/2 + 26 log(n) log(2dmax)

n ‖X‖F

(
ΠL
h=1sh

)(∑L
j=1

( bj
sj

)2/3)3/2

We now study the Rademacher Complexity of the function class
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ˆ̀F = {(x, y) 7→ ˆ̀(fW (x), y)| f ∈ F},

where ˆ̀(·) is denoted in Lemma 2 and let MF = {(x, y) 7→M(fW (x), y)| f ∈ F}. Then we could
obtain,

R(ˆ̀F ) ≤ 1

γ

(
R(MF ) +

2εN
n
Eν [sup

f∈F

n∑
i=1

νi max
k∈[K]

∥∥WL
k,:

∥∥
1

ΠN−1
m=1 ‖W

m‖1 ΠL−N−1
k=1

∥∥(WL−k)T
∥∥
1,∞ ‖xi‖1]

)
,

(52)

where the inequality was achieved by using the Ledoux-Talagrand contraction inequality and the
convexity of the supreme operation. Consider the second term, we have that

2εN
n
Eν [sup

f∈F

n∑
i=1

νi max
k∈[K]

∥∥WL
k,:

∥∥
1

ΠN−1
m=1 ‖W

m‖1 ΠL−N−1
k=1

∥∥(WL−k)T
∥∥
1,∞ ‖xi‖1] (53)

(a)

≤ 2εN
n

(
sup
f∈F

max
k∈[K]

∥∥WL
k,:

∥∥
1

ΠN−1
m=1 ‖W

m‖1 ΠL−N−1
k=1

∥∥(WL−k)T
∥∥
1,∞

)
Eν [|

n∑
i=1

νi ‖xi‖1 |] (54)

(b)

≤ 2εN
n

(
sup
f∈F

ΠN−1
m=1 ‖W

m‖1 ΠL−N−1
k=0

∥∥(WL−k)T
∥∥
1,∞

)
‖X‖1,2 , (55)

where inequality (a) is achieved by separating all neural network related parameters and inequality
(b) is a result of applying Khintchine’s inequality.

Thus, combined with Lemma 4, we have that

R(ˆ̀F ) ≤ 1

γ

( 4

n3/2
+

60 log(n) log(2dmax)

n
‖X‖F

(
ΠL
h=1sh

)( L∑
j=1

( bj
sj

)2/3)3/2

+
2εN
n

(
sup
f∈F

ΠN−1
m=1 ‖W

m‖1 ΠL−N−1
k=0

∥∥(WL−k)T
∥∥
1,∞

)
‖X‖1,2 (56)

Once we have calculated an upper bound for R(ˆ̀F ), then Theorem 4 is a direct consequence of
Lemma 2 and 3.

C.2 Extension to Multiple Layer Bound

In this section, we consider the robust surrogate loss under multi-layer bound and study its
Rademacher complexity, We first give the expression of the robust surrogate loss then give an
result on generalization bound.

Lemma 5 Define the robust loss function ˆ̀(fW (x), y) as

ˆ̀(fW (x), y) = φγ

(
M(fW (x), y)

− 2 max
k∈[K]

∥∥WL
k,:

∥∥
1

{ ∑
`∈I\{L,L−1}

ε`
(
Πl−1
i=1

∥∥∥Wi∗
∥∥∥
1,∞

)(
ΠL−1
j=`+1

∥∥(Wj)T
∥∥
1,∞

)
‖x‖1

+ 1(L− 1 ∈ I)εL−1
(
ΠL−2
i=1

∥∥∥Wi∗
∥∥∥
1,∞

)
‖x‖1

}
− 1(L ∈ I)2εL

(
ΠL−1
i=1

∥∥∥Wi∗
∥∥∥
1,∞

)
‖x‖1

)
(57)

We would have that

max
Ŵ

1(y 6= arg max
y′

[f
Ŵ

(x)]y′) ≤ ˆ̀(fW (x), y)

≤ 1

(
M(fW (x), y)− 2 max

k∈[K]

∥∥WL
k,:

∥∥
1

{ ∑
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(
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)
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Using the above loss, we could further establish an upper bound on robust surrogate loss and provide
statements on generalization bound. Given the following function class

ˆ̀F = {(x, y) 7→ ˆ̀(fW (x), y)|f ∈ F}

We have that,

R(ˆ̀F ) ≤ 1

γ

(
R(MF ) +

2

n
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[
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(58)

which the second term can be bounded as,
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while the last term can as well be bounded as,
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∥∥∥Wi∗
∥∥∥
1,∞

)
n

‖X‖1,2 (64)

With all of the upper bounds above and Lemma 4, 5, we have the following theorem,

Theorem 6 (generalization gap for robust surrogate loss) With Lemma 5, consider the neural net-
work hypothesis class F = {fW (x)|W = (W1,W2, ...,WL),

∥∥Wh
∥∥
σ
≤ sh,

∥∥(Wh)T
∥∥
2,1
≤ bh, h ∈
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D Additional Experiments

D.1 Different Settings of Figure 1 (a)

Figure 2 presents the empirical generalization gaps of different εtrain without weight PGD attack
(εtest = 0). The generalization gap is obviously lower than others when εtrain = 0, but its trend with
respect to regularization is similar to the setting when εtrain 6= 0.

Figure 2: Empirical generalization gaps when altering the matrix norm regularization coefficient µ in
(2) without weight PGD attack.

D.2 Supplement of Figure 1 (a)

In Table 1, following same experiments of Figure 1 (a), we supplement test accuries under weight
PGD attack with perturbation level εtest.

Table 1: Comparison of test accuracies of neural networks trained with different εtrain under weight
PGD attack with perturbation levels εtest.

εtest = 0.001

µ 0 0.002 0.004 0.006 0.008

εtrain = 0.01 67.93% 72.89% 75.10% 71.97% 72.47%
εtrain = 0.05 67.95% 68.59% 68.16% 67.72% 67.07%

εtest = 0.002

µ 0 0.002 0.004 0.006 0.008

εtrain = 0.01 55.11% 57.70% 61.28% 54.4% 58.86%
εtrain = 0.05 55.49% 53.43% 54.34% 54.52% 54.47%
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D.3 Alternative Loss function of Regularization Term

To show the importance of our loss, in Table 2 and Table 3, we use L1 and L2 weight decay as
regularizers, respectively. As shown in Table 2, L1 weight decay can only endure regularization
coefficient from µ = 0.0 to µ = 0.002 with εtrain = 0.01. If µ is greater than 0.002, the training
accuracy will be lower than 10%. Similarly, for the setting of εtrain = 0.05, the training accuracy
lower than 10% when µ is greater than 0. In Table 3, it presents that L2 weight decay technique
cannot reduce generalization gap as µ growing. Compared with results of our loss shown in Table 1,
our loss either inhibits the generalization gap or makes models be more robust against weight PGD
attack.

Table 2: Comparison of generalization gap and test accuracies of neural networks trained with L1

weight decay and different εtrain under weight PGD attack with perturbation levels εtest.

L1 εtest = 0.001

µ 0 0.002 0.004 0.006 0.008

εtrain = 0.01 5.13%/68.57% 1.82%/53.58% Failed to Converge Failed to Converge Failed to Converge
εtrain = 0.05 5.16%/38.34% Failed to Converge Failed to Converge Failed to Converge Failed to Converge

L1 εtest = 0.002

µ 0 0.002 0.004 0.006 0.008

εtrain = 0.01 5.99%/43.5% 2.42%/41.08% Failed to Converge Failed to Converge Failed to Converge
εtrain = 0.05 3.37%/27.83% Failed to Converge Failed to Converge Failed to Converge Failed to Converge

Table 3: Comparison of generalization gap and test accuracies of neural networks trained with L2

weight decay and different εtrain under weight PGD attack with perturbation levels εtest.

L2 εtest = 0.001

µ 0 0.002 0.004 0.006 0.008

εtrain = 0.01 5.87%/68.13% 3.58%/74.72% 0.85%/71.55% 5.08%/68.92% 5.51%/63.72%
εtrain = 0.05 4.12%/65.78% 4.33%/ 60.97% 3.6%/ 68% 8.64%/57.56% 8.63%/63.77%

L2 εtest = 0.002

µ 0 0.002 0.004 0.006 0.008

εtrain = 0.01 6.05%/52.85% 3.31%/58.09% 0.47%/57.47% 5.09%/47.41% 2.62%/42.68%
εtrain = 0.05 6.82%/47.58% 4.54% / 47.46% 5.05%/51.05% 5.7%/42% 7.29%/47.79%

D.4 Convolutional Model Under PGD Weight Attack

We’ve also conducted the experiment of convolution-layer based model training on CIFAR-10 using
our proposed loss function in Table 4. The model is primarily based on convolution layers and dense
layers, with two convolution layers (32 filters of 5x5, and 64 filters of 5x5 in the second), three dense
layers (128, 64, 10), ReLU activation and trained with εtrain = 0.01 as prediction model. As shown in
Table 4, the standard model’s performance rapidly degrades in 5-folds when the perturbation radius is
set to 0.001 while our model still retains half of its accuracy when compared to the no-perturbation
setting (εtest = 0).

Table 4: Comparison of test accuracy of convolutional neural networks trained with εtrain = 0.01 and
different λ and µ under weight PGD attack (200 steps) with perturbation level εtest.

Parameters
Perturbation Radius εtest 0 0.001 0.0015 0.0017 0.0019 0.0021 0.0023 0.0025

λ = µ = 0 58.73% 13.08% 10.15% 10.01% 10% 10% 10% 10%
λ = 3.24 ∗ 10−4, µ = 10−4 51.1% 33.9% 23.16% 19.71% 16.85% 14.25% 12.52% 11.58%
λ = 4.5 ∗ 10−4, µ = 10−4 47.28% 36.82% 27.78% 26.19% 21.6% 19.35% 17.84% 16.53%
λ = 5 ∗ 10−4, µ = 10−4 42.71% 38.68% 30.2% 22.09% 19.41% 17.32% 15.68% 11.5%
λ = 5.5 ∗ 10−4, µ = 10−4 42.79% 32.9% 25.3% 22.77% 20.78% 18.88% 18.26% 17.1%
λ = 6 ∗ 10−4, µ = 10−4 38.17% 30.21% 24.55% 23.25% 21.97% 20.68% 19.14% 17.55%
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D.5 Weight PGD Attack (100 steps) on MNIST

Figure 3 shows the accuracy and AUC score of different models against weight PGD attack with 100
iterations.

Figure 3: Comparison of test accuracy of neural networks trained with different coefficients λ and µ
against weight PGD attack (100 steps) with perturbation level ε.

D.6 More details on the trade-off between λ and µ

(a) weight PGD (ε = 0.01) (b) weight PGD (ε = 0.02)

Figure 4: Comparison of test accuracy (%) trained with different coefficients λ and µ against weight
PGD attack (200 steps) with ε = 0.01 and 0.02. The experiment setting follows Figure 1(b).

Figure 4 shows the trade-off with a fine grid search between coefficients λ and µ, we present test
accuracy under weight PGD attack using perturbation radius of (ε = 0.01 and 0.02) with different
combinations of λ (from 0.01 to 0.015) and µ (from 0 to 0.05). We find that there is indeed a sweet
spot with proper values of λ and µ leading to significantly better robust accuracy. When both λ and µ
are too large or too small, the robustness of the model will decrease.

D.7 Alternative Robust Loss Function

In addition to the proposed loss function in equation (2), one can consider an alternative general-
ization gap regularization term derived from Theorem 4, which is

∑L
m=1(log (||(Wm)>||1,∞) +

log (||Wm||1,∞)). We compare its performance following the same experiment setting as in Figure
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1 (b) with finetuned coefficients λ and µ. It can be observed that this alternative loss function also
yields robust models with comparable (sometimes slightly better) performance to those in Figure 1
(b), verifying the effectiveness in using theory-driven insights to reduce the generalization gap against
weight perturbation.

Figure 5: Test accuracy under different weight perturbation level ε with 200 attack steps. The models
are trained using the alternative loss described in Section D.7.

D.8 Run-time analysis

Table 5 reports the per-epoch run time of the models trained with the standard loss (λ = 0, µ = 0)
and the robust loss (λ = 0.01, µ = 0.1) using equation (2). We train both models with 20 epochs
and use the same hyperparameters, including setting the SGD optimizer with learning rate as 0.01,
and setting the batch size as 32. The run-time cost of training both models are comparable.

Table 5: Per-epoch run time (in seconds) averaged over 20 epochs with the same hyperparameters for
the standard (λ = 0, µ = 0) and robust (λ = 0.01, µ = 0.01) models based on equation (2).

Standard model Robust model

Per-epoch run time 5.125 sec. 6.69 sec.

D.9 Robustness to Weight Quantization

We perform bit quantization on the weights of standard and robust models (the latter is trained using
our proposed loss) with 32-bit training, and we report the corresponding test accuracy under different
bit quantization levels. In Figure 6, one can observe that under 2-bit quantization, the accuracy of the
standard model drops by 85.14%, whereas the robust model (green bar) only degrades by 28.71%,
which is roughly 3x better than the standard model.

Figure 6: Comparison of the model performance with different quantization levels. The gap indicates
the original test accuracy (32-bit) minus quantized test accuracy. Larger gap means worse robustness.
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E On the Vacuity of Generalization Bound

In [14], empirical observations were made to point out the fact that when given increase in the size
of the training data, the error bound proposed in [4] grows rapidly, loosing the ability to describe
generalization gap and thus becomes vacuous. However, we note that under our settings with models
trained using the loss function in Section 3.5, the bound would not grow in a polynomial rate and
instead shows a decreasing trend. We conducted experiments and presented results under the same
setting as [14] in Figure 7. Here we verify two existing generalization bounds from different literature,
one from [4] while another one from [3] in which the former one is composed mainly of product of
weight matrices’ norm and the latter is comprised of the norm of matrices’ product. Empirical results
in Figure 7(a) show that under the standard settings the main components of generalization bound in
[4] and [3] both grows rapidly with respect to the increase in size of the training dataset, as confirmed
in [14]. Another empirical finding in the last column of Figure 7(a) shows that the multiplicative
difference between bounds in [4] and [3] exhibit a constant rate, demonstrating the vacuity of both
bounds. However, when measuring the same component under our setting in Figure 7(b), new results
showed decreasing bounds as the size of the training dataset increases, concluding the non-vacuity of
the associated generalization bounds in our settings.

(a) Standard Model (λ = 0, µ = 0)

(b) Robust Model (λ = 0.01, µ = 0.01)

Figure 7: Statistics associated with generalization bounds for standard model and robust model
trained using equation (2). The experiment setting follows Figure 1(a). In the first column, we present
test error under weight PGD attack with perturbation level ε. The curve with ε = 0 (no weight
perturbation) corresponds to the standard generalization setting. In the second column, we present
the product of spectral norms of the weights matrices, related to bounds in [4]. In the third column,
we show spectral norm of the product of the weight matrices, related to bounds in [3]. In the fourth
column, we show the product of spectral norms of the weights matrices divided by the spectral norm
of the product of the weight matrices. Notably, we present each value into the logarithm function.
For the standard model, both types of bound increase with respect to training set size and are shown
to be vacuous, consistent with the results in [14]. For the robust model, both types of bound exhibit
same decreasing trend as the test error and therefore are non-vacuous. Moreover, these two bounds
demonstrate similar scaling behavior (nearly constant log ratio) in both standard and robust models.
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As an ablation study, Figure 8 shows the performance of the robust model with (λ = 0.01, µ = 0).
That is, training a neural network without the generalization regularization term in equation (2).
Unlike the standard model, it is observed that the generalization bounds still show decreasing
trend with the test error. This is due to the fact that the robustness term in equation (2), which is
induced from our analysis of the worst-case error propagation from weight perturbation, also plays a
role in regularizing the network weights, and therefore making the resulting generalization bound
non-vacuous.

Figure 8: Ablation study of the robust model with (λ = 0.01, µ = 0). The experiment setting is
the same as Figure 7. In the absence of the generalization regularization term in equation (2), the
generalization bounds still show decreasing trend with the test error.

F Weight Distribution of Each Layer for Standard and Robust Models

Figure 9 compares the weight distribution of each layer for standard and robust models. For both
models, each layer has the mean value of weights close to zero. Moreover, both models tend to have
larger weight variation for deeper layers. The weight distribution of robust model is observed to be
more concentrated than that of standard model.

(a) Standard Model

(b) Robust Model

Figure 9: Visual comparison of weights distribution of each layer for the standard model with
(λ = 0, µ = 0) and the robust model with (λ = 0.0125, µ = 0.045). The experiment setting is the
same as Section 4.
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G Comparison to Naive Adversarial Weight Training

As discussed in Section 3.4.1, we’ve explained why the naive weight adversarial training is intractable
and invalid in notion. We present robust accuracy of the suggested weight adversarial training using
the MNIST dataset shown in Table 6. The experimental setup follows that of Figure 1(b) and set
εtrain as 0.01. As shown in Table 6, using the naive weight adversarial training provides little utility
contrasted to models trained under our proposed loss.

Table 6: Comparison of test accuracies of neural networks trained by different methods such as
weight adversarial training, our loss and standard training under weight PGD attack with different
perturbation radius εtest. Weight adversarial training and our loss are trained with εtrain = 0.01.

Perturbation Radius εtest 0.001 0.005 0.008 0.01 0.15 0.02

Weight AT Acc 10% 12% 14% 10% 14% 12%
Ours Acc 80.3% 50.2% 39.87% 39.83% 39.8% 39.57%

Standard Acc 70.32% 19.01% 9.74% 9.74% 8.92% 8.92%

H Discussion of References

Table 7: Comparison of key differences between our paper and other references.

Generalization
Settings

Types of
Robustness

Measure of
Generalization Gap

Methods of Evaluating
Maximum(Worst Case Loss)

Ours Robust Setting Against Weight P[∃(w + ε)s.t.1(y 6= argmax[fw+ε(x)]y′)]
≤ 1

nΣ1(M(fw(x), y)− ψ(fw(x) 6= γ) + Gap
Layer Propagation

(Exact Bound)

Adversarial Weight
Perturbation (2020) Robust Setting Against Input LD,ε(w + ε) 6= LS,ε(w + ε) + Gap [see eq.12]

Maximum value based on
generated adversarial inputs

(inexact bound)
Sharpness-Aware

Minimization (2021) Standard Setting NA LD(w) 6= maxεLS(w + ε) + Gap [see Appendix A.1] First-Order Taylor Expansion
(approximation; inexact bound)
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