
A Implementation Details of OTO

A.1 ZIG for ResNet50

𝑔 = {𝑔1
𝑙 , 𝑔2

𝑙 , … , 𝑔
𝐶𝑙+1
𝑙 }

𝑔1
𝑙

𝑔2
𝑙

𝑔
𝐶𝑙+1
𝑙

𝑏𝑙 𝛾𝑙 𝛽𝑙

𝒦1
𝑙 𝒦2

𝑙 𝒦
𝐶𝑙+1
𝑙

𝑏1
𝑙 𝑏2

𝑙 𝑏
𝐶𝑙+1
𝑙

𝒦𝑙

𝒪𝑙ℐ𝑙

Group Block

In
p

u
t

Te
n

so
r

C
o

n
v

B
N

R
e

sC
o

n
v1

B
N

1

R
es

C
o

n
v2

B
N

2

O
u

tp
u

t
Te

n
so

r

Conv Block

×
2

In
p

u
t

Te
n

so
r

C
o

n
v

B
N

R
e

sC
o

n
v3

B
N

3 O
u

tp
u

t
Te

n
so

r

Identity Block

×
2

× 𝑵

Conv

Batch Norm

Max Pooling

Conv Block

Identity Block

Average Pooling

Group
Block

×𝑵 ×𝑴

(a) ResNet50.

𝑔 = {𝑔1
𝑙 , 𝑔2

𝑙 , … , 𝑔
𝐶𝑙+1
𝑙 }

𝑔1
𝑙

𝑔2
𝑙

𝑔
𝐶𝑙+1
𝑙

𝑏𝑙 𝛾𝑙 𝛽𝑙

𝒦1
𝑙 𝒦2

𝑙 𝒦
𝐶𝑙+1
𝑙

𝑏1
𝑙 𝑏2

𝑙 𝑏
𝐶𝑙+1
𝑙

𝒦𝑙

𝒪𝑙ℐ𝑙

Group Block

In
p

u
t

Te
n

so
r

C
o

n
v

B
N

R
e

sC
o

n
v1

B
N

1

R
es

C
o

n
v2

B
N

2

O
u

tp
u

t
Te

n
so

r

Conv Block

×
2

In
p

u
t

Te
n

so
r

C
o

n
v

B
N

R
e

sC
o

n
v3

B
N

3 O
u

tp
u

t
Te

n
so

r

Identity Block

×
2

× 𝑵

Conv 7x7

Batch Norm

Max Pooling

Conv Block

Identity Block

Average Pooling

Group
Block

×𝑵 ×𝑴

(b) Group block.

Figure 5: ResNet50 Architecture.

Without loss of generality, we illustrate ZIGs for the general ResNet class with ResNet50. As shown
in Figure 5a, ResNet50 begins with a Conv-BN, a pooling layer, and extracts features by M Group
Blocks that each contains one Conv Block andN Identity Block. The extracted features are ultimately
fed into an average pooling layer for different downstream computations. There exist two types
of convolution structures inside ResNet50: (i) the regular Conv-BN (see Section 3.1), marked as
gray and green blocks in Figure 5b, and (ii) the ResConv-BN of which the output shares the same
dimension with another ResConv-BN, marked as yellow and brown in Figure 5b.

For ResNet50, we partition regular Conv-BN following Section 3.1. For ResConv-BN, within
each Group Block, the intermediate input/output tensors in Conv/Indentity Blocks share the same
dimension, and hence all the ResConv-BNs in one Group block share the same number of 3D filters.
Consequently, their flattened filter matrices has the same number of rows. Figure 5b breaks down
the architecture of a Group Block. The output tensors of ResConv-BN1 and ResConv-BN2 in Conv
Block, denoted asO1 andO2, are computed by (7) and (8) respectively. They are then summed up
as the input tensor of the subsequent identify block II1 , indicating thatO1 andO2 have the same
shape and their flattened filter matrices K̂1 and K̂2 has the same number of rows. As (11), II1 later
sums the output tensor of ResConv-BN3O3 to yield the input tensor to the next Identity Block II2 ,
implying the filter matrix of ResConv-BN3 K̂3 has the same number of rows as K̂1 and K̂2.

O1 ← a(I1 ⊗ K̂
1

+ b1)− µ1

σ1
� γ1 + β1 (7)

O2 ← a(I2 ⊗ K̂
2

+ b2)− µ2

σ2
� γ2 + β2 (8)

II1 ← O1 +O2 (9)

O3 ← a(I3 ⊗ K̂
3

+ b3)− µ3

σ3
� γ3 + β3 (10)

II2 ← II1 +O3 (11)

Therefore, based on (7) to (11), to make the entire Group Block zero-invariant, we group each ith
row of the filter matrix for all the Res-Conv-BNs of same group block. In doing so, any one row of
parameters being zeros results in the output, i.e., the corresponding channel of feature map, being
zeros. Figure 6 shows ZIG for the three ResConv-BN of a Group Block. Regardless of the input,
the ith channel-wise matrix of II1 are zeros if and only if both ith channel-wise matrices ofO1 and
O2 are equal to zero. This is equivalent to both ith rows of K̂1 and K̂2 being zeros. Similarly, ith

channel-wise matrix of II2 being zeros regardless of the input further requires the ith row of K̂3 to
be grouped in the ZIG.

16

g1

g2

gm

̂
K

1 ̂
K

2

b
1

b
2 γ1 γ2

G = {g1, g2, · · · , gm}

β1 β2 β3γ3
b
3̂

K
3

Figure 6: Zero Invariant Groups for the three ResConv-BN of a Group Block.

A.2 Training Details

We implement OTO in PyTorch. The key ingredient HSPG is packaged as an optimizer class which is
flexible to various applications. During the experiment, the trainable parameters of the full modelM
are firstly partitioned into a ZIG set G wherein each group is tagged as its corresponding atomic layer
category, e.g., fully-connected layer or convolutional layer. The ZIG set G is treated as an argument
to the HSPG constructor. ThenM is trained from scratch by HSPG where the group-wise variables
are updated based on their tagged layer category. In our repository, we provide the prescribed
ZIG partitions for the DNNs used in this paper, i.e., VGG16, VGG16-BN, ResNet50 and Bert. For
other models, one can easily follow Section 3.1 and Appendix A.1 to construct a ZIG partition and
feed it as an argument to the HSPG optimizer. After training, a full group-sparse model with high
performance is achieved. Finally, a slimmer pruned modelM∗ is constructed following Section 3.4
without fine-tuning and has the identical performance as the full group-sparse model. We provide the
implementation in https://github.com/tianyic/only_train_once and the pruned
models associated with the corresponding full group sparse models in https://tinyurl.com/
otocheckpoints.

Parameter Settings. We conduct all experiments on an Nvidia RTX8000 graphics card with 48
GB memory. For all CNN experiments, the step size (learning rate) αk is initialized as 10−1, and
decayed by a factor 0.1 periodically T epochs till the minimum value 10−4. The selection of T
depends on the max number of epochs K. We follow various benchmark online resources to select
K. Particularly, for all CIFAR10 experiments, we follow the model pre-training settings in (56) and
set K as 300. Note that by using the same number of epochs, OTO achieves both slimmer model and
competitive performance simultaneously. For the ImageNet experiment, following (35), we set T as
30 and K as 120. For all Bert experiments, the step size αk is initialized as 10−1 and decayed by a
factor 0.1 after 4 epochs to be as 10−2.

We set the mini-batch size as the commonly used 64 for CIFAR10, 256 for ImageNet and 32
for SQuAD experiments. For all experiments, we initialize the regularization coefficient λ as 10−3 to
balance between model performance and group sparsity. In particular, λ as 10−3 is the maximum
value from the candidate set {10−2, 10−3, 10−4} which returns competitive evaluation results to the
majority of the tested models trained without regularization. In addition, to favor more on the model
performance, if group sparsity becomes stationary, we decay λ by a factor 0.1 periodically after
stepping into Group-Sparsity Stage. The control parameter ε ∈ [0, 1) in the half-space projection (6)
controls the aggressiveness level of group sparsity promotion, which is typically fixed as 0 since for
most of experiments, ε ≡ 0 has resulted in sufficiently good experiment results. In case if group
sparsity is not sufficiently yielded, we provide an adaptive mechanism to increase ε by 0.1 till the
upper bound 0.999. For the setting of N which controls when switching to the Group-Sparsity Stage,
we proceed a test on objective value stationarity similarly to (98, Section 2.1) and empirically set
N ≡ T for CNN experiments since the validation accuracy values become stationary at the late
epochs till T . Hence, the Group-Sparsity Stage starts after T epochs and is accompanied with the αk
decaying. For Bert experiment, we empirically set N as 1 since the F1-score and exact match rate
becomes stationary after one epoch training.

Additional Remarks. For the ZIG partition of ResNet50 on CIFAR10, we include all trainable
variables of ResNet50 and apply the ZIG partition described in Appendix A.1 for ResConv-BN and
the ZIG partition described in Section 3.1 for standard Conv-BN. For the ZIG partition of ResNet50
on ImageNet, we construct ZIGs for standard Conv-BN only. This is because we observe that ZIG
partition for ResConv-BN lead to accuracy regression in spite of more FLOPs reduction, (15% FLOPs

17

https://github.com/tianyic/only_train_once
https://tinyurl.com/otocheckpoints
https://tinyurl.com/otocheckpoints

with up to 71% Top-1 Accuracy). The cause is that it decreases the number of features maps generated
by the entire Group Block. Additionally, for Bert experiments, to study the accuracy evolution against
different compression rates, we set extra constraints to bound the maximum group sparsity ratio, e.g.,
30%, 50%, 70%, and do not yield new zero groups if the upper bound has been exceeded. Note that
without any constraint, OTO reaches about 95% group sparsity ratio with 80% F1-score.

A.3 Error Bar Analysis

In this section, we report the overall statistics of the experiments and analyze the error bar. We note
that for fair comparison with others, in the main body of paper, we report the best results in terms of
remaining FLOPs/parameters and Top-1/5 accuracy. We conduct all experiments three times with
different random seeds.

Table 6: OTO for CNN Experiments (mean ± std)
Model Dataset FLOPs # of Params Top-1 Acc.

VGG16 CIFAR10 16.9%± 1.5% 2.7%± 0.2% 90.7%± 0.3%
VGG16-BN CIFAR10 26.9%± 0.1% 5.5%± 0.1% 93.2%± 0.2%
ResNet50 CIFAR10 11.9%± 1.7% 8.8%± 0.4% 93.9%± 0.5%
ResNet50 ImageNet 34.8%± 1.8% 35.9%± 1.7% 73.3%± 1.1%

Training neural networks is equivalent to solving a non-convex optimization problem which has
numerous local minimizers, thereby training from scratch like OTO may generate solutions close
to stationary points with different attributes. As shown in Table 6, we can see that for the CNN
experiments, OTO performs reliably to achieve significant FLOPs and parameters reduction and
competitive Top-1 accuracy with small fluctuations.

A.4 FLOPs Reduction Breakdown

We provide the layer-wise FLOPs reduction for VGG16 on CIFAR10. As shown in Table 7, the
majority of the FLOPs reduction via OTO comes from a few middle ConvLayers (over 10% to the
overall FLOPs reductions) instead of the first ConvLayer (0.45% to the overall FLOPs reduction). In
general, the distribution of FLOPs reduction per Layer of OTO is similar to other pruning baselines.

Table 7: FLOPs Reduction Breakdown for the ConvLayers of VGG16 on CIFAR10

ConvLayer Index # of Output Channels FLOPs Reduction
Original Pruned Quantity (Million) Percentage (%)

1 64 21 1.19M 0.45%
2 64 45 29.04M 11.07%
3 128 82 10.47M 3.99%
4 128 110 17.22M 6.57%
5 256 109 11.97M 4.56%
6 256 68 33.48M 12.77%
7 256 37 36.30M 13.84%
8 512 13 18.81M 7.17%
9 512 9 37.73M 14.38%

10 512 7 37.74M 14.39%
11 512 3 9.44M 3.60%
12 512 5 9.44M 3.60%
13 512 8 9.44M 3.60%

B Convergence Analysis of HSPG

In this section, we provide theoretical analysis of HSPG. We focus on the most popular setting of
optimization problem (2) as follows

minimize
x∈Rn

ψ(x) := f(x) + λr(x), f(x) :=
1

N

N∑
i=1

fi(x), (12)

18

Here f(x) is defined as the average of N task-specific loss functions fi : Rn 7→ R, ∀ i = 1, . . . , N .
The stochastic gradient∇f̃ proposed in Section 3.3 can be obtained via a uniformly chosen mini-batch
B ⊆ [N] as follows: for any x ∈ Rn, given B, we have

∇f̃(x) = ∇
(

1

|B|
∑
i∈B

fi(x)︸ ︷︷ ︸
=:fB(x)

)
, (13)

in short, we denote above term as∇fB(x) where fB(x) is the average of loss functions with repsect
to mini-batch B. Similarly, let ψB(x) := fB(x) + λr(x) for all x ∈ Rn.

Organization. The Section B is organized as follows: From Section B.1 to Section B.5, we present
the convergence result and the sparse recovery guarantee for Half-Space Step. More specifically,

• In Section B.1, we first presented the existing related work of solving the problem (12).
• In Section B.2, we show the sufficient decrease of Half-Space Step under Assumption 1.
• In Section B.3, we derive the projection region of Half-Space Step and compare this projec-

tion region with existing methods.
• In Section B.4, we give the convergence result of Half-Space Step as stated in Theorem 1

under the Assumption (2, 3).

To complete the story, in Section B.5, we show that the “close enough” condition required in
Theorem 1 can be achieved by the Sub-gradient Descent Step under the Assumption 5. Moreover,
we further point out that: (1) the Sub-gradient Descent Step we used to achieve a “close enough”
solution can be replaced by other methods, and (2) the Assumption 4 is only a sufficient condition
that we could use to show the “close enough” condition.

B.1 Related Work

Problem (12) has been well studied in deterministic optimization with various algorithms that are
capable of returning solutions with both low objective value and high group sparsity under proper
λ (95; 73; 42; 64). Proximal methods are classical approaches to solve the structured non-smooth
optimization (12), including the popular proximal gradient method (Prox-FG) which only uses the
first-order derivative information. When N is huge, stochastic methods become ubiquitous to operate
on a small subset to avoid the costly evaluation over all instances in deterministic methods for
large-scale problems. Proximal stochastic gradient method (Prox-SG) (19) is the natural stochastic
extension of Prox-FG. Regularized dual-averaging method (RDA) (87; 92) is proposed by extending
the dual averaging scheme in (66). To improve the convergence rate, there exists a set of incremental
gradient methods inspired by SAG (74) to utilizes the average of accumulated past gradients. For
example, proximal stochastic variance-reduced gradient method (Prox-SVRG) (88) and proximal
spider (Prox-Spider) (97) are developed to adopt multi-stage schemes based on the well-known
variance reduction technique SVRG proposed in (46) and Spider developed in (22) respectively.
SAGA (12) stands as the midpoint between SAG and Prox-SVRG.

Compared to deterministic methods, the studies of structured sparsity regularization (12) in stochastic
field become somewhat rare and limited. Prox-SG, RDA, Prox-SVRG, Prox-Spider and SAGA are
valuable state-of-the-art stochastic algorithms for solving problem (12) but with apparent weakness.
Particularly, these existing stochastic algorithms typically meet difficulties to achieve both decent
convergence and effective group sparsity identification simultaneously (e.g., small function values but
merely dense solutions), because of the randomness and the limited sparsity-promotion mechanisms.
In depth, Prox-SG, RDA, Prox-SVRG, Prox-Spider and SAGA derive from proximal gradient method
to utilize the proximal operator to produce group of zero variables. Such operator is generic to
extensive non-smooth problems, consequently perhaps not sufficiently insightful if the target problems
possess certain properties, e.g., the group sparsity structure as problem (12). In fact, in convex setting,
the proximal operator suffers from variance of gradient estimate; and in non-convex setting, especially
deep learning, the discreet step size (learning rate) further deteriorates its effectiveness on the group
sparsity promotion, as shown in Section 3.3 of the main body that the projection region vanishes
rapidly except RDA. RDA has superiority on finding manifold structure to others (53), but inferiority
on the objective convergence. Besides, the variance reduction techniques are typically required to

19

measure over a huge mini-batch data points in both theory and practice which is probably prohibitive
for large-scale problems, and have been observed as sometimes noneffective for deep learning
applications (13). On the other hand, to introduce sparsity, there exist heuristic weight pruning
methods (55; 60), whereas they commonly do not equip with theoretical guarantee, so that easily
diverge and hurt generalization accuracy.

B.2 Sufficient Decrease of Half-Space Step

Before we present the convergence result of Half-Space Step to the global group-sparsity solution,
in this part, we first show that the sufficient decrease property holds for Half-Space Step under the
following Assumption 1.
Assumption 1. Assume the following assumptions hold.

• (A1-1). f : Rn 7→ R is differentiable and L smooth.

• (A1-2). r : Rn 7→ R is sub-differentiable and convex.

• (A1-3). ψ = f + λr : Rn 7→ R is sub-differentiable over all points x ∈ Rn.

For any k > NP (in Half-Space Step of Algorithm 2), recall the next iterate xk+1 and the search
direction

dk :=
xk+1 − xk

αk
=

ProjHS
Sk(xk − αk∇ψBk

(xk))− xk
αk

. (14)

Define

Ĝk := I 6=0(xk) ∩ I0(xk+1) (15)

G̃k := I 6=0(xk) ∩ I 6=0(xk+1) (16)

be the sets of groups which projects or not onto zero. We claim that the following Lemma 1 holds.
Lemma 1. Under Assumption 1, the search direction dk is a descent direction for ψBk

(xk), i.e.,
d>k∇ψBk

(xk) < 0. Moreover, we have the following sufficient decrease property holds,

ψBk (xk+1) ≤ψBk (xk)−
(
αk −

α2
kL

2

) ∑
g∈G̃k

‖[∇ψBk (xk)]g‖2 −
(
1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 . (17)

Proof. Proof of Descent Direction. It follows the Half-Space Step in Algorithm 2 and the definition
of G̃k and Ĝk as (16) and (15) that xk+1 = xk + αkdk where dk is

[dk]g =

−[∇ψBk

(xk)]g if g ∈ G̃k = I 6=0(xk)
⋂
I 6=0(xk+1),

−[xk]g/αk if g ∈ Ĝk = I 6=0(xk)
⋂
I0(xk+1),

0 otherwise.
(18)

We also notice that for any g ∈ Ĝk, the following holds

[xk − αk∇ψBk
(xk)]>g [xk]g < ε ‖[xk]g‖2 ,

(1− ε) ‖[xk]g‖2 < αk[∇ψBk
(xk)]>g [xk]g.

(19)

For simplicity, let I 6=0
k := I 6=0(xk). Since [dk]g = 0 for any g ∈ I0(xk), then by (18) and (19), we

have

d>k∇ψBk
(xk) = [dk]>I 6=0

k

[∇ψBk
(xk)]I 6=0

k

= −
∑
g∈G̃k

‖[∇ψBk
(xk)]g‖2 −

∑
g∈Ĝk

1

αk
[xk]>g [∇ψBk

(xk)]g

≤ −
∑
g∈G̃k

‖[∇ψBk
(xk)]g‖2 −

∑
g∈Ĝk

1

α2
k

(1− ε) ‖[xk]g‖2 < 0,

(20)

holds for any ε ∈ [0, 1), which implies that dk is a descent direction for ψBk
(xk).

20

Proof of Sufficient Decrease. Now, we start to prove the suffcient decrease of Half-Space Step. By
assumption, f : Rn 7→ R is L smooth and r : Rn 7→ R is convex. Therefore

ψBk
(xk + αkdk) (21)

= fBk
(xk + αkdk) + λr(xk + αkdk) (22)

≤ fBk
(xk) + αkd

>
k∇fB(xk) +

α2
kL

2
‖dk‖2 by Assumption 1 (23)

+ λr(xk) + αkλd
>
k ζ(xk) (24)

= ψBk
(xk) + αkd

>
k∇ψBk

(xk) +
α2
kL

2
‖dk‖2 (25)

≤ ψBk
(xk)−

(
αk −

α2
kL

2

) ∑
g∈G̃k

‖[∇ψBk
(xk)]g‖2 by inequality (20) & dk definition (26)

−
(

1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 , (27)

which completes the proof.

According to Lemma 1, the objective value ψB(x) with E[ψB(x)|x] = ψ(x) achieves a sufficient
decrease in Half-Space Step given αk is small enough. Taking the expectation over mini-batch B on
both sides, it is straight-forward to obtain the expectation version of the sufficient decrease property.
Corollary 1. Similarly, under Assumption 1, for all k > NP , we have

ψ(xk+1) ≤ ψ(xk)−
∑
g∈G̃k

(
αk −

α2
kL

2

)
E
[
‖[∇ψBk

(xk)]g‖2
]
−
(

1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 .

(28)

B.3 Projection Region of Half-Space Step

In this part, we derive the projection region of Half-Space Step, and reveal that is a superset of the
projection region of existing methods, e.g. Prox-SG, Prox-SVRG and Prox-Spider, under the same
αk and λ.
Proposition 1. For any k > NP , given xk, the next iterate xk+1 obtained by the Half-Space Step
satisfies that: for any group g ∈ I 6=0(xk),

[xk+1]g =

{
[x̂k+1]g − αkλ [xk]g

‖[xk]g‖ if [x̂k+1]>g [xk]g > (αkλ+ ε) ‖[xk]g‖ ,
0 otherwise,

(29)

where x̂k+1 := xk − αk∇fBk
(xk). Moreover, we claim that if ‖[x̂k+1]g‖ ≤ αkλ, then [xk+1]g = 0

for any ε ≥ 0.

Proof. For g ∈ I 6=0(xk)
⋂
I 6=0(xk+1), by line 11-12 in Algorithm 2, it is equivalent to[

xk − αk∇fBk
(xk)− αkλ

[xk]g
‖[xk]g‖

]>
g

[xk]g > ε ‖[xk]g‖2 ,

[x̂k+1]>g [xk]g − αkλ ‖[xk]g‖ > ε ‖[xk]g‖2 ,
[x̂k+1]>g [xk]g > (αkλ+ ε ‖[xk]g‖) ‖[xk]g‖ .

(30)

Similarly, g ∈ I 6=0(xk)
⋂
I0(xk+1) is equivalent to[

xk − αk∇fBk
(xk)− αkλ

[xk]g
‖[xk]g‖

]>
g

[xk]g ≤ ε ‖[xk]g‖2 ,

[x̂k+1]>g [xk]g − αkλ ‖[xk]g‖ ≤ ε ‖[xk]g‖2 ,
[x̂k+1]>g [xk]g ≤ (αkλ+ ε ‖[xk]g‖) ‖[xk]g‖ .

(31)

21

If ‖[x̂k+1]g‖ ≤ αkλ, then

[x̂k+1]>g [xk]g ≤ ‖[x̂k+1]g‖ ‖[xk]g‖ ≤ αkλ ‖[xk]g‖ . (32)

Hence [xk+1]g = 0 holds for any ε ≥ 0 by (31), which implies that the projection region
of Prox-SG and its variance reduction variants, e.g., Prox-SVRG, Prox-Spider and SAGA are the
subsets of HSPG’s.

B.4 Convergence Analysis of Half-Space Step

In this section, we give the convergence result of Half-Space Step under the following Assumptions
for the properties of the objective function and the global optimal solution x∗ of (2).
Assumption 2. Assume the following assumptions hold.

• (A2-1). For i = 1, 2, · · · , N , each fi : Rn → R is differentiable and bounded below.

• (A2-2). For i = 1, 2, · · · , N , each fi : Rn → R is Li smooth.

• (A2-3). ψB = fB + λr : Rn 7→ R has bounded sub-gradient (i.e., E[‖∇ψB(x)‖2] ≤ M2

for some universal constant M) over all points x ∈ Rn with respect to any mini-batch
B ⊆ [N].

• (A2-4). The stochastic gradient ∇fB(x) satisfies EB[∇fB(x)|x] = ∇f(x) for all x ∈ Rn.

• (A2-5). The stochastic gradient ∇fB(x) satisfies VarB[∇fB(x)|x] ≤ σ2 for all x ∈ Rn,
where σ2 > 0 is a universal constant.

Notice that this Assumption 2 is a variant of the Assumption 1, to be concise, we set L proposed in
Assumption 1 as L := maxNi=1{Li}.
Assumption 3. Assume the following assumptions hold.

• (A3-1).
∑
k≥NP αk =∞.

• (A3-2).
∑
k≥NP α

2
k <∞.

Assumption 4. The least and the largest `2-norm of non-zero groups in x∗ are lower and upper
bounded by some constants,

0 < 2δ1 := min
g∈I 6=0(x∗)

‖[x∗]g‖ ≤ max
g∈I 6=0(x∗)

‖[x∗]g‖ =: 2δ2. (33)

Theorem 1. Under Assumptions (1, 2, 3, 4), set

R ∈
(

0, min

{
1

ε
·
[
−(δ1 + 2εδ2) +

√
(δ1 + 2εδ2)2 − 4ε2δ2 + 4εδ21

]
, δ1

})
, (34)

ε ∈
[
0, min

{
δ21
δ2
,

2δ1 −R
2δ2 +R

})
, (35)

αk ∈
(

0, min

{
2(1− ε)

L
,

1

L
,

2δ1 −R− ε(2δ2 +R)

M

})
, ∀k ≥ NP . (36)

If there exists a K ≥ N such that

‖xK − x∗‖ ≤
R

2
. (37)

Given any τ ∈ (0, 1), there exists some αk = O(1/(1 +
√
τ)(k−K)) and |Bk| = O(k−K) for all

k ≥ K such that the sequence {xk}k≥K obtained from the Algorithm 2 converges to some stationary
point with probability at least 1− τ , i.e.,

lim inf
k

E [‖∇ψBk
(xk)‖] = 0 with probability 1− τ. (38)

Proof. Proof Sketch. We split the proof of showing the convergence to some stationary points into
two parts. In the first part, we show the convergence holds for all groups in G̃k; and in the second
part, we show the convergence also holds in Ĝk.

22

Convergence in G̃k part. For any t ∈ N+, applying Corollary 1 yields

ψ(xNP)− ψ(xNP+t) (39)

=

NP+t−1∑
k=NP

ψ(xk)− ψ(xk+1) (40)

≥
NP+t−1∑
k=NP

∑
g∈G̃k

(
αk −

α2
kL

2

)
E
[
‖[∇ψBk

(xk)]g‖2
]

+

NP+t−1∑
k=NP

(
1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 .

(41)

Combining the assumption that ψ is bounded below and letting t→∞ yield
∞∑

k=NP

∑
g∈G̃k

(
αk −

α2
kL

2

)
E
[
‖[∇ψBk

(xk)]g‖2
]

︸ ︷︷ ︸
=:T1

+

∞∑
k=NP

(
1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2

︸ ︷︷ ︸
=:T2

<∞.

(42)

Given αk ∈ (0, 2(1− ε)/L), we have T1 > 0, T2 > 0, combining with T1 + T2 <∞ implies
∞∑

k=NP

∑
g∈G̃k

(
αk −

α2
kL

2

)
E
[
‖[∇ψBk

(xk)]g‖2
]

(43)

=

∞∑
k=NP

∑
g∈G̃k

αkE
[
‖[∇ψBk

(xk)]g‖2
]
−

∞∑
k=NP

∑
g∈G̃k

α2
kL

2
E
[
‖[∇ψBk

(xk)]g‖2
]
. (44)

Based on the boundness of sub-gradient in Assumptions 2 and the choice of stepsize in 3, we have
∞∑

k=NP

∑
g∈G̃k

α2
kL

2
E
[
‖[∇ψBk

(xk)]g‖2
]
<∞, (45)

which yields
∞∑

k=NP

∑
g∈G̃k

αkE
[
‖[∇ψBk

(xk)]g‖2
]
<∞ (46)

⇒ lim inf
k≥NP

∑
g∈G̃k

E
[
‖[∇ψBk

(xk)]g‖2
]

= 0 (47)

⇒ lim
k≥K

∑
g∈G̃k

E
[
‖[∇ψBk

(xk)]g‖2
]

= 0, ∃ K ⊆ {NP , . . .} (48)

Convergence in Ĝk part. Under Assumption 4, Lemma (2, 3, 4) show that if there exists a K ≥ NP
such that

‖xK − x∗‖ ≤ R, (49)

then we have the following results hold

I 6=0(x∗) ⊆ I 6=0(xK), non-zero group coverage, (50)
x∗ ∈ SK , correct optimal inclusion SK , (51)

I 6=0(xK) ∩ I=0(xK+1) ⊆ I=0(x∗), correct zero group projection. (52)

Under Assumption (2, 3, 4), Lemma (5, 6, 7) and Corollary 2 show that: given any τ ∈ (0, 1), with
probability at least 1 − τ , for any k ≥ K, x∗ inhabits Sk. Therefore, for any k ≥ K, any group
g ∈ Ĝk = I 6=0(xk) ∩ I=0(xk+1) will be projected to zero group correctly with probability at least
1− τ .

23

Convergence over the whole space. Based on the discussion in Ĝk part, it is sufficient to focus on
the subspace of G̃k. Hence, (48) naturally implies that the sequence {xk}k∈K converges to some
stationary point with high probability. By the above, we conclude that

P
(

lim inf
k

E [‖∇ψBk
(xk)‖] = 0

)
≥ 1− τ. (53)

B.4.1 Support Lemma in the Proof of Theorem 1

The Lemma 2 shows that if the optimal distance from the current iterate xk to any local minimizer
x∗ is sufficiently small, then HSPG already covers the supports of x∗, i.e., I 6=0(x∗) ⊆ I 6=0(xk).

Lemma 2. Under Assumption 4, given any R ≤ δ1, for any k ≥ NP , if ‖xk − x∗‖ ≤ R, then we
have I 6=0(x∗) ⊆ I 6=0(xk).

Proof. For any g ∈ I 6=0(x∗), we have that

‖[x∗]g‖ − ‖[xk]g‖ ≤ ‖[xk − x∗]g‖ ≤ ‖xk − x∗‖ ≤ R ≤ δ1
‖[xk]g‖ ≥ ‖[x∗]g‖ − δ1 ≥ 2δ1 − δ1 = δ1 > 0

(54)

Hence ‖[xk]g‖ 6= 0, i.e., g ∈ I 6=0(xk). Therefore, I 6=0(x∗) ⊆ I 6=0(xk).

The Lemma 3 shows that if the distance between the current iterate xk and x∗, i.e., ‖xk − x∗‖ is
sufficiently small, then x∗ inhabits the reduced space Sk := S(xk).

Lemma 3. Under Assumption 4, for any k ≥ NP , given ε ∈ [0, δ21/δ2) and

R ≤ R∗ :=
1

ε
·
[
−(δ1 + 2εδ2) +

√
(δ1 + 2εδ2)2 − 4ε2δ2 + 4εδ21

]
, (55)

if ‖xk − x∗‖ ≤ R, we have

[xk]>g [x∗]g ≥ ε ‖[xk]g‖2 , g ∈ I 6=0(x∗). (56)

Consequently, it implies x∗ ∈ Sk by the definition as (4).

Proof. For any g ∈ I 6=0(x∗),

‖[xk]g‖ ≤ ‖[x∗]g‖+R ≤ 2δ2 +R, (57)

and the R∗ defined in (55) is one of the roots of the quadratic εz2 + (4εδ2 + 2δ1)z+ 4εδ22 − 4δ21 = 0
regarding z ∈ R. Thus

[xk]>g [x∗]g =[xk − x∗ + x∗]>g [x∗]g

=[xk − x∗]>g [x∗]g + ‖[x∗]g‖2

≥‖[x∗]g‖2 − ‖[xk − x∗]g‖ ‖[x∗]g‖
= ‖[x∗]g‖ (‖[x∗]g‖ − ‖[xk − x∗]g‖)
≥2δ1(2δ1 −R) ≥ ε(2δ2 +R)2

≥ε ‖[xk]g‖2

(58)

holds for any g ∈ I 6=0(x∗), where the second last inequality holds because that 2δ1(2δ1 − R) =
ε(2δ2 + R)2 as R = R∗. Now combing with the definition of Sk as (4), we have x∗ inhabits Sk,
which completes the proof.

The Lemma 4 shows that if ‖xk − x∗‖ is small enough and the step size is selected properly, every
recovery of group sparsity by Half-Space Step can be guaranteed as successful as stated in the
following lemma.

24

Lemma 4. Under Assumption 4, for any k ≥ NP , given ε ∈
[
0, 2δ1−R2δ2+R

)
, αk ∈(

0, 2δ1−R−ε(2δ2+R)
M

)
and R ∈ (0,min{R∗, δ1}), if ‖xk − x∗‖ ≤ R, then for any g ∈ Ĝk =

I 6=0(xk)
⋂
I0(xk+1), we have g ∈ I0(x∗).

Proof. To prove it by contradiction, suppose there exists some g ∈ Ĝk such that g ∈ I 6=0(x∗). Since
g ∈ Ĝk = I 6=0(xk)

⋂
I0(xk+1), then the group projection (6) is trigerred at g such that

[x̃k+1]>g [xk]g = [xk − α∇ψBk
(xk)]>g [xk]g

= ‖[xk]g‖2 − αk[∇ψBk
(xk)]>g [xk]g < ε ‖[xk]g‖2 .

(59)

On the other hand, it follows the assumption of this lemma and g ∈ I 6=0(x∗) that

‖[xk − x∗]g‖ ≤ ‖xk − x∗‖ ≤ R (60)

Combining the definition of δ1 and δ2 in Assumption 4, we have that

‖[xk]g‖ ≥ ‖[x∗]g‖ −R ≥ 2δ1 −R
‖[xk]g‖ ≤ ‖[x∗]g‖+R ≤ 2δ2 +R

(61)

It then follows 0 < αk ≤ 2δ1−R−ε(2δ2+R)
M , where note 2δ1 − R − ε(2δ2 + R) > 0 as R ≤ δ1 and

ε < 2δ1−R
2δ2+R

, that

[x̃k+1]>g [xk]g = ‖[xk]g‖2 − αk[∇ψBk
(xk)]>g [xk]g

≥ ‖[xk]g‖2 − αk ‖[∇ψBk
(xk)]g‖ ‖[xk]g‖

= ‖[xk]g‖ (‖[xk]g‖ − αk ‖[∇ψBk
(xk)]g‖)

≥ ‖[xk]g‖ (‖[xk]g‖ − αkM)

≥ ‖[xk]g‖ [(2δ1 −R)− αkM]

≥ ‖[xk]g‖
[
(2δ1 −R)− 2δ1 −R− ε(2δ2 +R)

M
M

]
≥ ‖[xk]g‖ [(2δ1 −R)− 2δ1 +R+ ε(2δ2 +R)]

≥ ε ‖[xk]g‖ (2δ2 +R)

≥ ε ‖[xk]g‖2

(62)

which contradicts with (59). Hence, we conclude that any g of variables projected to zero, i.e.,
g ∈ Ĝk = I 6=0(xk)

⋂
I0(xk+1) are exactly also the zeros on the optimal solution x∗, i.e., g ∈

I0(x∗).

We next present that if the iterate of Half-Space Step is close enough to the optimal solution x∗, then
x∗ inhabits all reduced spaces constructed by the subsequent iterates of Half-Space Step with high
probability.

To establish this results, we require the following two lemmas (Lemma 5 and Lemma 6). The
Lemma 5 bounds the accumulated error because of random sampling. Here we introduce the error of
gradient estimator on I 6=0(x) for ψ on mini-batch B as

eB(x) := [∇ψB(x)−∇ψ(x)]I 6=0(x), (63)

where by the definition of r in problem (12), we have eB(x) also equals to the error of estimation for
∇f , i.e., eB(x) = [∇fB(x)−∇f(x)]I 6=0(x).

Lemma 5. Under Assumption 2, given any θ > 1, K ≥ NP , let k := K+ t with t ∈ Z≥0, then there
exists a sequence of stepsize αk = O(1/(1 + θ)t) and corresponding size of mini-batch |Bk| = O(t),
such that for any yt ∈ Rn,

max
{yt}∞t=0∈X∞

∞∑
t=0

αk‖eBk
(yt)‖2 ≤

3R2

8(4R+ 1)

holds with probability at least 1− 1
θ2 .

25

Proof. Define random variable Yt := αK+t‖eBK+t
(yt)‖2 for all t ≥ 0. Since {yt}∞t=0 are arbitrarily

chosen, then the random variables {Yt}∞t=0 are independent. Let Y :=
∑∞
t=0 Yt. Using Chebshev’s

inequality, we obtain

P
(
Y ≥ E[Y] + θ

√
Var[Y]

)
≤ P

(
|Y − E[Y]| ≥ θ

√
Var[Y]

)
≤ 1

θ2
. (64)

And based on the Assumption 2, there exists an upper bound σ2 > 0 for the variance of random noise
eB(x) generated from the one-point mini-batch, i.e., B = {i}, i = 1, . . . , N . Consequently, for each

t ≥ 0, we have E[Yt] ≤ αK+tσ√
|BK+t|

and Var[Yt] ≤
α2

K+tσ
2

|BK+t| , then combining with (64), we have

Y ≤ E[Y] + θ
√

Var[Y] (65)

≤
∞∑
t=0

αK+tσ√
|Bk+t|

+ θ ·
∞∑
t=0

α2
K+tσ

2

|BK+t|
(66)

≤
∞∑
t=0

αK+tσ√
|Bk+t|

+ θ ·
∞∑
t=0

αK+tσ√
|BK+t|

= (1 + θ)

∞∑
t=0

αK+tσ√
|BK+t|

(67)

holds with probability at least 1− 1
θ2 . Here, for the second inequality, we use the property that the

equality E[
∑∞
t=0 Yi] =

∑∞
t=0 E[Yi] holds whenever

∑∞
t=0 E[|Yi|] convergences, see Section 2.1 in

(63); and for the third inequality, we use αK+tσ√
|BK+t|

≤ 1 without loss of generality as the common

setting of large mini-batch size and small step size.

Given any θ > 1, there exists some αk = O(1/(1+θ)t) and |Bk| = O(t), the above series converges
and satisfies that

(1 + θ)

∞∑
t=0

αK+tσ√
|BK+t|

≤ 3R2

8(4R+ 1)
(68)

holds. Notice that the above proof holds for any given sequence {yt}∞t=0 ∈ X∞, thus

max
{yt}∞t=0∈X∞

∞∑
t=0

αk‖eBk
(yt)‖2 ≤

3R2

8(4R+ 1)

holds with probability at least 1− 1
θ2 .

The Lemma 6 draws if previous iterate of Half-Space Step falls into the neighbor of x∗, then under
appropriate step size and mini-batch setting, the current iterate also inhabits the neighbor with high
probability.

Lemma 6. Under the assumptions of Lemma 5, suppose ‖xK − x∗‖ ≤ R/2; for any ` satisfying
K ≤ ` < K + t, 0 < α` ≤ min{ 1

L ,
2δ1−R−ε(2δ2+R)

M }, |B`| ≥ N − N
2M and ‖x` − x∗‖ ≤ R holds,

then

‖xK+t − x∗‖ ≤ R. (69)

holds with probability at least 1− 1
θ2 .

Proof. It follows the assumptions of this lemma, Lemma 4, (15) and (16) that for any ` satisfying
K ≤ ` < K + t

‖[x∗]g‖ = 0, for any g ∈ Ĝ`. (70)

26

Hence we have that for K ≤ ` < K + t,

‖x`+1 − x∗‖2

=
∑
g∈G̃`

‖[x` − x∗ − α`∇Ψ(x`)− α`eB`
(x`)]g‖2 +

∑
g∈Ĝk

‖[x` − x∗ − x`]g‖2

=
∑
g∈G̃`

{
‖[x` − x∗]g‖2 − 2α`[x` − x∗]>g [∇Ψ(x`) + eB`

(x`)]g + α2
` ‖[∇Ψ(x`) + eB`

(x`)]g‖2
}

+
∑
g∈Ĝ`

‖[x∗]g‖2

=
∑
g∈G̃`

{
‖[x` − x∗]g‖2 − 2α`[x` − x∗]>g [∇Ψ(x`)]g − 2α`[x` − x∗]>g [eB`

(x`)]g + α2
` ‖[∇Ψ(x`) + eB`

(x`)]g‖2
}

≤
∑
g∈G̃`

‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2
(

2
α`
L
− α2

`

)
− 2α`[x` − x∗]>g [eB`

(x`)]g + α2
` ‖[eB`

(x`)]g‖2

+ 2α2
` [∇Ψ(x`)]

>
g [eB`

(x`)]g

≤
∑
g∈G̃`

‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2
(

2
α`
L
− α2

`

)
+ 2α` ‖[x` − x∗]g‖ ‖[eB`

(x`)]g‖+ α2
` ‖[eB`

(x`)]g‖2

+ 2α2
` ‖[∇Ψ(x`)]g‖ ‖[eB`

(x`)]g‖

≤
∑
g∈G̃`

‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2
(

2
α`
L
− α2

`

)
+ (2α` + 2α2

`L) ‖[xk − x∗]g‖ ‖[eB`
(x`)]g‖+ α2

` ‖[eB`
(x`)]g‖2

≤
∑
g∈G̃`

{
‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2

(
2
α`
L
− α2

`

)}
+ (2α` + 2α2

`L) ‖x` − x∗‖ ‖eB`
(x`)‖+ α2

` ‖eB`
(x`)‖2

(71)

On the other hand, by the definition of eB(x) as (63), we have that

eB(x) =[∇ΨB(x)−∇Ψ(x)]I 6=0(x) = [∇fB(x)−∇f(x)]I 6=0(x)

=
1

|B|
∑
j∈B

[∇fj(x)]I 6=0(x) −
1

N

N∑
i=1

[∇fi(x)]I 6=0(x)

=
1

N

∑
j∈B

[
N

|B|
[∇fj(x)]I 6=0(x) − [∇fj(x)]I 6=0(x)

]
− 1

N

N∑
i=1
i/∈B

[∇fi(x)]I 6=0(x)

=
1

N

∑
j∈B

[
N − |B|
|B|

[∇fj(x)]I 6=0(x)

]
− 1

N

N∑
i=1
i/∈B

[∇fi(x)]I 6=0(x)

(72)

Thus taking the norm on both side of (72) and using triangle inequality results in the following:

‖eB(x)‖ ≤ 1

N

∑
j∈B

[
N − |B|
|B|

∥∥[∇fj(x)]I 6=0(x)

∥∥]+
1

N

N∑
i=1
i/∈B

∥∥[∇fi(x)]I 6=0(x)

∥∥
≤ 1

N

N − |B|
|B|

|Bk|M +
1

N
(N − |B|)M ≤ 2(N − |B|)M

N
.

(73)

27

Since α` ≤ 1, and |B`| ≥ N − N
2M hence α` ‖eB`

(x`)‖ ≤ 1. Then combining with α` ≤ 1/L, (71)
can be further simplified as

‖x`+1 − x∗‖2

≤
∑
g∈G̃`

{
‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2

(
2
α`
L
− α2

`

)}
+ (2α` + 2α2

`L) ‖x` − x∗‖ ‖eB`
(x`)‖+ α2

` ‖eB`
(x`)‖2

≤
∑
g∈G̃`

{
‖[x` − x∗]g‖2 −

1

L2
‖[∇Ψ(x`)]g‖2

}
+ 4α` ‖x` − x∗‖ ‖eB`

(x`)‖+ α2
` ‖eB`

(x`)‖2

≤‖x` − x∗‖2 + 4α` ‖x` − x∗‖ ‖eB`
(x`)‖+ α` ‖eB`

(x`)‖
(74)

Following from the assumption that ‖x` − x∗‖ ≤ R, then (74) can be further simplified as

‖x`+1 − x∗‖2 ≤‖x` − x∗‖2 + 4α`R ‖eB`
(x`)‖+ αk ‖eB`

(x`)‖
≤‖x` − x∗‖2 + (4R+ 1)α` ‖eB`

(x`)‖
(75)

Summing the the both side of (75) from ` = K to ` = K + t− 1 results in

‖xK+t − x∗‖2 ≤ ‖xK − x∗‖2 + (4R+ 1)

K+t−1∑
`=K

α` ‖eB`
(x`)‖ (76)

It follows Lemma 5 that the followng holds with probability at least 1− 1
θ2 ,

∞∑
`=K

α`‖eB`
(x`)‖ ≤

3R2

4(4R+ 1)
. (77)

Thus we have that

‖xK+t − x∗‖2 ≤ ‖xK − x∗‖2 + (4R+ 1)

K+t−1∑
`=K

α` ‖eB`
(x`)‖

≤ ‖xK − x∗‖2 + (4R+ 1)

∞∑
`=K

α`‖eB`
(x`)‖

≤ R2

4
+ (4R+ 1)

3R2

4(4R+ 1)
≤ R2

4
+

3R2

4
≤ R2,

(78)

holds with probability at least 1− 1
θ2 , which completes the proof.

Based on the above lemmas, the Lemma 7 shows if initial iterate of Half-Space Step locates closely
enough to x∗, step size αk polynomially decreases, and mini-batch size Bk polynomially increases,
then x∗ inhabits all subsequent reduced space {Sk}∞k=K constructed in Half-Space Step with high
probability.

Lemma 7. If ‖xK − x∗‖ ≤ R
2 , K ≥ NP , k = K + t, t ∈ Z+, 0 < αk = O(1/(

√
Nt)) ≤

min{ 2(1−ε)L , 1
L ,

2δ1−R−ε(2δ2+R)
M } and |Bk| = O(t) ≥ N − N

2M . Then for any constant τ ∈ (0, 1),
‖xk − x∗‖ ≤ R with probability at least 1− τ for any k ≥ K.

Proof. It follows Lemma 3 and the assumption of this lemma that x∗ ∈ SK . Moreover, it follows
the assumptions of Lemma (5, 6, 7), the definition of finite-sum f(x) in (12), and the bound of error
as (73) that

P({xk}∞k=K ∈ {x : ‖x− x∗‖ ≤ R}∞) ≥
(

1− 1

θ2

)O(N−K)

≥ 1− τ, (79)

where the last two inequalities comes from that the error vanishing to zero as |Bk| reaches the upper
bound N , and θ is sufficiently large depending on τ and O(N −K).

Corollary 2. Lemma 7 further implies x∗ inhabits all subsequent Sk, i.e., x∗ ∈ Sk for any k ≥ K.

28

B.5 The Initialization Stage

In previous parts, we show that the Half-Space Step guarantees to converge to the optimal solution,
and ensures to recover the no-zero groups of the optimal solution under some assumptions with a
“close-enough” initialization point xNP . To complete the story, in this part, we show that the iterate
obtained from the Subgradient Descent Update in Algorithm 2 satisfies the “close-enough” condition
with high probability. Remark here that the proximal methods, such as Prox-SG, Prox-SVRG
and SAGA, may also serve in the initialization stage. However, for the general regularization r(x),
they may not have closed-form solution for the corresponding inherent subproblems, implying non-
explicit update mechanism to the next iterate. Hence, people may have to inconveniently approximate
the solutions of proximal operator by other techniques, whereas the sub-gradient method does not
have these drawbacks. Therefore, for the generality of HSPG, we select the sub-gradient method in
the Initialization Stage by default.

B.5.1 Convergence Analysis of Initialization Stage

In this part, we show that the “close enough” condition

‖xk − x∗‖ ≤
R

2
(80)

proposed in Theorem 1 can be achieved via the Initialization Stage (Subgradient Descent Update) in
Algorithm 2 under the Assumption 5.

Assumption 5. Assume the following assumptions hold.

• (A5-1). f : Rn 7→ R is differentiable and µ-strongly convex. r : Rn 7→ R is convex.

• (A5-2). There exists an universal constant M such that the stochastic gradient ∇fB(x)
satisfies ‖∇fB(x)‖2 ≤M for all x ∈ Rd and mini-batch B.

• (A5-3). The stochastic gradient ∇fB(x) satisfies EB[∇fB(x)|x] = ∇f(x) for all x ∈ Rn.

Proposition 2. Under Assumption 5, for any R > 0, any τ ∈ (0, 1), set

N =

⌈
log

(
τR

4‖x0 − x∗‖22

)/
log

(
1− τR

4M

)⌉
, (81)

α0 = α1 = . . . = αNP−1 =
τµR

4M2
, (82)

where R based on the setting of Theorem 1. We have the Algorithm 1 (Subgradient Descent Update)
returns a solution xNP that satisfies ‖xNP − x∗‖2 ≤ R/2 with probability 1− τ .

Proof. Let x∗ be the global optimal solution of (2). Let∇ψ(x) = ∇f(x) + λζ(x) and∇ψB(x) =
∇fB(x) + λζ(x) given any point x ∈ Rn and mini-batch B. Consider

‖xk+1 − x∗‖22 = ‖xk − αk∇ψBk
(xk)− x∗‖22 (83)

= ‖xk − x∗‖22 − 2αk〈∇ψBk
(xk),xk − x∗〉+ ‖αk∇ψBk

(xk)‖22. (84)

Due to (A1) in Assumption 5, the µ-strongly convexity of f and the convexity of r yields

ψ(x∗) ≥ ψ(xk) + 〈∇ψ(xk),x∗ − xk〉+
µ

2
‖xk − x∗‖22. (85)

29

Thus

‖xk+1 − x∗‖22 (86)

= ‖xk − x∗‖22 − 2αk〈∇ψBk
(xk),xk − x∗〉+ ‖αk∇ψBk

(xk)‖22 (87)

= ‖xk − x∗‖22 + 2αk〈∇ψBk
(xk),x∗ − xk〉+ ‖αk∇ψBk

(xk)‖22 (88)

= ‖xk − x∗‖22 + 2αk〈∇ψ(xk)−∇ψ(xk) +∇ψBk
(xk),x∗ − xk〉+ ‖αk∇ψBk

(xk)‖22 (89)

≤ ‖xk − x∗‖22 + 2αk

(
ψ(x∗)− ψ(xk)− µ

2
‖xk − x∗‖22

)
(90)

+ 2αk〈∇ψBk
(xk)−∇ψ(xk),x∗ − xk〉+ ‖αk∇ψBk

(xk)‖22 (91)

≤ (1− αkµ)‖xk − x∗‖22 − 2αk(ψ(xk)− ψ(x∗)) + α2
k‖∇ψ(xk)‖22 (92)

+ 2αk〈∇ψBk
(xk)−∇ψ(xk),x∗ − xk〉 (93)

≤ (1− αkµ)‖xk − x∗‖22 + α2
kM

2 + 2αk〈∇ψBk
(xk)−∇ψ(xk),x∗ − xk〉. (94)

Given xk, due to (A5-2) in Assumption 5, taking expectation over Bk yields

EBk
[‖xk+1 − x∗‖22|xk] ≤ (1− αkµ)‖xk − x∗‖22 + α2

kM
2, (95)

where the above inequality holds by (A5-3) in Assumption 5

EBk
[〈∇ψBk

(xk)−∇ψ(xk),x∗ − xk〉|xk] = 0. (96)

For any k ∈ N+, any constant c > 0, and initial point x0, setting αk = µ
cM2 , apply above inequality

recursively yields

EH
[
‖xk − x∗‖22

]
≤
(

1− 1

cM2

)k
‖x0 − x∗‖22 +

1

c
, (97)

whereH = {B0, . . . ,Bk−1} denotes the whole history until step k.

Non-asymptotic bounds. Combine above together, given any R/2 > 0, for any τ ∈ (0, 1), set

N =

⌈
log

(
τR

4‖x0 − x∗‖22

)/
log

(
1− τR

4M

)⌉
, (98)

α0 = α1 = . . . = αNP−1 =
τµR

4M2
, (99)

by Markov inequality, we have

‖xk − x∗‖2 ≤ R/2 (100)

holds with probability 1− τ .

C Extensive Numerical Experiments

In this Appendix, we include extensive numerical experiments in the view of optimization to demon-
strate the superiority of HSPG to other classical proximal methods on the sparsity exploration and
the competitiveness on objective convergence in both convex and nonconvex settings. Particularly,
in Appendix C.1, we provide convex experiments to (i) demonstrate the validness of group sparsity
identification of HSPG; (ii) present comprehensive comparison to Prox-SG, RDA and Prox-SVRG
on benchmark convex problems. In Appendix C.2, we show additional nonconvex experiments to
reveal the superiority of HSPG to competitors on group sparsity exploration.

C.1 Convex Experiments

Linear Regression on Synthetic Data We numerically validate the proposed HSPG on group
sparsity identification by linear regression problems with `1/`2 regularizations using synthetic data.
Consider a data matrix A ∈ RN×n consisting of N instances and the target variable y ∈ RN , we are
interested in the following problem:

minimize
x∈Rn

1

2N
‖Ax− y‖2 + λ

∑
g∈G
‖[x]g‖ . (101)

30

Our goal is to empirically show that HSPG is able to identify the ground truth zero groups with
synthetic data. We conduct the experiments as follows: (i) generate the data matrix A whose elements
are uniformly distributed among [−1, 1]; (ii) generate a vector x∗ working as the ground truth
solution, where the elements are uniformly distributed among [−1, 1] and the coordinates are equally
divided into 10 groups (|G| = 10); (iii) randomly set a number of groups of x∗ to be 0 according to
a pre-specified group sparsity ratio; (iv) compute the target variable y = Ax∗; (v) solve the above
problem (101) for x with A and y only, and then evaluate the Intersection over Union (IoU) with
respect to the identities of the zero groups between the computed solution estimate x̂ by HSPG and
the ground truth x∗.

We test HSPG on (101) under different problem settings. For a slim matrix A where N ≥ n, we
test with various group sparsity ratios among {0.1, 0.3, 0.5, 0.7, 0.9}, and for a fat matrix A where
N < n, we only test with a certain group sparsity value since a recovery of x∗ requires that the
number of non-zero elements in x∗ is bounded by N . Throughout the experiments, we set λ to
be 100/N , the mini-batch size |B| to be 64, step size αk to be 0.1 (constant), and fine-tune ε per
problem. Based on a similar statistical test on objective function stationarity (98), we switch to
Half-Space Step roughly after 30 epoches. Table 8 shows that under each setting, the proposed HSPG
correctly identifies the groups of zeros as indicated by IoU(x̂,x∗) = 1.0, which is a strong evidence
to show the correctness of group sparsity identification of HSPG.

Table 8: Linear regression problem settings and IoU of the recovered solutions by HSPG.
N n Group sparsity ratio of x∗ IoU(x̂, x∗)

Slim A

10000 1000 {0.1, 0.3, 0.5, 0.7, 0.9} 1.0
10000 2000 {0.1, 0.3, 0.5, 0.7, 0.9} 1.0
10000 3000 {0.1, 0.3, 0.5, 0.7, 0.9} 1.0
10000 4000 {0.1, 0.3, 0.5, 0.7, 0.9} 1.0

Fat A

200 1000 0.9 1.0
300 1000 0.8 1.0
400 1000 0.7 1.0
500 1000 0.6 1.0

Logistic Regression We then focus on the benchmark convex logistic regression problem with
the mixed `1/`2-regularization given N examples (d1, l1), · · · , (dN , lN) where di ∈ Rn and li ∈
{−1, 1} with the form

minimize
(x;b)∈Rn+1

1

N

N∑
i=1

log(1 + e−li(x
T di+b)) + λ

∑
g∈G

‖[x]g‖ , (102)

for binary classification with a bias b ∈ R. We set the regularization parameter λ as 100/N throughout
the experiments since it yields high sparse solutions and low object value f ’s, equally decompose
the variables into 10 groups to form G, and test problem (102) on 8 standard publicly available
large-scale datasets from LIBSVM repository (6) as summarized in Table 9. All convex experiments
are conducted on a 64-bit operating system with an Intel(R) Core(TM) i7-7700K CPU @ 4.20 GHz
and 32 GB random-access memory.

We run the solvers with a maximum number of epochs as 60 following (8). The mini-batch size |B|
is set to be min{256, d0.01Ne} similarly to (93). The step size αk setting follows [Section 4](88).
Particularly, we first compute a Lipschitz constant L as maxi ‖di‖2 /4, then fine tune and select
constant αk ≡ α = 1/L to Prox-SG and Prox-SVRG since it exhibits the best results. For RDA, the
step size parameter γ is fined tuned as the one with the best performance among all powers of 10.
For HSPG, we set αk as the same as Prox-SG and Prox-SVRG in practice. We select two ε’s as 0
and 0.8. The final objective value ψ and group sparsity in the solutions are reported in Table 10-11,
where we mark the best values as bold to facilitate the comparison. Furthermore, Figure 7 plots the
relative runtime of these solvers for each dataset, scaled by the runtime of the most time-consuming
solver.

Table 11 shows that our HSPG is definitely the best solver on exploring the group sparsity of the
solutions. In fact, HSPG under ε = 0.8 performs all the best except ijcnn1. Prox-SVRG is the
second best solver on group sparsity exploration, which demonstrates that the variance reduction
techniques works well in convex setting to promote sparsity, but not in non-convex settings. HSPG

31

a9a higgs ijcnn1 kdda

1.0

0.5

0.0

Prox-SG
RDA
Prox-SVRG
HSProx-SG

R
el
a
ti
v
e
R
u
n
ti
m
e

news20 real-sim url w8a

Figure 7: Relative runtime.

under ε = 0 performs much better than Prox-SG which matches the better sparsity recovery property
of HSPG even under ε as 0. Moreover, as shown in Table 10, we observe that all solvers perform
quite competitively in terms of final objective values (round up to 3 decimals) except RDA, which
demonstrates that HSPG reaches comparable convergence as Prox-SG and Prox-SVRG in practice.
Finally, Figure 7 indicates that Prox-SG, RDA and HSPG have similar computational cost to proceed,
except Prox-SVRG due to its periodical full gradient computation.

Table 9: Summary of datasets.
Dataset N n Attribute Dataset N n Attribute

a9a 32561 123 binary {0, 1} news20 19996 1355191 unit-length
higgs 11000000 28 real [−3, 41] real-sim 72309 20958 real [0, 1]
ijcnn1 49990 22 real [-1, 1] url_combined 2396130 3231961 real [−4, 9]
kdda 8407752 20216830 real [−1, 4] w8a 49749 300 binary {0, 1}

Table 10: Final objective values ψ for tested algorithms on convex problems.
Dataset Prox-SG RDA Prox-SVRG

HSPG
ε as 0 ε as 0.8

a9a 0.355 0.359 0.355 0.355 0.355
higgs 0.357 0.360 0.365 0.358 0.358
ijcnn1 0.248 0.278 0.248 0.248 0.248
kdda 0.103 0.124 0.103 0.103 0.103

news20 0.538 0.693 0.538 0.538 0.538
real-sim 0.242 0.666 0.244 0.242 0.242

url_combined 0.397 0.579 0.391 0.405 0.405
w8a 0.110 0.111 0.112 0.110 0.110

Table 11: Group sparsity for tested algorithms on convex problems.
Dataset Prox-SG RDA Prox-SVRG

HSPG
ε as 0 ε as 0.8

a9a 20% 30% 30% 30% 30%
higgs 0% 10% 0% 0% 30%
ijcnn1 50% 70% 60% 60% 60%
kdda 0% 0% 0% 0% 80%

news20 20% 80% 90% 80% 90%
real-sim 0% 0% 80% 0% 80%

url_combined 0% 0% 0% 0% 90%
w8a 0% 0% 0% 0% 0%

C.2 Nonconvex Experiments

To illustrate, among the state-of-the-art proximal stochastic optimizers, we exclude RDA because
of no acceptable results attained during our following tests with the step size parameter γ setting
throughout all powers of 10 from 10−3 to 103, and skip Prox-Spider and SAGA since Prox-SVRG has
been a superb representative to the proximal incremental gradient methods. We consider the popular
image classification tasks, with popular architectures, i.e., VGG16 and ResNet18 on benchmark
datasets CIFAR10 and Fashion-MNIST (86), where the group partition G is defined as 3D kernel
following (14; 58), which are not ZIGs.

32

Table 12: Final ψ/group sparsity ratio/testing accuracy on non-convex problems over non-ZIGs.

Backbone Dataset Prox-SG Prox-SVRG HSPG

VGG16 CIFAR10 0.59 / 52.58% / 90.50% 0.85 / 14.13% / 89.16% 0.58 / 76.47% / 91.93%
Fashion-MNIST 0.52 / 12.31% / 92.83% 2.66 / 0.38% / 92.72% 0.52 / 47.82% / 92.87%

ResNet18 CIFAR10 0.31 / 20.27% / 94.36% 0.37 / 4.60% / 94.11% 0.31 / 69.98% / 94.40%
Fashion-MNIST 0.14 / 0.00% / 94.94% 0.18 / 0.00% / 94.70% 0.13 / 77.08% / 94.61%

MobileNetV1 CIFAR10 0.40 / 58.05% / 91.54% 0.65 / 29.20% / 89.68% 0.40 / 71.36% / 92.04%
Fashion-MNIST 0.22 / 62.62% / 94.22% 0.40 / 41.99% / 94.19% 0.26 / 84.26% / 94.52%

Table 12 demonstrates the effectiveness and superiority of HSPG, where we mark the best values as
bold, and the group sparsity ratio is defined as the percentage of zero groups. In particular, (i) HSPG
computes remarkably higher group sparsity than other methods on all tests, of which the solutions are
typically multiple times sparser in the manner of group than those of Prox-SG, while Prox-SVRG
performs not comparably since the variance reduction techniques may not work as desired for deep
learning applications (13); (ii) HSPG performs competitively with respect to the final objective values
ψ. In addition, all the methods reach a comparable generalization performance on unseen test data.
On the other hand, sparse regularization methods may yield solutions with entries that are not exactly
zero but are very small. Sometimes all entries below certain threshold (T) are set to zero (44; 20).
However, such simple truncation mechanism is heuristic-rule based, hence may hurt convergence and
accuracy. To illustrate this, we set the groups of the solutions of Prox-SG and Prox-SVRG to zero if
the magnitudes of the group variables are less than some T , and denote the corresponding solutions
as Prox-SG* and Prox-SVRG*.

60%

70%

32%

(i) (ii)

94%

28%

17%

:HSPG

:Prox-SG*

:Prox-SVRG*

T
estin

g
A
ccu

racy

G
ro
u
p
S
p
ar
si
ty

R
at
io

(a) HSPG VS Truncation over non-ZIGs.

24%

16%

25%

(i) (ii)

2.5%

3.9%
4.0%

:HSPG

:Prox-SG*

:SGD*

#
of

P
aram

s

F
L
O
P
s

(b) HSPG VS Truncation over ZIGs.

Figure 8: HSPG versus simple truncation. (a) On ResNet18 with CIFAR10 over non-ZIGs. (b) On VGG16
with CIFAR10 over ZIGs.

As shown in Figure 8a(i), under the T with no accuracy regression, Prox-SG* and Prox-SVRG*
reach higher group sparsity ratio as 60% and 32% compared to Table 12, but still significantly lower
than the 70% of HSPG without simple truncation. Under the T to reach the same group sparsity ratio
as HSPG, the testing accuracy of Prox-SG* and Prox-SVRG* regresses drastically to 28% and 17%
in Figure 8a(ii) respectively. Remark here that although further refitting the models from Prox-SG*
and Prox-SVRG* on active (non-zero) groups of weights may recover the accuracy regression, it
requires additional engineering efforts and training cost, which is less attractive and convenient
than HSPG (with no need to refit). Similarly, as shown in Figure 8b, under the ZIG partition and the
T without accuracy regression, the FLOPs and number of parameters reductions achieved by SGD*
(subgradient descent with simple truncation) and Prox-SG* are not comparable with those achieve
by HSPG, i.e., HSPG achieves about 1.5× fewer FLOPs and number of parameters.

33

	Implementation Details of OTO
	ZIG for ResNet50
	Training Details
	Error Bar Analysis
	FLOPs Reduction Breakdown

	Convergence Analysis of HSPG
	Related Work
	Sufficient Decrease of Half-Space Step
	Projection Region of Half-Space Step
	Convergence Analysis of Half-Space Step
	Support Lemma in the Proof of Theorem 1

	The Initialization Stage
	Convergence Analysis of Initialization Stage

	Extensive Numerical Experiments
	Convex Experiments
	Nonconvex Experiments

