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Abstract

In the paper, we study the underdamped Langevin diffusion (ULD) with strongly-
convex potential consisting of finite summation of N smooth components, and
propose an efficient discretization method, which requires O(N + d

1
3N

2
3 /ε

2
3 )

gradient evaluations to achieve ε-error (in
√

E∥·∥22 distance) for approximating
d-dimensional ULD. Moreover, we prove a lower bound of gradient complexity as
Ω(N + d

1
3N

2
3 /ε

2
3 ), which indicates that our method is optimal in dependence of

N , ε, and d. In particular, we apply our method to sample the strongly-log-concave
distribution and obtain gradient complexity better than all existing gradient based
sampling algorithms. Experimental results on both synthetic and real-world data
show that our new method consistently outperforms the existing ULD approaches.

1 Introduction

Sampling is an important research problem in statistics learning with many applications such as
Bayesian inference [1], multi-arm bandit optimization [2], and reinforcement learning [3]. One
of the fundamental problems in these applications is to sample from a high-dimensional strongly-
log-concave distribution. Recently, several Markov chain Monte Carlo (MCMC) based methods
were proposed to solve this problem based on underdamped Langevin diffusion (ULD). This con-
tinuous diffusion process converges to the target distribution exponentially fast. Thus, the methods
approximating a ULD process could be used to sample from the target distribution within certain
accuracy.

Multiple discretization methods have been proposed for approximating ULD. Among them, the
Euler-Maruyama discretization [4] is the simplest one but generates the largest error. Recently the
left point method (LPM) 1 [5] was introduced to fix the gradient term in ULD to be the gradient
at k-th iteration, and then integrate the new linear stochastic differential equation (SDE) with a
small time-interval. Subsequently, Shen and Lee [6] proposed randomized midpoint method (RMM)
with smaller error. There are also discretization schemes based on splitting [7] or Runge-Kutta
method [8, 9]. More recently, Cao et al. [10] derived an information-based complexity lower bound
for simulating a d-dimensional ULD. Under the assumption that the full gradient oracle ∇f(x) is
evaluated at most n times, they show a lower bound for worst-case error by perturbation analysis,
which matches the discretization error upper bound of RMM in the dependence of d and n.

Although the ULD-MCMC methods with full gradient oracle are largely understood, many real-world
applications involve summation form of potential function and large-scale data, which leads to the
need of stochastic gradient methods. The vanilla stochastic gradient methods have been used to
replace full gradient [5]. Albeit the computational cost for each iteration is reduced, the variance of

1Although this method is mostly just denoted as ULD-MCMC, we adopt the name LPM to distinguish it
from other discretization methods. The name comes from the fact that gradient is evaluated at the left point of
the time interval.
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Table 1: Summary of gradient complexity of sampling methods, which is defined as number of
gradient evaluation of ∇fi(x) needed to sample from m-strongly-log-concave distributions up to
ε
√
d/m accuracy in 2-Wasserstein distance where ε ≤ 1 is the target accuracy, d is the dimension.

ULA, LPM, RMM, and ALUM are full gradient methods, therefore, gradient complexities for them
are sample size N times the iteration complexities. Only dependence on d, ε, and N are shown below.
The dependence of batch size b is made clear in Table 3. The dependence of condition number κ is
discussed in Section 7.

Algorithms Gradient complexities

Unadjusted Langevin Algorithm (ULA) [15, 16] Õ(Nε−2)

LPM [17] Õ(Nε−1)

RMM [6] Õ(Nε−
2
3 )

ALUM (Ours) Õ(Nε−
2
3 )

Stochastic Gradient LPM (SG-LPM) [5] Õ(ε−2)

SVRG-LPM [11]2 Õ(N + ε−1 +N
2
3 ε−

2
3 )

CV-ULD [18]3 Õ(N + ε−3)

SVRG-ALUM (Ours) Õ(N +N
2
3 ε−

2
3 )

SAGA-ALUM (Ours) Õ(N +N
2
3 ε−

2
3 )

stochastic gradient is much larger than the discretization error and therefore degenerates the overall
performance. Previous works [11, 12] used stochastic variance reduced gradient (SVRG) [13] and
SAGA [14] instead, but the gradient complexities of these methods are still worse than the full
gradient RMM in terms of dependence on accuracy ε. Thus, there exists a natural question:

What is the optimal ULD-MCMC method with sum-decomposable potential?

In this paper, we focus on optimal dependence of dimension d, components number N and accuracy
ε in gradient complexity for estimating a ULD process. We answer this question by two parts. We
first provide a novel ULD-MCMC method and derive the corresponding complexity upper bound in
Sections 4 and 5. After that, we analyze the worse case error and show that the lower bound matches
the upper bound in Section 6. The major contributions of our paper can be summarized as follows.

1. We propose a new full gradient ULD-MCMC method, called as AcceLerated ULD method
(ALUM), whose discretization error has the same order dependence on dimension d, step size h
as RMM. Although RMM already has optimal asymptotic complexity in full gradient setting,
ALUM is still of practical interest. Compared with RMM, which uses two gradient evaluations
at each iteration, ALUM uses gradient less frequently and only requires one gradient at each
iteration to achieve constant speedup.

2. We further propose VR-ALUM methods, including SVRG-ALUM and SAGA-ALUM, which
utilize the unbiased variance reduction techniques in ALUM under sum-decomposable setting.
We show that these methods achieve better gradient complexity than all existing gradient based
MCMC approaches. These gradient complexities for sampling from a strongly-log-concave
distribution are compared in Table 1.

3. We derive an information-based lower bound on worst-case error for estimating a ULD process
with only gradient oracle and weighted Brownian motion oracle. We show that in order to
achieve ε approximation accuracy, Ω(N + d

1
3N

2
3 ε−

2
3 ) single component gradient evaluations

are needed. This lower bound matches the upper bound for VR-ALUM in terms of dependence
of dimension d, sample size N , and accuracy ε. Therefore, our VR-ALUM methods are indeed
optimal for estimating a ULD process under sum-decomposable setting.

2In Zou et al. [11], the authors call their method SVR-HMC. However, their method is not based on
Hamiltonian Monte Carlo (HMC), but based on ULD. Their method is just applying SVRG to replace full
gradient in LPM.

3Further explanation and comparison is shown in Appendix A.2.
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2 Related work

Though we mainly use the gradient oracle in this paper, there is also a large body of sampling
algorithms which leverage zeroth order potential value oracle. For example, Metropolis-Hastings
accept-reject step could be used to ensure an MCMC converges to a stationary distribution equal to
the target distribution [19, 20, 21, 22, 23] and the linear convergence can be obtained. For example,
MALA [24, 21, 25], as Metropolis-adjusted ULA, can achieve ε error in total variation distance within
O(d2 log(1/ε)) steps under certain initialization [26]. Note that purely gradient based sampling
algorithms typically only converge sub-linearly because the stationary distribution is different from
the target distribution.

Other diffusion processes could also be used for constructing MCMC. ULA, a discretization of
Langevin diffusion (LD) [27, 24], is the first commonly used gradient-based MCMC. We will provide
an overview for some LD-based and ULD-based methods in Appendix A.1. Later, higher order
diffusion process is also discussed. Although the path is even smoother than ULD, currently it is not
clear whether such higher order smoothness of path could be leveraged to accelerate the convergence
without extra assumptions on potential function. Mou et al. [28] studied third-order diffusion, but
their acceleration requires special structure or high order smoothness of potential. The more general
diffusion process, which converges to the target distribution, was studied in Ma et al. [29].

3 Preliminary

The problem of sampling from a strongly-log-concave distribution involves a probability density
function p∗(x) defined on a real vector space Rd. A corresponding potential function f(x) =
− log(p∗(x)) can be defined such that f(x) is strongly convex. One way to solve this sampling
problem is constructing a Markov chain that converges to a stationary distribution that is the same as
or similar to the target distribution. In Appendix A.1, we introduce several such Markov chains as
discretization of certain continuous stochastic processes, and we roughly analyze discretization error
of these methods with pointing out the bottleneck.

We use Õ(f) = O(f) logO(1)(f) to omit logarithm factor. ∥·∥2 means the Euclidean norm. We
define a norm of random vector as ∥·∥L2 =

√
E∥·∥22. Next, we list our assumptions on potential

f(x).

Assumption 1 (Sum-decomposable). f(x) =
∑N

i=1 fi(x), where integer N is the sample size.

Assumption 2 (Smoothness). Each function fi is twice differentiable on Rd and there exists a
constant L > 0, such that ∇2fi(x) ≼ L

N I for any x ∈ Rd where I is the identity matrix. It can be
easily verified that f(x) is L-smooth.

Assumption 3 (Strong Convexity). There exists a constant m > 0 such that: f(x) − f(y) ≥
⟨∇f(y),x− y⟩+ m

2 ∥x− y∥22. We define the condition number κ := L/m.

We finally define the 2-Wasserstein distance between distributions. For any pair of probability
measures µ and ν on the same parameter space, a transference plan ζ between µ and ν is a joint
distribution such that the marginal distributions on two sets of coordinates are µ and ν, respectively.
We denote Γ(µ, ν) as the set of all transference plans, and define the 2-Wasserstein distance between
µ and ν as follows:

W 2
2 (µ, ν) = inf

ζ∈Γ(µ,ν)

∫
∥x− y∥22dζ(x, y).

4 AcceLerated ULD-MCMC (ALUM) methods

In this section, we propose a class of AcceLerated ULD-MCMC (ALUM) methods based on approxi-
mation of the continuous ULD process:

dXt = Vtdt, dVt = −∇f(Xt)dt− γVtdt+
√
2γdBt. (1)

The gradient term in the above SDE could be highly non-linear such that closed form solution is
not available. Thus, we propose an estimation of SDE solution at time point h which only requires
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gradient evaluation at one single point:

X
(o)
h = X0 + ψ1(h)V0 − hψ1(h− ah)∇f(X(e)

ah ) + ex,[0,h],

V
(o)
h = ψ0(h)V0 − hψ0(h− ah)∇f(X(e)

ah ) + ev,[0,h],

X
(e)
ah = X0 + ψ1(ah)V0 + ex,[0,ah],

(2)

where the random variable a is uniform random variable in [0, 1], ψi(·) and noise terms ex,[0,h],
ev,[0,h], ex,[0,ah] are defined as follows 4.

ψ0(h) = e−γh, ψ1(h) =
1

γ
(1− e−γh),

ex,[0,h] =
√
2γ

∫ h

0

ψ1(h− s)dBs, ev,[0,h] =
√

2γ

∫ h

0

ψ0(h− s)dBs.

(3)

4.1 Full gradient ALUM

In this subsection, we propose a full gradient ALUM method, which is shown in Algorithm 1.
Specifically, the update rule is obtained by setting x

(o)
k+1,v

(o)
k+1 to X

(o)
h ,V

(o)
h where the ULD starts

from X0 = x
(o)
k ,V0 = v

(o)
k and h is a small step size.

Algorithm 1: Full gradient ALUM Method

Input: Initial point (x(o)
0 ,v

(o)
0 ), parameter γ, iteration

number K, and step size h > 0.
for k = 0 to K − 1 do

Randomly sample ak uniformly from [0, 1];
Generate ex,[0,h],k, ev,[0,h],k, ex,[0,akh],k according to
Appendix A.5;
x
(e)
k = x

(o)
k + ψ1(akh)v

(o)
k + ex,[0,akh],k;

Calculate full gradient∇f(x(e)
k );

x
(o)
k+1 =

x
(o)
k +ψ1(h)v

(o)
k −hψ1(h−akh)∇f(x(e)

k )+ex,[0,h],k;
v
(o)
k+1 = ψ0(h)v

(o)
k −hψ0(h−akh)∇f(x(e)

k )+ev,[0,h],k;
end for
Output: x(o)

K .

Next, we compare our method with
both RMM and Nesterov’s acceler-
ated gradient method (NAG) which
has been shown optimal for gradient
based optimization. Compared to
RMM: By comparing the formula
in (19) and (2), it is easy to see that
ALUM and RMM differ in one single
term −ψ2(ah)∇f(X0).

Our motivation of dropping this term
is to reduce the computations. By
deleting this term from the algorithm,
only one gradient evaluation at a ran-
domized midpoint is needed at each
iteration. This compares favorably to
the RMM, which requires two gradi-
ent evaluations at each iteration.

However, could this method still estimate ULD accurately with only half gradient evaluations?
We firmly answer this question with rigorous error analysis in Theorem 2. Roughly speaking, if we
only consider the error’s dependence on step size h, the answer is yes. In this section, we only give
an intuition of how that is possible.

In Appendix A.1, we show that RMM has very low bias and high variance. Therefore, the bottleneck
is the variance, and increasing the bias slightly would not degenerate the overall performance much if
the bias is not larger than the error introduced by variance. The dropped term −ψ2(ah)∇f(X0) has
norm O(h2), and the coefficient of gradient in Vh is O(h). Thus, the bias introduced in single step is
O(h3) when we use step size h. After accumulating for T/h = O(h−1) iterations, the bias is O(h2),
which still has better dependence on h than the square root of variance O(h3/2).

With increased bias, the complexities of ALUM and some other variants5 still have the same depen-
dence on ε as RMM, the highest order dependence on κ could deteriorate as discussed in Section 7.

Compared to Nesterov’s accelerated gradient (NAG) method: NAG is a gradient based optimiza-
tion method [30]. Based on [31], NAG could be formulated as the following momentum method:

4ex,[0,ah] is obtained by simply substituting h with ah in the definition of ex,[0,h].
5We can drop ex,[0,h],k and ex,[0,akh],k in (2) to derive other variants of ALUM. The bias of these variants

increases to O(h3/2), which is still no larger than the square root of variance. The maximum order dependence
on h is the same, thus the final iteration complexity has the same dependence on ε as RMM.
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xk+1 = xk + ckxk + c′k∇f(x
(e)
k ), vk+1 = ckxk + c′k∇f(x

(e)
k ), x

(e)
k = xk + ckxk . (4)

We can see that the main differences between Algorithm 1 and (4) are coefficients and additional
Gaussian noise terms. The coefficients in NAG are set in a deterministic way. However, the
coefficients in ALUM could be random values from fixed distributions. The additional noise terms in
ALUM come from the Brownian motion term in ULD and are necessary for sampling methods.

Despite the differences, both NAG and ALUM use one gradient at each iteration, and both of them
take a big jump along current momentum direction to calculate the gradient instead of directly
computing the gradient at current iterate.

4.2 Variance-reduced ALUM (VR-ALUM)

In the subsection, we propose variance-reduced stochastic ALUM (VR-ALUM) methods based on
two common unbiased 6 variance-reduced techniques: stochastic variance reduced gradient (SVRG)
[13] and SAGA [14]. VR-ALUM comes from simply replacing all full gradient in Algorithm 1 with
a gradient estimation ∇̃k. We show Algorithm 2 in the Appendix A.6 due to the limit of space.

Next, we briefly introduce these two variance reduction techniques. SVRG utilizes the follow-
ing gradient estimation (Bk is the batch of k-th iteration and b is the batch size): ∇̃SVRG

k =
N
b

∑
i∈Bk

(
∇fi(x(e)∇̃

k ) − ∇fi(x)
)
+
∑N

i=1∇fi(x). The full gradient
∑N

i=1∇fi(x) and point
x are updated after every τ evaluations of ∇̃SVRG

k . We call the hyperparameter τ as epoch length.

SAGA estimates the gradient in the following way, where ϕi
k+1 is set as x(e)∇̃

k if and only if i ∈ Bk,

otherwise ϕi
k+1 = ϕi

k: ∇̃SAGA
k = N

b

∑
i∈Bk

(
∇fi(x(e)∇̃

k ) − ∇fi(ϕi
k)
)
+
∑N

i=1∇fi(ϕi
k). SAGA

does not re-compute but stores the latest gradient information∇fi(ϕi
k) for each fi. Therefore, SAGA

does not introduce extra gradient evaluation except for initialization, but has much larger storage
requirements.

Both SVRG and SAGA are unbiased, which means EBk
∇̃k = ∇f(x(e)∇̃

k ), where EBk
means

expectation over random batch at k-th iteration. Moreover, both SVRG and SAGA reduce the mean-
squared error of gradient estimation and satisfy bounded MSE property proposed in Appendix B.3.

5 Theoretical analysis

We provide non-asymptotic upper bounds on sampling error and discretization error for our methods,
including full gradient ALUM and VR-ALUMs. The proof is shown in Appendix B. Throughout
this section, we assume W2(p0, p

∗) = O(1)
√
d/m when deriving asymptotic results. This means

the initialization is not too far away from the target distribution, and can be achieved under multiple
setting as discussed in Appendix A.7.

5.1 Convergence analysis of full gradient ALUM

Recall that ALUM can be used for solving two different but related problems: strongly-log-concave
sampling and approximating the ULD. We show the upper bound for sampling error in Theorem 1
and the upper bound for approximation error in Theorem 2 separately.
Theorem 1. Suppose Assumptions 1 to 3 hold. Given an initial distribution p0(x), we initialize ALUM
with random x

(o)
0 based on probability p0 and random v

(o)
0 from standard Gaussian distribution.

Assume L = 1 and let γ = 2, pk be the distribution of x(o)
k and p∗ be the target distribution. Assume

we use step size h ≤ m
22 . After running the ALUM for k iterations, we have the following upper

bound of sampling error in 2-Wasserstein distance:

W2(pk, p
∗) ≤ 2(1− mh

4
)kW2(p0, p

∗) + 12

√
h3d

m
. (5)

6The reason we choose unbiased variance reduction instead of biased one is that bias accumulates quicker
than variance, therefore generates higher overall error.
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Table 2: Iteration complexities for full gradient ALUM on both sampling and approximation problem.
Problem Accuracy Step size h Iteration complexity

Sampling ε
√
d/m in W2 h = O(min(ε

2
3 ,m)) Õ(max(κ/ε

2
3 , κ2))

Approximating ε in L2 h = O(min(m
2
3 ε

2
3 d−

1
3 ,m)) O(max(Tκ

2
3 ε−

2
3 d

1
3 , Tκ))

Theorem 2. With same assumptions and setup in Theorem 1, we consider Xkh which comes from a
continuous ULD starting from the same position as x(o)

0 with probability 1. We have the following
upper bound of discretization error:

∥x(o)
k −Xkh∥L2

≤ 38

√
h3

m
W2(p0, p

∗) + 31

√
h3d

m
. (6)

Remark 1. The assumption L = 1 actually does not limit the availability of the algorithm. For any
function f(x) with L ̸= 1, we can define another function f ′(x′) = f( 1√

L
x′) which satisfies L = 1.

ALUM with step size h ≤ m
22L and initial momentum from the standard Gaussian distribution can

be used to sample x′ from the distribution p′(x′) ∝ exp(−f ′(x′)). The sample x from distribution
p(x) ∝ exp(−f(x)) could be obtained by a transform x = 1√

L
x′. This is essentially the same as

directly incorporating L into ULD process as in Appendix A.3.

Thus, we can derive the iteration complexity for both problems. For sampling problem, we define
the iteration complexity as the number of iterations K needed to achieve W2(pK , p

∗) ≤ ε
√
d/m

with certain step size h. For approximating the ULD at a given time point T , we define the iteration
complexity as the number of iterations K needed to achieve ∥x(o)

K −XT ∥L2 ≤ ε with step size
h = T/K. The results are shown in Table 2. Detailed derivations can be found at Appendix A.8.

5.2 Convergence analysis of variance-reduced ALUM (VR-ALUM)

We show the upper bound for sampling error in Theorem 3 and the upper bound for discretization
error in Theorem 4 separately.
Theorem 3. With same assumptions in Theorem 1, we use SVRG-ALUM with epoch length τ =
⌈N/b⌉ or SAGA-ALUM. We introduce an extra assumption h3 ≤ 1

2304cb
3mN−2. We have the

following upper bound of sampling error in 2-Wasserstein distance.

W2(pk, p
∗) ≤ 2(1−mh

4
)kW2(p0, p

∗)+92

√
h3

m

√
c
N

b
3
2

W2(p0, p
∗)+(12+57

√
c
N

b
3
2

))

√
h3d

m
. (7)

The constant c is defined as c = 1 for SVRG-ALUM and c = 2 for SAGA-ALUM.
Theorem 4. With the same assumptions in Theorem 3, we consider Xkh which comes from a

continuous ULD starting from the same position as x(o)∇̃
0 with probability 1. We have the following

upper bound of discretization error.

∥x(o)∇̃
k −Xkh∥L2

≤ (38 + 92
√
c
N

b
3
2

)

√
h3

m
W2(p0, p

∗) + (31 + 57
√
c
N

b
3
2

)

√
h3d

m
. (8)

Remark 2. Theorems 1 to 4 are specializations of more general results in Appendix B.1, where full
gradient, SVRG and SAGA are unified under the framework of bounded MSE property that is defined
in Appendix B.3. A unified approach not only simplifies the proof, but also indicates that our analysis
could easily generalize to other gradient estimations that satisfy bounded MSE property.

Similar to the full gradient case, we derive the iteration complexity K in Appendix A.9. Moreover,
we define gradient complexity as the number of single component gradient evaluation∇fi(x) needed
to achieve certain accuracy. We show the results in Table 3 and add the derivations in Appendix A.9.
We finally simplify the result by only considering the dependence of d, N , b, and ε.

Corollary 1. When b ≤ O(N
2
3 ), the gradient complexity of SAGA-ALUM and SVRG-ALUM for

sampling problem is Õ(N +N
2
3 ε−

2
3 ) and their gradient complexity for ULD approximation problem

is O(N + d
1
3N

2
3 ε−

2
3 ).
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Table 3: Gradient complexity for SAGA-ALUM and SVRG-ALUM.
Problem Accuracy Gradient complexity

Sampling ε
√
d/m in W2 Õ(N + (bκ+N

2
3κ

4
3 )(1 + ε−

2
3 ) + bκ2

Approximating ε in L2 O(N + T (κb+ κ
1
3N

2
3 ) + Tκ

2
3 d

1
3 ε−

2
3 (b+N

2
3 ))

6 Information-based complexity

We first declare our setup for the problem class and accessible information. Then we show information-
based lower bound for approximation error and oracle complexity. The proof is shown in Appendix C.

6.1 Setup

Class of possible potential functions: We denote the class of possible potential functions as U =

U(d,N,m,L) = {(f1, . . . , fN )|∇2fi(x) ≼ (L/N)I,mI ≼ ∇2
∑N

i=1 fi(x) and ∥Ep∗ [X]∥2 ≤√
d/m} where 0 < m < L and p∗(X) ∝ exp(−

∑N
i=1 fi(X)).

Besides Assumptions 1 to 3 used in the previous sections, we introduce a new assumption that the
target distributions have mean in a ball of constant radius around the origin. This is necessary because
the lower bound could be arbitrarily large if the mean is far away from the initialization point.

Solution mapping: We denote the probability space for Brownian motion in the ULD process as
(M,Σ,P). Then, the true solution of ULD process starting from the origin 0 at time T can be denoted
as the solution mapping XT : (ω,U) ∈ (M× U) 7→XT (ω,U) ∈ Rd.

Gradient oracle: For a given set of potential functions U = (f1, . . . , fN ), the single component
gradient oracle is ΥU : (i,x) ∈ [N ]× Rd 7→ ∇fi(x) ∈ Rd.

Brownian oracle: We assume the Brownian motion at a given time t > 0 could be evaluated with
oracle Bt(ω) ∈ Rd for any event ω ∈M. We further assume that the weighted Brownian motion is
also admissible. B(θ)

t (ω) =
∫ T

0
eθsdBs(ω).

Deterministic algorithm: A deterministic algorithm starts from empty information I0 = (). At i-th
step, one oracle and corresponding parameters are picked by certain procedure. If the gradient oracle
is picked, the algorithm will generate an index i and a point x. If the weighted gradient oracle is
picked, the parameters are order θ for weighted Brownian motion and time t. The picked oracle and
parameters are represented by ϕi(Ii). The evaluation result is represented by Υ(ϕ(Ii), ω, U) where
ω ∈ M and U ∈ U . The picked oracle, parameters, and result will be stored as new information,
hence Ii+1 = (Ii, ϕ(Ii),Υ(ϕ(Ii), ω, U)).

We consider deterministic algorithms that stop at n-th step. The final estimation is generated with a
mapping Y (In) ∈ Rd. We expect Y (In) to be as close as possible to true solution XT (ω,U).

We denote a deterministic algorithm as a mapping A from M× U to Rd and A(ω,U) = Y (In) for
some ϕ and Y . The family of all such algorithms is denoted by ADet

n .

Randomized algorithm: We consider another probability space (M̃, Σ̃, P̃) as the source of ran-
domness. A randomized algorithm A with n steps is a mapping from M× M̃× U to Rd such that
A(·, ω̃, ·) ∈ ADet

n for any ω̃ ∈ M̃. The family of all such randomized algorithms is denoted by An.

Worst error of algorithms: We care about the following worst-case error for any possible algorithms:

e2A,U := inf
A∈A

sup
U∈U

Eω∈PEω̃∈P̃∥XT (ω,U)−A(ω, ω̃, U)∥22 (9)

We always assume T > 0 to avoid trivial cases.

6.2 Lower bounds

We first provide lower bounds on worst-case estimation error.
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Theorem 5. When n < N which means that gradient evaluation number is less than components
number, we have e2An,U ≥ dC1, where C1 is positive and independent of d, N , and n.

The above theorem is based on the fact that no algorithm can accurately estimate the global minimum
point of the sum of quadratic potentials

∑N
i=1 fi(x) with information from only N − 1 components.

Theorem 6. When the gradient evaluation number n is a multiple of N , we have e2An,U ≥ dC2
N2

n3 ,
where C2 is positive and independent of d, N , and n.

The method we use to prove the above theorem is to show that an algorithm that uses a limited
number of gradient evaluations cannot distinguish a class of perturbed quadratic functions.

Next, we use the above lower bounds on error to derive a lower bound on gradient complexity.

Corollary 2. For small enough target accuracy ε such that ε2 < dC1, in order to achieve eAn,U ≤ ε,
the minimum number of single component gradient oracle evaluations is Ω(N + d

1
3N

2
3 ε−

2
3 ).

This lower bound matches the upper bound in Corollary 1 which indicates that gradient complexity
of variance-reduced ALUM for estimating a ULD is optimal in the dependence of d, components
number N , and approximation accuracy ε.

7 Optimality

In this section, we discuss in what sense our ALUM is optimal (or not), and point out possible
improvements for future work.

Optimal for approximating problem: ALUM can be used for two tasks: (1) estimating a ULD
process, (2) sampling from a strongly-log-concave distribution. ALUM is only optimal for the first
task, and is not necessarily optimal for the second one. For example, we see in Section 5 that there
exists a logarithm factor in the gradient complexity for sampling problem. We believe some proper
adaptive step size method could cancel that extra term.

Dependency on κ: ALUM is only optimal on the dependence of d, N , ε, but not optimal in κ
dependence. Actually both our method and our analysis may not be optimized for the dependence of
κ. Currently, there is no information-based lower bound with clear dependence on condition number
κ, therefore no matter how good the dependence on κ is, it is not sufficient to say it is optimal. For
sampling problem, it is believed that O(min(κ, d2)) is the “natural barrier” [6] for iterations needed
for achieving W2 ≤ ε

√
d/m with ε = 1/2. Currently, the best dependence on κ is achieved by

RMM with O(κ7/6). For ALUM, the maximum dependence is O(κ2). This dependence is worse for
two reasons. First, the analysis is not optimized for κ. Based on the analysis of bias and variance
in Appendix A.10, we conjecture that the dependence could be improved to O(κ3/2). Second, the
method is not optimized for κ. We save one extra gradient compared to RMM, at the price of a
slightly increased bias. This degenerates the dependence of κ.

Despite the max dependence order being larger than 1, in the high-precision regime, when ε is small
enough, the term κ/ε

2
3 is dominant, therefore, both full-gradient ALUM and full-gradient RMM

achieve O(κ) dependence.

We note the complexity for VR-ALUM increases the dependence of κ to κ4/3 in high-precision
regime. We conjecture that this is an artifact of error-based analysis compared to momentum-based
analysis, and could be improved by some tighter analysis.

Assumptions: Finally, we point out that our method and analysis are based on Assumptions 1 to 3
and the gradient oracle. It is natural to obtain better algorithm by introducing new assumptions or
new oracle.

Many higher order integrators [8, 9] leverage higher order smoothness assumption to reduce discretiza-
tion error. Assumptions on structure of potential [28] have also been shown to make acceleration
possible together with high order diffusion process. Apart from the gradient oracle, many Metropolis-
adjusted algorithms [24, 26] leverage zeroth-order oracle to achieve linear convergence. Second order
oracle [17] has also been incorporated into estimating ULD.
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8 Experiments
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(b) Logistic regression on australian dataset

Figure 1: Trajectory error for different algorithms7. The vertical lines are the error bar. FG means
full gradient, SG means stochastic gradient.

In this section, we compare different algorithms for estimating a ULD process on both Gaussian
model and Bayesian logistic regression model. For the Gaussian model, the potential is defined as:

fi(x) =
1

2N
(di − x)⊤Σ−1(di − x) , (10)

where di and Σ is generated randomly to satisfy d = 5,N = 100,m = 1 and L = 10. For logistic
regression model, the potential is:

fi(x) =
m

2N
∥x∥22 +

N∑
i=1

log(1 + exp(−yia⊤
i x)) , (11)

where m is set such that κ = 104 and yi, ai are data points in australian dataset from LIBSVM [32].

We calculate the trajectory error which is defined as 1
K

∑K
i=1

√
∥xk − x′

k∥22 + ∥vk − v′
k∥22, where

xk and vk are generated by ALUM, VR-ALUMs or other algorithms. x′
k and v′

k come from a
reference path that is very close to true solution. We specify how we generate this reference path in
Appendix D.1. The reason for us to average the error along the path instead of just reporting error at
the final iterate is that we need more data points to reduce the variance.

Figure 1 shows the error for ALUM, LPM, and RMM with full gradient, stochastic gradient, SVRG
and SAGA.8 The detailed setup can be found in Appendix D.2. We summarize the messages in
Figure 1 as follows:

• SAGA-ALUM achieves the best efficiency in the sense that with same number evaluations of
single component gradient ∇fi(x), SAGA-ALUM has smaller discretization error than any
other algorithms. Results on more dataset are shown in Appendix D.3.

• Variance reduced algorithms constantly outperform full gradient algorithm of the same type by a
large margin.

• For full gradient method, the discretization error of ALUM and RMM has similar asymptotic
dependence on gradient evaluation number, and they are better than LPM. This phenomenon
will be shown clearer in Figure 2.

• ALUM achieves constant acceleration compared to RMM by saving one gradient evaluation per
iteration.

7Most of the error bars are too small to be visible. The SG-ALUM and SG-LPM highly overlap.
8Currently there is no theoretical result for RMM with stochastic gradient, SVRG or SAGA. We also didn’t

provide a theoretical result for ALUM with stochastic gradient. However, this doesn’t prevent us from evaluating
them experimentally.
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Figure 2: Discretization error of full gra-
dient methods on australian dataset.9

We also show the relationship between discretization error
and step size in Figure 2. Only full gradient method are
shown here due to the limit of space, and more results for
VR-ALUMs are shown in Appendix D.4.

Our analysis in Theorem 2 gives upper bound of discretiza-
tion error of ALUM as O(h3/2). Figure 2 shows that our
analysis is tight. Moreover, the discretization error of
ALUM is almost the same as RMM. Due to the fact that
ALUM requires only half gradient evaluations per step
than RMM, ALUM achieves better efficiency.
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Figure 3: Discretization error for SVRG-ALUM and SAGA-
ALUM with different batch sizes on australian dataset.

Next, we discuss the effect of batch
size. According to our theory in
Corollary 1, our method is not sen-
sitive to this hyperparameter intro-
duced by SAGA or SVRG when
batch size is relatively small, as
the gradient complexity remains the
same for b = O(N2/3). We verify
that in Figure 3, where the sampling
efficiency is almost same for small
batch sizes, and only deteriorate for
very large batch size. We give fur-
ther discussion on why our method
is not sensitive to step size in Ap-
pendix D.5.

Finally, we apply ALUM and VR-ALUMs to sample from a target distribution in Appendix D.6.

9 Conclusion

In this paper, we propose a class of MCMC methods for finite sum form of strongly-convex potential.
Our methods are proven to be optimal in the sense that the discretization error has the best possible
asymptotic dependence on dimension, number of potential summands, and number of gradient
evaluations. Experiments on both synthetic and real data verify the superior performance of our
algorithm. We also discuss possible improvements for future work.
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A Extra discussions on ULD

A.1 Background

In this section, we introduce several such Markov chains as discretization of certain continuous
stochastic processes and we roughly analyze discretization error of these methods with pointing out
the bottleneck.

The simplest and most widely used process is the Langevin diffusion (LD) defined as following SDE:

dXt = −∇f(Xt)dt+
√
2dBt , (12)

where Bt is the standard Brownian motion. It is known that distribution of Xt converges to the
exact target distribution exponentially [24]. The unadjusted Langevin algorithm (ULA) comes from
applying Euler-Maruyama discretization [4] directly to LD. The update rule is:

xk+1 = xk +∇f(xk)h+
√
2ek, ek =

∫ t

0

dBt ∼ N (0, hI), (13)

where ek is standard Gaussian vector, and h is the step size. Compared with the ground-truth update
Xh = xk −

∫ h

0
∇f(Xt)dt+

√
2
∫ t

0
dBt, where Xt is an LD starting from the xk, the discretization

introduces an error
√
E∥xk+1 −Xh∥22 = O(h

3
2 ) in each step. After accumulating this error in T

h

iterations, the final estimation error is O(h
1
2 ). Therefore, in order to sample from the distribution at

accuracy ε, we need to select step size h = O(ε2), sampling time T = O(log(ε−1)) and the final
iteration complexity is T/h = Õ(ε−2).

The analysis of ULA shows that the discretization error directly affects the sampling error, thus
determines the sampling efficiency [15, 16]. More accurate approximation of the continuous diffusion
process is desired.

The trajectory for LD is highly non-smooth, therefore is hard to approximate. In order to solve this
problem, underdamped Langevin diffusion (ULD) [33] was proposed with using the following SDE:

dXt = Vtdt, dVt = −∇f(Xt)dt− γVtdt+
√
2γdBt. (14)

We note that in previous works [5, 17, 34, 6], ULD shows up in multiple different forms which
are essentially same up to a linear transformation. More detailed discussions can be found in
Appendix A.3.

The ULD converges to extended distribution p∗(x,v) ∝ exp(−f(x)− 1
2∥v∥

2
2). The noise is injected

into an additional momentum term Vt and then propagates to Xt, therefore the trajectory of Xt is
much smoother and easier to approximate.

Cheng et at. [5] introduced the LPM discretization scheme to leverage this smoothness. In order to
illustrate the method, we first give the integral form of ULD as follows. The detailed derivation is
shown in Appendix A.4.

Xt = X0 + ψ1(s)V0 −
∫ t

0

ψ1(t− s)∇f(Xs)ds+ ex,[0,t], e

Vt = ψ0(t)V0 −
∫ t

0

ψ0(t− s)∇f(Xs)ds+ ev,[0,t].

(15)

ex,[0,t] =
√
2γ

∫ t

0

ψ1(t− s)dBs, ev,[0,t] =
√

2γ

∫ t

0

ψ0(t− s)dBs. (16)

The auxiliary function ψi(x) is defined as:

ψ0(t) = e−γt, ψi(t) =

∫ t

0

ψi−1(u)du,∀i ≥ 1. (17)

The basic idea of LPM is to estimate ∇f(Xs) in (15) with gradient at initial point ∇f(X0). This
gives following approximation at time point h.

X
(l)
h = X0+ψ1(h)V0−ψ2(h)∇f(X0)+ex,[0,h], V

(l)
h = ψ0(h)V0−ψ1(h)∇f(X0)+ev,[0,h].

(18)
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This gives O(h2) error in single step which is lower than ULA. After accumulation of T/h iterations,
the discretization error is O(h). With similar argument like ULA, the iteration complexity is Õ(ε−1).

Randomized midpoint method (RMM) [6], which enjoys best iteration complexity among all existing
full gradient based sampling algorithms, tries to estimate the integration

∫ t

0
ψi(t− s)∇f(Xs)ds with

a randomized midpoint tψi(t − at)∇f(Xat) where a is a uniform random variable in [0, 1]. This
is actually an unbiased estimation itself. However, ∇f(Xat) still cannot be calculated explicitly.
Therefore, RMM uses LPM to calculate ∇f(X(l)

at ) as a proxy, which introduces bias into estimation.
The final formula of RMM is shown as below:

X
(r)
h = X0 + ψ1(h)V0 − hψ1(h− ah)∇f(X(l)

ah) + ex,[0,h],

V
(r)
h = ψ0(h)V0 − hψ0(h− ah)∇f(X(l)

ah) + ev,[0,h],

X
(l)
ah = X0 + ψ1(ah)V0 − ψ2(ah)∇f(X0) + ex,[0,ah].

(19)

The bias and variance for single step can be controlled as
√
E∥EaZ

(r)
h −Zh∥22 = O(h4) and

E∥Z(r)
h − EaZ

(r)
h ∥22 = O(h4) where Z is a vector combining both position X and momentum V .

After accumulation of T/h iterations, the total bias is O(h3), total variance is O(h3), and the error
coming from variance is O(h

3
2 ). The accumulated bias for RMM is much smaller than LPM and the

newly introduced variance is the bottleneck. Therefore, the final discretization error is O(h
3
2 ) and

iteration complexity is Õ(ε−
2
3 ).

A.2 Comparison with CV-ULD

Chatterji et al. [18] shows a gradient complexity for CV-ULD as Õ(N + d
3
2 /(N

3
2 ε3)), which is

seemingly different from what is shown in Table 1. This is because (1) Chatterji et al. [18] defines
mixing time as the number of steps to achieve W2(pK , p

∗) ≤ ε instead of W2(pK , p
∗) ≤ ε

√
d/m,

which is used throughout this paper. (2) Chatterji et al. [18] assumes gradient Lipschitz constant L
(it actually uses letter M ) and strongly convex constant m both scale linearly with the number of
samples N .

In order to see that after adapting to the same setup, the Õ(N+ε−3) gradient complexity for CV-ULD
is worse than Õ(N +N

2
3 ε−

2
3 ) gradient complexity for SVRG-ALUM and SAGA-ALUM, we just

need to show that 7
9N + 2

9ε
−3 ≥ N 7

9 (ε−3)
2
9 ≥ N 2

3 ε−
2
3 and notice that the last inequality directly

relaxes the order of N , therefore the inequality is asymptotically not tight.

A.3 Equivalent forms of ULD

The underdamped Langevin dynamics has many commonly used forms, and they only differ with a
linear transformation. We next give two examples and corresponding linear transforms to connect
them with simplified form in (14).

A.3.1 Form 1

dXt = ξV tdt, dV t = −∇f(Xt)dt− γξV tdt+
√
2γdBt (20)

t = ξt,Xt =
√
ξXt,Vt =

√
ξV t,Bt =

√
ξBt, f(

√
ξX) = f(X)

Bt is still standard Brownian motion in the sense that E∥Bt∥22 = t
2. The stationary distribution is

p∗(x,v) ∝ exp(−f(x)− ξ

2
∥v∥22).

A.3.2 Form 2

dX ′
t′ = V ′

t′dt
′, dV ′

t′ = −u∇f ′(X ′
t′)dt

′ − γV ′
t′dt

′ +
√
2γudB′

t′ (21)

t = t′,Xt =
1√
u
X ′

t′ ,Vt =
1√
u
V ′
t′ ,Bt = B′

t′ , f(
1√
u
X ′) = f ′(X ′),
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B′
t′ is still standard Brownian motion in the sense that E∥B′

t′∥22 = t′
2. The stationary distribution is

p∗(x′,v′) ∝ exp(−f ′(x′)− 1

2u
∥v′∥22).

A.4 The integral form of ULD

Xt = X0 +

∫ t

0

Vsds

= X0 +

∫ t

0

ψ0(s)V0ds−
∫ t

0

∫ u

0

ψ0(u− s)∇f(Xs)dsdu+
√
2γ

∫ t

0

∫ u

0

ψ0(u− s)dBsdu

= X0 + ψ1(s)V0 −
∫ t

0

ψ1(t− s)∇f(Xs)ds+
√
2γ

∫ t

0

ψ1(t− s)dBs

Vt = e−γtV0 −
∫ t

0

e−γ(t−s)∇f(Xs)ds+
√
2γ

∫ t

0

e−γ(t−s)dBs

= ψ0(t)V0 −
∫ t

0

ψ0(t− s)∇f(Xs)ds+
√
2γ

∫ t

0

ψ0(t− s)dBs

(22)

A.5 Covariance of noise term in ALUM

For different k, ex,[0,h],k, ev,[0,h],k, ex,[0,akh],k are independent with each other. For same k, the
covarainces between these Gaussian random vector is as follows.

E
[
ex,[0,t]e

⊤
x,[0,t]

]
=2γI

∫ t

0

ψ1(s)
2ds =

2γt− 3 + 4 exp(−γt)− exp(−2γt)
γ2

I

E
[
ex,[0,t]e

⊤
v,[0,t]

]
=2γI

∫ t

0

ψ1(s)ψ0(s)ds =
4 sinh2 γt

2 exp(−γt)
γ

I

E
[
ev,[0,t]e

⊤
v,[0,t]

]
=2γI

∫ t

0

ψ0(s)
2ds = (1− exp(−2γt))I

E
[
ex,[0,t]e

⊤
x,[0,at]

]
=2γI

∫ at

0

ψ1(t− s)ψ1(at− s)ds =
2aγt− 2− 4 exp(−γt) sinh2 aγt

2 + 2 exp(−aγt)
γ2

I

E
[
ev,[0,t]e

⊤
x,[0,at]

]
=2γI

∫ at

0

ψ0(t− s)ψ1(at− s)ds =
4 sinh2 aγt

2 exp(−γt)
γ

I

E
[
ex,[0,at]e

⊤
x,[0,at]

]
=2γI

∫ at

0

ψ1(at− s)2ds =
2aγt− 3 + 4 exp(−aγt)− exp(−2aγt)

γ2
I

(23)

A.6 Full description of VR-ALUM

We give full description of VR-ALUM in Algorithm 2.

A.7 Initialization

In order to establish asymptotic convergence guarantee, we need to ensure that the initialization is
not too far away from the target distribution. We introduce several popular initializations below that
all can be summarized as W2(p0, p

∗) = O(1)
√
d/m.

Start from optimal The global optimal could be chosen as initial point [6]. We could control the

initial distance as W2(δx∗ , p∗) ≤
√

d
m .

10SAGA could be implemented in a cleverer way by caching the gradient, sum of gradient, and don’t store ϕi
k.
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Algorithm 2: Variance reduced ALUM Method

Input: Initial point (x(o)∇̃
0 ,v

(o)∇̃
0 ), parameter γ, iteration number K batch size b, and step size

h > 0.
for k = 0 to K − 1 do

Randomly sample ak uniformly from [0, 1];
Generate ex,[0,h],k, ev,[0,h],k, ex,[0,akh],k according to Appendix A.5;

x
(e)∇̃
k = x

(o)∇̃
k + ψ1(akh)v

(o)∇̃
k + ex,[0,akh],k;

Randomly sample without replacement a batch Bk of size b from [N ];
if SVRG is used then

if k mod τ = 0 then
x← x

(e)∇̃
k ;

end if
∇̃k = N

b

∑
i∈Bk

(∇fi(x(e)∇̃
k )−∇fi(x)) +

∑N
i=1∇fi(x);

else if SAGA is used10 then
∇̃k = N

b

∑
i∈Bk

(∇fi(x(e)∇̃
k )−∇fi(ϕi

k)) +
∑N

i=1∇fi(ϕi
k);

for i ∈ Bk do
ϕi

k+1 = x
(e)∇̃
k ;

end for
for i /∈ Bk do
ϕi

k+1 = ϕi
k;

end for
end if
x
(o)∇̃
k+1 = x

(o)∇̃
k + ψ1(h)v

(o)∇̃
k − hψ1(h− akh)∇̃k + ex,[0,h],k;

v
(o)∇̃
k+1 = ψ0(h)v

(o)∇̃
k − hψ0(h− akh)∇̃k + ev,[0,h],k;

end for
Output: x(o)∇̃

K .

Start from neighbor of optimal A starting point x0 could be a fixed point that is not far away from

global optimal [5] such that ∥x0 − x∗∥2 ≤ D. We have W2(δx0
, p∗) ≤

√
d
m + γD, therefore, if we

can find a point x0 close enough to x∗, such that D = O(1)
√

d
m , the assumption W2(δx∗ , p∗) ≤√

d
m could be assured.

We emphasize that the assumptionW2(p0, p
∗) = O(1)

√
d/m is only introduced to derive asymptotic

results. Our non-asymptotic result in Theorems 1 to 4 doesn’t use the assumption on the initialization
at all. Therefore, our methods don’t require a warm start, and non-asymptotic guarantees always hold
regardless of what initialization we chose.

A.8 Derivation of iteration complexity for full gradient ALUM

For sampling problem, we choose step size h = O(min(ε
2
3 ,m)) and run ALUM to estimate ULD at

time T = Kh = O(m−1 log(1/(ε))) where K is the number of steps. According to theorem 1, we

could achieve error in 2-Wasserstein distance as O(ε
√

d
m ). Then we have the iteration complexity of

full gradient ALUM as K = Õ(κ/ε
2
3 + κ2).

For ULD estimation problem, we just choose h = O(min(m
2
3 ε

2
3 d−

1
3 ,m)), and run the algorithm

for K = T/h steps. According to theorem 2, we could achieve error in L2 distance as O(ε).
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A.9 Derivation of iteration complexity for variance-reduced ALUM

Sampling problem We choose step size h = O(ε
2
3 ,m,m

1
3 ε

2
3 bN− 2

3 ,m
1
3 bN− 2

3 ). Se-
lect T = O(m−1 log(1/(ε))), then the iteration complexity is K = T/h =

Õ(max(κε−
2
3 , κ2, κ

4
3 ε−

2
3N

2
3 /b, κ

4
3N

2
3 /b)).

Both SAGA and SVRG requires initialization, which evaluates the full gradient at the beginning. In
each iteration, SAGA evaluates b gradients, and SVRG uses 3b gradient in average. Therefore, the
gradient complexity is

N +O(b)K =Õ(N +max(bκε−
2
3 , bκ2, κ

4
3 ε−

2
3N

2
3 , κ

4
3N

2
3 ))

=Õ(N +max(bκε−
2
3 , bκ, bκ2, κ

4
3 ε−

2
3N

2
3 , κ

4
3N

2
3 ))

=Õ(N + bκε−
2
3 + bκ+ bκ2 + κ

4
3 ε−

2
3N

2
3 + κ

4
3N

2
3 )

=Õ(N + (bκ+N
2
3κ

4
3 )(1 + ε−

2
3 ) + bκ2).

(24)

If we only consider the dependence of d, N , b and ε, we can see that gradient complexity is
Õ(N +N

2
3 ε−

2
3 ) when b ≤ O(N

2
3 ).

Estimating ULD We first derive the iteration complexity. Step size h has two ε indepen-
dent upper bound in theorem 4, that is h ≤ m

22 and h3 ≤ 1
13824b

3mN−2. We also require
the right-hand side of inequality in theorem 4 to be smaller than ε. Therefore, we select
h = O(min(m, bm

1
3N− 2

3 ,m
2
3 d−

1
3 ε

2
3 ,m

2
3 d−

1
3 ε

2
3 bN− 2

3 )) and for a fixed T , we need iteration
number as K = T/h = O(max(Tκ, Tκ

1
3N

2
3 /b, Tκ

2
3 d

1
3 ε−

2
3 , κ

2
3 d

1
3 ε−

2
3N

2
3 /b)).

We next derive the gradient complexity.

N +O(b)K =O(N +max(Tκb, Tκ
1
3N

2
3 , Tκ

2
3 d

1
3 ε−

2
3 b, Tκ

2
3 d

1
3 ε−

2
3N

2
3 ))

=O(N + Tκb+ Tκ
1
3N

2
3 + Tκ

2
3 d

1
3 ε−

2
3 b+ Tκ

2
3 d

1
3 ε−

2
3N

2
3 )

=O(N + T (κb+ κ
1
3N

2
3 ) + Tκ

2
3 d

1
3 ε−

2
3 (b+N

2
3 )).

(25)

If we only consider the dependence of d, N , b and ε, we can see that gradient complexity is
O(N +N

2
3 d

1
3 ε−

2
3 ) when b ≤ O(N

2
3 ).

A.10 Conjecture on the tighter κ dependence for ALUM

The maximum upper bound of κ for ALUM is O(κ2). We first provide intuition on how that result is
derived.

According to inequality (102), in each step, the approximation error Ak decreases with a multiplier
e−

mh
γ . Meanwhile, we introduce 17h4A2

k amount of variance and h3Ak amount of bias. In order
to balance the decrease and increase in each step to ensure a decrease of error, we first treat error
introduced by variance as bias (ignore the useful fact that variance accumulates slower than bias).
Then we just need to balance the decrease with multiplier e−

mh
γ and increases with noise 5h2Ak.

This indicates h = O(m). In the proof, we require h ≤ m
22 to establish inequality (103). The

maximum step size h ≤ m
22 shows up in Theorem 1 and produce O(κ2) dependence for ALUM.

If (102) was replaced with some other analysis that doesn’t accumulate variance as bias, then we only
need to balance decrease and increase as h3Ak, the upper bound of step size becomes h = O(m1/2),
and the final iteration complexity has O(κ3/2) dependence.

We believe a different analysis could achieve the above condition. However, it complicates the proof
a lot, and has no effect on our main result, which is optimal dependence on d,N ,ε. Therefore, we
leave the rigorous theoretical analysis for future work.

A.11 Piecewise noise terms

In this section, we show how to represent ex,[0,nt], ev,[0,nt], ex,[0,ant] as a combination of ex,[it,(i+1)t],
ev,[it,(i+1)t], ex,[⌊a⌋t,at]. This allows us to experimentally sample two ULD approximation with
different step sizes, but the same realization of Brownian motion.
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ev,[0,nt] =
√
2γ

∫ nt

0

ψ0(nt− s)dBs

=
√
2γ

n−1∑
i=0

∫ (i+1)t

it

exp(−γ(nt− s))dBs

=

n−1∑
i=0

exp(−γ(n− i− 1)t)

(√
2γ

∫ (i+1)t

it

exp(−γ((i+ 1)t− s))dBs

)

=

n−1∑
i=0

ψ0((n− i− 1)t)ev,[it,(i+1)t]

(26)

ex,[0,nt] =
√
2γ

∫ nt

0

ψ1(nt− s)dBs

=
√
2γ

n−1∑
i=0

∫ (i+1)t

it

ψ1(nt− s)dBs

=
√
2γ

n−1∑
i=0

∫ (i+1)t

it

(ψ1((i+ 1)t− s) + ψ1((n− i− 1)t)ψ0((i+ 1)t− s)) dBs

=

n−1∑
i=0

(
ex,[it,(i+1)t] + ψ1((n− i− 1)t)ev,[it,(i+1)t]

)
(27)

We assume 0 ≤ a ≤ n.

ex,[0,at] =
√
2γ

∫ at

0

ψ1(at− s)dBs

=
√
2γ

⌈a⌉−1∑
i=0

∫ min(i+1,a)t

it

ψ1(nt− s)dBs

=
√
2γ

⌈a⌉−1∑
i=0

{∫ at

it
ψ1(at− s)dBs i = ⌈a⌉ − 1∫ (i+1)t

it
(ψ1((i+ 1)t− s) + ψ1((a− i− 1)t)ψ0((i+ 1)t− s)) dBs otherwise

=

⌈a⌉−1∑
i=0

{
ex,[⌊a⌋t,at] i = ⌈a⌉ − 1

ex,[it,(i+1)t] + ψ1((a− i− 1)t)ev,[it,(i+1)t] otherwise

=ex,[⌊a⌋t,at] +

⌊a⌋−1∑
i=0

(
ex,[it,(i+1)t] + ψ1((a− i− 1)t)ev,[it,(i+1)t]

)
(28)

B Proof of convergence result and discretization error

We first unify the full gradient version and variance-reduced version in appendix B.1, then introduce
some basic concepts in appendices B.2 to B.4, then we analyze the sampling error and approximation
error in appendices B.5 and B.6.

B.1 Statement of general result

We first formulate a general version for theorem 1 and theorem 3, which uses the bounded MSE
property defined in appendix B.3.
Theorem 7. Suppose we use some unbiased gradient estimation method that satisfies bounded MSE
property with parameter Θ. Suppose assumptions 1 to 3 holds. Given an initial distribution p0(x),

we initialize an ALUM with random x
(o)∇̃
0 based on probability p0 and random v

(o)∇̃
0 from standard
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Gaussian distribution. Assume L = 1 and let γ = 2, pk be the distribution of x(o)∇̃
k and p∗ be the

target distribution. Assume we use step size h ≤ m
11γ and h3Θ

m ≤ 1
2304 . After running the ALUM for

k iterations, for some A0 ≤ γW2(p0, p
∗), we have the following upper bound of sampling error in

2-Wasserstein distance.

W2(pk, p
∗) ≤(1− mh

2γ
)kA0 + 46

√
h3

m

√
ΘA0 + (12 + 57

√
Θ)

√
h3

m

√
d. (29)

The next theorem is general version result for theorem 2 and theorem 4.

Theorem 8. With same assumptions and setup in theorem 7, we consider Xkh which comes from a

continuous ULD starting from same position as x(o)∇̃
0 with probability 1. We have following upper

bound of discretization error

∥x(o)
k −Xkh∥L2

≤ (19 + 46
√
Θ)

√
h3

m
A0 + (31 + 57

√
Θ)

√
h3d

m
. (30)

In order to get all theorems in Section 5, we just need to use the fact that Θ = 0 for full gradient
ALUM, Θ ≤ N2

b3 for SVRG-ALUM and Θ ≤ 2N2

b3 for SAGA-ALUM.

B.2 Preliminary

We first introduce several notations.

∥v∥L2 =
√

E[∥v∥22]

∥v∥L2,B =
√

EB [∥v∥22]

∥v∥L2,a =
√

Ea[∥v∥22]

(31)

EB [·] takes expectation with regard to random Brownian motion. Ea[·] means average for random
variable a which determines randomized midpoint in RMM or ALUM.

Next we introduce another assumption to simplify the analysis.

Assumption 4 (Optimal at Zero). Without loss of generality, we assume x∗ = 0 and f(x∗) = 0
where x∗ is the global minimum for the strongly convex potential energy function.

Remark 3. Assumption 4 doesn’t mean that we have to calculate the global optimal of function
f(x) and shift the function. ULD is invariant under shifting the coordinate. More specifically, the
stochastic process on a shifted potential function and shifted start point should be exactly the same
as shifted process obtained based on original potential function and start point. The Wasserstein
distance is also invariant under this shifting if we translate both target distribution and obtained
distribution. Therefore, we can safely introduce Assumption 4 to simplify the analysis without really
translate the potential.

B.3 Bounded MSE property

Given x
(e)
k for k ≥ 0 as a series of points provided sequentially for estimating the gradient. A

gradient estimation method generates ∇̃k as random vectors for estimating ∇f(x(e)
k ). We let Ek[·]

means taking expectation for randomness only after k-th iteration in the gradient estimator. For
example, if vanilla SGD, SVRG or SAGA is used, the randomness comes from the random batch and
Ek[∇̃k+1] is same as EBk+1

[∇̃k+1] that is expectation with respect to random batch in (k + 1)-th
iteration.

In this section, we propose bounded MSE property to control the mean-squared error (MSE) of
variance reduction methods.

Definition 1 (Bounded MSE property). We say a gradient estimation method satisfies the bounded
MSE property if (1) it is unbiased, which means Ek[∇̃k+1] = ∇f(x(e)

k+1) =
∑N

i=1∇fi(x
(e)
k+1). (2) it
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has the following upper bound for some parameter Θ and all k ≥ 0.

E[∥∇̃k+1 −∇f(x(e)
k+1)∥

2
2] ≤ Θ max

0≤i≤k
Qi,

∥∇̃0 −∇f(x(e)
0 )∥22 = 0,

Qk = N

N∑
i=1

∥∇fi(x(e)
k+1)−∇fi(x

(e)
k )∥22.

(32)

Clearly, the full gradient estimator ∇̃k = ∇f(x(e)
k ) satisfies bounded MSE property with Θ = 0

because there is no gradient error. We next show both SVRG and SAGA satisfy bounded MSE
property.

Lemma 1. SVRG with epoch length τ satisfies bounded MSE property with Θ = N−b
N−1

(τ−1)2

b ≤ τ2

b .

Lemma 2. SAGA satisfies bounded MSE property with Θ = N(N−b)(2N−b)
(N−1)b3 ≤ 2N2

b3 .

We show the proof in appendix B.3.1 and appendix B.3.2 separately.

B.3.1 Proof of lemma 1 for SVRG

Recall the definition of SVRG as follows.

∇̃SVRG
k =

N

b

∑
i∈Bk

(∇fi(x(e)
k )−∇fi(x)) +

N∑
i=1

∇fi(x) (33)

For k = 0, there is no gradient error because the full gradient is just calculated. For k ≥ 1, we define
Xi = ∇fi(x(e)

k )−∇fi(x), Yi = NXi −
∑N

i=1 Xi. We then have

N∑
i=1

Yi = 0 (34)

∇̃SVRG
k −

N∑
i=1

∇fi(x(e)
k ) =

1

b

∑
i∈Bk

Yi (35)

Lemma 3.

EBk

∥∥∥∥∥1b ∑
i∈Bk

Yi

∥∥∥∥∥
2

2

=
N − b
N − 1

1

Nb

N∑
i=1

∥Yi∥22 (36)

Due to the fact that batch Bk is sampling without replacement, controlling the norm is not that
straightforward, therefore we show the proof separately in appendix B.3.3.

N∑
i=1

∥Yi∥22 = N2
N∑
i=1

∥Xi∥22 −N

∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
2

2

≤ N2
N∑
i=1

∥Xi∥22 (37)

Therefore, we reach following inequality

EBk
∥∇̃SVRG

k −∇fi(x(e)
k )∥22 ≤

N − b
N − 1

N

b

N∑
i=1

∥Xi∥22 (38)

We next give upper bound on
∑N

i=1∥Xi∥22.
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According to definition of SVRG, we know x = x
(e)
k′ where k′ is the last iteration that the algorithm

update the full gradient. Therefore, we have k − τ + 1 ≤ k′ ≤ k.
N∑
i=1

∥Xi∥22 =

N∑
i=1

∥∥∥∇fi(x(e)
k )−∇fi(x)

∥∥∥2
2

=

N∑
i=1

∥∥∥∇fi(x(e)
k )−∇fi(x(e)

k′ )
∥∥∥2
2

≤
N∑
i=1

(k − k′)
k−1∑
t=k′

∥∥∥∇fi(x(e)
t+1)−∇fi(x

(e)
t )
∥∥∥2
2

=(k − k′)
k−1∑
t=k′

N∑
i=1

∥∥∥∇fi(x(e)
t+1)−∇fi(x

(e)
t )
∥∥∥2
2

=(k − k′)
k−1∑
t=k′

1

N
Qt

≤ (k − k′)2

N
max
i<k

Qi

≤ (τ − 1)2

N
max
i<k

Qi

(39)

Finally, we have MSE upper bound as follows.

EBk
∥∇̃SVRG

k −
N∑
i=1

∇fi(x(e)
k )∥22 ≤

N − b
N − 1

(τ − 1)2

b
max
i<k

Qi. (40)

B.3.2 Proof of lemma 2 for SAGA

Recall the definition of SAGA as follows.

∇̃SAGA
k =

N

b

∑
i∈Bk

(∇fi(x(e)
k )−∇fi(ϕi

k)) +

N∑
i=1

∇fi(ϕi
k) (41)

Again, for k = 0, there is no gradient error, and for k ≥ 1, we define Xi = ∇fi(x(e)
k )−∇fi(ϕi

k).
Similar to (38) in appendix B.3.1, we can reach the following result.

EBk
∥∇̃SAGA

k −∇fi(x(e)
k ))∥22 ≤

N − b
N − 1

N

b

N∑
i=1

∥Xi∥22 (42)

We next give upper bound on
∑N

i=1∥Xi∥22.

We define Mu =
∑N

i=1∥∇fi(x
(e)
k ) −∇fi(ϕi

u)∥22 for k ≥ u ≥ 0. We can see that
∑N

i=1∥Xi∥22 =
Mk.

M0 =

N∑
i=1

∥∇fi(x(e)
k )−∇fi(x(e)

0 )∥22

≤
N∑
i=1

k

k−1∑
t=0

∥∥∥∇fi(x(e)
t+1)−∇fi(x

(e)
t )
∥∥∥2
2

=k

k−1∑
t=0

N∑
i=1

∥∥∥∇fi(x(e)
t+1)−∇fi(x

(e)
t )
∥∥∥2
2

=k

k−1∑
t=0

1

N
Qt

≤k
2

N
max
i<k

Qi

(43)
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We next define indicator Ii,u = 1 if and only if i ∈ Bu and Ii,u = 0 otherwise.

EBu−1
[Mu] =EBu−1

N∑
i=1

(
Ii,u−1∥∇fi(x(e)

k )−∇fi(x(e)
u−1)∥22 + (1− Ii,u−1)∥∇fi(x(e)

k )−∇fi(ϕi
u−1)∥22

)
=
b

N

N∑
i=1

∥∇fi(x(e)
k )−∇fi(x(e)

u−1)∥22 +
N − b
N

Mu−1

≤ b

N

N∑
i=1

(k − u+ 1)

k−1∑
t=u−1

∥∇fi(x(e)
t+1)−∇fi(x

(e)
t )∥22 +

N − b
N

Mu−1

=
b

N
(k − u+ 1)

k−1∑
t=u−1

N∑
i=1

∥∇fi(x(e)
t+1)−∇fi(x

(e)
t )∥22 +

N − b
N

Mu−1

=
b

N
(k − u+ 1)

k−1∑
t=u−1

1

N
Qt +

N − b
N

Mu−1

≤ b

N2
(k − u+ 1)2 max

i<k
Qi +

N − b
N

Mu−1

(44)
Combining the above two inequalities, we have

E[Mu] ≤

(
(
N − b
N

)k
k2

N
+

k∑
u=1

(
N − b
N

)k−u b(k − u+ 1)2

N2

)
max
i<k

Qi

=S(k)max
i<k

Qi

(45)

The function S(k) increases monotonically for k because S(k+1)−S(k) = (N−b
N )k 2k+1

N ≥ 0. We
then have S(k) ≤ limk→∞ S(k) = 2N−b

b2 . Finally, we have MSE upper bound as follows.

E∥∇̃SAGA
k −∇fi(x(e)

k ))∥22 ≤
N(N − b)(2N − b)

(N − 1)b3
max
i<k

Qi. (46)

B.3.3 Other

Proof of lemma 3. We define indicator Ii such that Ii = 1 if and only if i ∈ Bk and I0 = 0 otherwise.
Since Bk is a simple random sample of size b from a population of N elements, we have

EBk
[Ii] =

b

N
,EBk

[IiIj ] =
b

N

b− 1

N − 1
,∀i ̸= j (47)

EBk

∥∥∥∥∥∑
i∈Bk

Yi

∥∥∥∥∥
2

2

=EBk

∑
i∈Bk

∥Yi∥22 +
∑

i̸=j∈Bk

⟨Yi,Yj⟩2


=EBk

 N∑
i=1

Ii∥Yi∥22 +
∑
i ̸=j

IiIj⟨Yi,Yj⟩2


=

N∑
i=1

b

N
∥Yi∥22 +

∑
i ̸=j

b

N

b− 1

N − 1
⟨Yi,Yj⟩2

=
N − b
N − 1

b

N

N∑
i=1

∥Yi∥22 +
b

N

b− 1

N − 1

〈
N∑
i=1

Yi,

N∑
j=1

Yj

〉2

=
N − b
N − 1

b

N

N∑
i=1

∥Yi∥22

(48)

The last equality comes from the fact that
∑N

i=1 Yi = 0.
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B.4 Continuous Contraction

We first define several vectors useful in the analysis by linear combination or direct sum of X and V .

Rt = γXt + Vt,St = Vt,Zt =

[
Rt

St

]
(49)

Zt =

[
Rt

St

]
=

[
γ 1
0 1

] [
Xt

Vt

]
(50)[

Xt

Vt

]
=

1

γ

[
1 −1
0 γ

] [
Rt

St

]
(51)

The following contraction result for continuous process is essentially the same as analysis in [17].
We rephrase them here in a form that is more coherent with the other part of this paper.

Lemma 4. For any two ULD processes
[
Xt

Zt

]
and

[
X ′

t
Z ′

t

]
with the same Brownian motion Bt, we

define ∆Xt = Xt −X ′
t and similarly for ∆Vt, ∆Rt, ∆St and ∆Zt. If γ ≥

√
m+ L, then we

have
∥∆Zt∥2 ≤ e−

m
γ t∥∆Z0∥2 (52)

Proof of Lemma 4.

d∆Zt =

[
γ 1
0 1

] [
d∆Xt

d∆Vt

]
=

[
γ 1
0 1

] [
∆Vt

∇f(X ′
t)−∇f(Xt)− γ∆Vt

]
dt

(53)

∇f(X ′
t)−∇f(Xt) = −Ht∆Xt

Ht =

∫ 1

0

∇2f(X ′
t + u∆Xt)du

mI ≼ Ht ≼ LI

d∆Zt =

[
γ 1
0 1

] [
0 1
−Ht −γ

] [
∆Xt

∆Vt

]
=
1

γ

[
γ 1
0 1

] [
0 1
−Ht −γ

] [
1 −1
0 γ

] [
∆Rt

∆St

]
=
1

γ

[
−Ht Ht

−Ht Ht − γ2
] [

∆Rt

∆St

] (54)

d∥∆Zt∥22 =
2

γ
[∆Rt ∆St]

[
−Ht 0
0 Ht − γ2

] [
∆Rt

∆St

]
≤− 2m

γ
∥∆Zt∥22

(55)

∥∆Zt∥22 ≤ e
− 2m

γ t∥∆Z0∥22 (56)

B.5 Sampling error

We first define a ground truth path. The initial point x∗
0,v∗

0 is drawn from target distribution
p∗(x∗,v∗) ∝ exp(−f(x∗) − ∥v∗∥2

2

2 ). Then we generate x∗
k+1,v∗

k+1 from x∗
k,v∗

k by taking re-
peatedly applying a ULD process. More specifically, we let x∗

k+1 = Xh,v∗
k+1 = Vh where Xt,Vt is

the ULD process starting from x∗
k,v∗

k. Clearly, the distribution of x∗
k,v∗

k is still target distribution.

Finally, we can define z∗
k =

[
γx∗ + v∗

v∗

]
.
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We then first define Ak =
∥∥∥z(o)∇̃

k − z∗
k

∥∥∥
L2

as the difference between the path z
(o)∇̃
k =[

γx(o)∇̃ + v(o)∇̃

v(o)∇̃

]
obtained by our algorithm and the ground truth path. Based on (50), we have

∥∆Z∥L2
≥ γ√

2
∥∆X∥L2

≥ ∥∆X∥L2
. Therefore, Ak is an upper bound of W2(pk, p

∗).

At initialization, based on (51), we have
∥∥∥∥[∆X

∆V

]∥∥∥∥
L2

≥ 1
γ ∥∆Z∥L2 . Moreover, let distribution of x0

be p0(x), and distribution of v0 be a Gaussian distribution that is the same as v∗
0 . Let the coupling

between
[
x0

v0

]
and

[
x∗
0

v∗
0

]
follows that v0 and v∗

0 are exactly the same, and x0 and x∗
0 are coupled

according to the optimal transport between p0(x) and p∗(x). In this way of initialization, we can get∥∥∥∥[∆x0

∆v0

]∥∥∥∥
L2

=W2(p0, p
∗). Therefore, we have A0 ≤ γW2(p0, p

∗).

The next ten pages of numerical analysis is a little bit long, so we provide an overview as follows.

B.5.1 Overview of proof

The main idea of controlling Ak is decomposing error and contraction as follows.

Ak+1 =E
[∥∥∥Z(o)∇̃

t −Z∗
t

∥∥∥2
2

]
1⃝
=E
[∥∥∥Z(o)∇̃

t − EaEkZ
(o)∇̃
t

∥∥∥2
2

]
+ E

[∥∥∥EaEkZ
(o)∇̃
t −Z∗

t

∥∥∥2
2

]
2⃝
≤E
[∥∥∥Z(o)∇̃

t − EaZ
(r)
t

∥∥∥2
2

]
+ E

[∥∥∥EaEkZ
(o)∇̃
t −Z∗

t

∥∥∥2
2

]
3⃝
=E
[∥∥∥Z(o)∇̃

t − EaZ
(r)
t

∥∥∥2
2

]
+ E

[∥∥∥EaZ
(o)
t −Z∗

t

∥∥∥2
2

]
4⃝
≤3E

[∥∥∥Z(o)∇̃
t −Z

(o)
t

∥∥∥2
2

]
+ 3E

[∥∥∥Z(o)
t −Z

(r)
t

∥∥∥2
2

]
+ 3E

[∥∥∥Z(r)
t − EaZ

(r)
t

∥∥∥2
2

]
+

(∥∥∥EaZ
(o)
t − EaZ

(r)
t

∥∥∥
L2

+
∥∥∥EaZ

(r)
t −Zt

∥∥∥
L2

+ ∥Zt −Z∗
t ∥L2

)2

(57)

The vector Z(r) is based on X(r),V (r) generated by RMM, which is defined in (19).

Inequality 1⃝ splits bias and variance and is based on the fact that EaEkZ
∗
t = Z∗

t .

Inequality 2⃝ comes from the fact that E
[∥∥∥Z(o)∇̃

t − EaZ
(r)
t

∥∥∥2
2

]
= E

[∥∥∥Z(o)∇̃
t − EaEkZ

(o)∇̃
t

∥∥∥2
2

]
+

E
[∥∥∥EaEkZ

(o)∇̃
t − EaZ

(r)
t

∥∥∥2
2

]
.

Inequality 3⃝ comes from the fact that variance reduction method we used are unbiased.

Inequality 4⃝ is simply applying Young’s inequality and triangle inequality.
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The last term is ∥Zt −Z∗
t ∥L2

= e−
m
γ t∥Z0 −Z∗

0∥L2
= e−

m
γ tAk. Therefore, we just need to control

all other error term by term. We do that in Appendices B.5.3 to B.5.6.

During the analysis, we give upper bound of errors for Ak by using another value Qk =

N
∑N

i=1 E[∥∇fi(x
(e)∇̃
k+1 ) − ∇fi(x

(e)∇̃
k )∥22]. Qk decides the magnitudes for gradient error. In Ap-

pendix B.5.8, we give the upper bound of Qk by using Ak. Finally, we can give upper bound for both
Qk and Ak in Appendix B.5.9.

B.5.2 Some basic upper bounds for continuous process

Moments First, we derive the moments for equilibrium distribution.

Due to the fact that V ∗
t follows standard Gaussian distribution,

E
[
∥V ∗

t ∥
2
2

]
= d. (58)

Next we control the moment of∇f(x).

Zd =

∫
de−f(x)dx

=

∫
div(x)e−f(x)dx

=

∫
x · ∇f(x)e−f(x)dx

≥ 1

L

∫
∥∇f(x)∥22e

−f(x)dx

(59)

Ex∼p∗

[
∥∇f(x)∥22

]
=

1

Z

∫
∥∇f(x)∥22e

−f(x)dx ≤ Ld (60)

Then we control the moments for ULD process.

∥Vt∥L2
≤∥V ∗

t ∥L2
+ ∥Vt − V ∗

t ∥L2

≤
√
d+ ∥Zt −Z∗

t ∥L2

≤
√
d+ ∥Z0 −Z∗

0∥L2

=
√
d+

∥∥∥z(o)∇̃
k − z∗

k

∥∥∥
L2

=
√
d+Ak

(61)

∥∇f(Xt)∥L2
≤∥∇f(X∗

t )∥L2
+ ∥∇f(Xt)−∇f(X∗

t )∥L2

≤
√
Ld+ L∥Xt −X∗

t ∥L2

≤
√
Ld+ L

√
2

γ
∥Zt −Z∗

t ∥L2

≤
√
Ld+

√
2L

γ
∥Z0 −Z∗

0∥L2

=
√
Ld+

√
2L

γ

∥∥∥z(o)∇̃
k − z∗

k

∥∥∥
L2

=
√
Ld+

√
2L

γ
Ak

(62)
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Change Assume t2 ≥ t1 ≥ 0.

∥Xt1 −Xt2∥L2
≤
∥∥∥∥∫ t2

t1

Vsds

∥∥∥∥
L2

≤
∫ t2

t1

∥Vs∥L2
ds

≤(t2 − t1) max
t1≤u≤t2

∥Vu∥L2

(63)

B.5.3 Error for LPM

∥∥∥V (l)
t − Vt

∥∥∥
L2

=

∥∥∥∥∫ t

0

ψ0(t− s)(∇f(Xs)−∇f(X0))ds

∥∥∥∥
L2

≤
∫ t

0

∥∇f(Xs)−∇f(X0)∥L2
ds

≤L
∫ t

0

∥Xs −X0∥L2
ds

≤L
∫ t

0

s max
0≤u≤t

∥Vu∥L2
ds

≤1

2
Lt2 max

0≤u≤t
∥Vu∥L2

(64)

∥∥∥X(l)
t −Xt

∥∥∥
L2

=

∥∥∥∥∫ t

0

(V
(l)
t − Vt)ds

∥∥∥∥
L2

≤
∫ t

0

∥∥∥V (l)
t − Vt

∥∥∥
L2

ds

≤1

2
L

∫ t

0

s2 max
0≤u≤s

∥Vu∥L2
ds

≤1

6
Lt3 max

0≤u≤t
∥Vu∥L2

(65)

B.5.4 Error for RMM

First term - Variance We aim to control the variance E
[∥∥∥Z(r)

t − EaZ
(r)
t

∥∥∥2
2

]
.

E
[∥∥∥Z(r)

t − EaZ
(r)
t

∥∥∥2
2

]
≤E
[∥∥∥Z(r)

t −Zt

∥∥∥2
2

]

=E

∥∥∥∥∥
[
R

(r)
t

S
(r)
t

]
−
[
Rt

St

]∥∥∥∥∥
2

2


=E

∥∥∥∥∥
[
γ 1
0 1

][
X

(r)
t −Xt

V
(r)
t − Vt

]∥∥∥∥∥
2

2


≤2γ2E

[∥∥∥X(r)
t −Xt

∥∥∥2
2

]
+ 3E

[∥∥∥V (r)
t − Vt

∥∥∥2
2

]
=2γ2

∥∥∥X(r)
t −Xt

∥∥∥2
L2

+ 3
∥∥∥V (r)

t − Vt

∥∥∥2
L2

(66)
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∥∥∥X(r)
t −Xt

∥∥∥
L2

≤
∥∥∥tψ1(t− at)∇f(X(l)

at )− tψ1(t− at)∇f(Xat)
∥∥∥
L2

+

∥∥∥∥tψ1(t− at)∇f(Xat)−
∫ t

0

ψ1(t− at)∇f(Xs)ds

∥∥∥∥
L2

+

∥∥∥∥∫ t

0

ψ1(t− at)∇f(Xs)ds−
∫ t

0

ψ1(t− s)∇f(Xs)ds

∥∥∥∥
L2

(67)

We denote above three terms as D1,D2 and D3.

D1 =
∥∥∥tψ1(t− at)∇f(X(l)

at )− tψ1(t− at)∇f(Xat)
∥∥∥
L2

≤
√
Ea

[
(tψ1(t− at)∥∇f(X(l)

at )−∇f(Xat)∥L2,B)
2
]

≤
√
Ea

[
(tψ1(t− at)L∥X(l)

at −Xat∥L2,B)
2
]

≤

√√√√Ea

[(
tψ1(t− at)L(

1

6
L(at)3 max

0≤u≤t
∥Vu∥L2

)

)2
]

≤
√
7

252
L2t5 max

0≤u≤t
∥Vu∥L2

(68)

D2 =

∥∥∥∥tψ1(t− at)∇f(Xat)−
∫ t

0

ψ1(t− at)∇f(Xs)ds

∥∥∥∥
L2

=

√√√√Ea

[
ψ1(t− at)2EB

(∫ t

0

(∇f(Xat)−∇f(Xs))ds

)2
]

=

√√√√Ea

[
ψ1(t− at)2

∥∥∥∥∫ t

0

(∇f(Xat)−∇f(Xs))ds

∥∥∥∥2
L2,B

]

≤

√√√√Ea

[
ψ1(t− at)2

(∫ t

0

∥(∇f(Xat)−∇f(Xs))∥L2,B
ds

)2
]

≤

√√√√Ea

[
ψ1(t− at)2L2

(∫ t

0

∥(Xat −Xs)∥L2,B
ds

)2
]

≤

√√√√Ea

[
ψ1(t− at)2L2

(∫ t

0

|at− s| max
0≤u≤t

∥Vu∥L2
ds

)2
]

≤
√
210

70
Lt3 max

0≤u≤t
∥Vu∥L2

(69)
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D3 =

∥∥∥∥∫ t

0

ψ1(t− at)∇f(Xs)ds−
∫ t

0

ψ1(t− s)∇f(Xs)ds

∥∥∥∥
L2

=

√√√√Ea

∥∥∥∥∫ t

0

(ψ1(t− at)− ψ1(t− s))∇f(Xs)ds

∥∥∥∥2
L2,B

≤

√
Ea(

∫ t

0

|ψ1(t− at)− ψ1(t− s)|∥∇f(Xs)∥L2,B
ds)2

≤

√
Ea(

∫ t

0

|ψ1(t− at)− ψ1(t− s)|ds)2 max
0≤u≤t

∥∇f(Xu)∥L2

≤
√
105

30
t2 max

0≤u≤t
∥∇f(Xu)∥L2

(70)

Therefore, we conclude the variance of X as following.

∥∥∥X(r)
t −Xt

∥∥∥
L2

≤(
√
210

70
Lt3 +

√
7

252
L2t5) max

0≤u≤t
∥Vu∥L2

+

√
105

30
t2 max

0≤u≤t
∥∇f(Xu)∥L2

(71)

∥∥∥V (r)
t − Vt

∥∥∥
L2

≤
∥∥∥tψ0(t− at)∇f(X(l)

at )− tψ0(t− at)∇f(Xat)
∥∥∥
L2

+

∥∥∥∥tψ0(t− at)∇f(Xat)−
∫ t

0

ψ0(t− at)∇f(Xs)ds

∥∥∥∥
L2

+

∥∥∥∥∫ t

0

ψ0(t− at)∇f(Xs)ds−
∫ t

0

ψ0(t− s)∇f(Xs)ds

∥∥∥∥
L2

(72)

We denote above three terms as E1,E2 and E3.

E1 =
∥∥∥tψ0(t− at)∇f(X(l)

at )− tψ0(t− at)∇f(Xat)
∥∥∥
L2

≤
√
Ea

[
(tψ0(t− at)∥∇f(X(l)

at )−∇f(Xat)∥L2,B)
2
]

≤
√
Ea

[
(tψ0(t− at)L∥X(l)

at −Xat∥L2,B)
2
]

≤

√√√√Ea

[(
tψ0(t− at)L(

1

6
L(at)3 max

0≤u≤t
∥Vu∥L2

)

)2
]

≤
√
7

42
L2t4 max

0≤u≤t
∥Vu∥L2

(73)
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E2 =

∥∥∥∥tψ0(t− at)∇f(Xat)−
∫ t

0

ψ0(t− at)∇f(Xs)ds

∥∥∥∥
L2

=

√√√√Ea

[
ψ0(t− at)2EB

(∫ t

0

(∇f(Xat)−∇f(Xs))ds

)2
]

=

√√√√Ea

[
ψ0(t− at)2

∥∥∥∥∫ t

0

(∇f(Xat)−∇f(Xs))ds

∥∥∥∥2
L2,B

]

≤

√√√√Ea

[
ψ0(t− at)2

(∫ t

0

∥(∇f(Xat)−∇f(Xs))∥L2,B
ds

)2
]

≤

√√√√Ea

[
ψ0(t− at)2L2

(∫ t

0

∥(Xat −Xs)∥L2,B
ds

)2
]

≤

√√√√Ea

[
ψ0(t− at)2L2

(∫ t

0

|at− s| max
0≤u≤t

∥Vu∥L2
ds

)2
]

≤
√
105

30
Lt2 max

0≤u≤t
∥Vu∥L2

(74)

E3 =

∥∥∥∥∫ t

0

ψ0(t− at)∇f(Xs)ds−
∫ t

0

ψ0(t− s)∇f(Xs)ds

∥∥∥∥
L2

=

√√√√Ea

∥∥∥∥∫ t

0

(ψ0(t− at)− ψ0(t− s))∇f(Xs)ds

∥∥∥∥2
L2,B

≤

√
Ea(

∫ t

0

|ψ0(t− at)− ψ0(t− s)|∥∇f(Xs)∥L2,B
ds)2

≤

√
Ea(

∫ t

0

|ψ0(t− at)− ψ0(t− s)|ds)2 max
0≤u≤t

∥∇f(Xu)∥L2

≤
√
105

30
γt2 max

0≤u≤t
∥∇f(Xu)∥L2

(75)

Therefore, we conclude the variance of X as following.∥∥∥V (r)
t − Vt

∥∥∥
L2

≤(
√
105

30
Lt2 +

√
7

42
L2t4) max

0≤u≤t
∥Vu∥L2

+

√
105

30
γt2 max

0≤u≤t
∥∇f(Xu)∥L2

(76)

Finally, we can give the upper bound of variance as follows.

E
[∥∥∥Z(r)

t − EaZ
(r)
t

∥∥∥2
2

]
≤7

6
γ2t4 max

0≤u≤t
∥∇f(Xu)∥2L2

+
7

20
t4 max

0≤u≤t
∥Vu∥2L2

+RL2t6 max
0≤u≤t

∥Vu∥2L2

(77)

R =

(
5γ2L2t4 + 36L

√
2γ2
√
15t2 + 270L2t2 + 756L

√
15 + 1944 γ2

)
22680

Second term - Bias We aim to control the bias
∥∥∥EaZ

(r)
t −Zt

∥∥∥
2
.∥∥∥EaZ

(r)
t −Zt

∥∥∥
L2

≤γ
∥∥∥EaX

(r)
t −Xt

∥∥∥
L2

+ 2
∥∥∥EaV

(r)
t − Vt

∥∥∥
L2

(78)
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∥∥∥EaX
(r)
t −Xt

∥∥∥
L2

=

∥∥∥∥∫ t

0

ψ1(t− s)∇f(X(l)
s )ds−

∫ t

0

ψ1(t− s)∇f(Xs)ds

∥∥∥∥
L2

=

∥∥∥∥∫ t

0

ψ1(t− s)(∇f(X(l)
s )−∇f(Xs))ds

∥∥∥∥
L2

≤
∫ t

0

ψ1(t− s)
∥∥∥∇f(X(l)

s )−∇f(Xs)
∥∥∥
L2

ds

≤
∫ t

0

ψ1(t− s)L
∥∥∥X(l)

s −Xs

∥∥∥
L2

ds

≤
∫ t

0

ψ1(t− s)L(
1

6
Ls3 max

0≤u≤t
∥Vu∥L2

)ds

≤ 1

120
L2t5 max

0≤u≤t
∥Vu∥L2

(79)

∥∥∥EaV
(r)
t − Vt

∥∥∥
L2

=

∥∥∥∥∫ t

0

ψ0(t− s)∇f(X(l)
s )ds−

∫ t

0

ψ0(t− s)∇f(Xs)ds

∥∥∥∥
L2

=

∥∥∥∥∫ t

0

ψ0(t− s)(∇f(X(l)
s )−∇f(Xs))ds

∥∥∥∥
L2

≤
∫ t

0

ψ0(t− s)
∥∥∥∇f(X(l)

s )−∇f(Xs)
∥∥∥
L2

ds

≤
∫ t

0

ψ0(t− s)L
∥∥∥X(l)

s −Xs

∥∥∥
L2

ds

≤
∫ t

0

ψ0(t− s)L(
1

6
Ls3 max

0≤u≤t
∥Vu∥L2

)ds

≤ 1

24
L2t4 max

0≤u≤t
∥Vu∥L2

(80)

∥∥∥EaZ
(r)
t −Zt

∥∥∥
L2

≤ 1

12
L2t4(1 +

1

10
γLt) max

0≤u≤t
∥Vu∥L2

(81)
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B.5.5 Error for ALUM

Variance

E
[∥∥∥Z(o)

t −Z
(r)
t

∥∥∥2
2

]

=E

∥∥∥∥∥
[
γ 1
0 1

][
X

(o)
t −X

(r)
t

V
(o)
t − V

(r)
t

]∥∥∥∥∥
2

2


≤E

∥∥∥∥∥
[
γ 1
0 1

][
tψ1(t− at)(∇f(X(e)∇̃

at )−∇f(X(l)
at ))

tψ0(t− at)(∇f(X(e)∇̃
at )−∇f(X(l)

at ))

]∥∥∥∥∥
2

2


≤E
[
t2((γψ1(t− at) + ψ0(t− at))2 + ψ0(t− at)2)

∥∥∥∇f(X(e)∇̃
at )−∇f(X(l)

at )
∥∥∥2
2

]
=Ea

[
t2((γψ1(t− at) + ψ0(t− at))2 + ψ0(t− at)2)

∥∥∥∇f(X(e)∇̃
at )−∇f(X(l)

at )
∥∥∥2
L2,B

]
≤Ea

[
t2((γψ1(t− at) + ψ0(t− at))2 + ψ0(t− at)2)L2

∥∥∥X(e)∇̃
at −X

(l)
at

∥∥∥2
L2,B

]
=Ea

[
t2((γψ1(t− at) + ψ0(t− at))2 + ψ0(t− at)2)L2∥ψ2(at)∇f(X0)∥2L2,B

]
≤Ea

[
t2ψ2(at)

2((γψ1(t− at) + ψ0(t− at))2 + ψ0(t− at)2)
]
L2 max

0≤u≤t
∥∇f(Xt)∥2L2

≤ 1

10
L2t6 max

0≤u≤t
∥∇f(Xt)∥2L2

(82)
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B.5.6 Error introduced by gradient estimation
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Qi
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The last inequality follows definition 1. We use Qk = N
∑N

i=1 E[∥∇fi(x
(e)∇̃
k+1 ) −∇fi(x

(e)∇̃
k )∥22].

This has an extra expectation compared to Qk in definition 1 because we need to consider the extra
randomness coming from the Brownian motion instead of just random batch.

E
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t −X
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2
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B.5.7 Summary of error in single step

By combining above error terms, we get follow error change in single step.

E
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R =

(
5γ2L2t4 + 36L

√
2γ2
√
15t2 + 270L2t2 + 756L

√
15 + 1944 γ2

)
22680

B.5.8 Control Qk with Ak

From here, we assume that a fixed step size h is used. In this section we introduce temporary notation
ak and ex,[0,akh],k, where k is inserted to specify the iteration.

We know that at each iteration, we calculate gradient estimation on point:

x
(e)∇̃
k = x

(o)∇̃
k + ψ1(akh)v

(o)∇̃
k + ex,[0,akh],k.

Recall that value Qk is introduced in Appendices B.3 and B.5.6 and is used for controlling gradient
estimation error. We next give the upper bound of value Qk.

Qk =N

N∑
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k+1 )−∇fi(x

(e)∇̃
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Xh,Vh starts from x
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k .
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∥ψ1(ak+1h)v
(o)∇̃
k+1 ∥L2

≤h∥v(o)∇̃
k+1 ∥L2

= h∥V (o)∇̃
h ∥L2

(94)

∥V (o)∇̃
h ∥L2

≤∥V (o)∇̃
h − V

(o)
h ∥L2

+ ∥V (o)
h − V

(r)
h ∥L2

+ ∥V (r)
h − Vh∥L2

+ ∥Vh∥L2

≤h
√
Θmax

i<k

√
Qi + max

0≤u≤h
∥Vu∥L2

+ (

√
105

30
Lh2 +

√
7

42
L2h4) max

0≤u≤t
∥Vu∥L2

+ (

√
105

30
γh2 +

1√
20
Lh3) max

0≤u≤t
∥∇f(Xu)∥L2

(95)

∥ψ1(akh)v
(o)∇̃
k ∥L2 ≤h∥v

(o)∇̃
k ∥L2 = h∥V0∥L2

≤ h max
0≤u≤t

∥Vu∥L2
(96)

∥ex,[0,ak+1h],k+1∥L2 = ∥ex,[0,akh],k∥L2

=
√

E
[
∥ex,[0,akh],k∥22

]
=

√√√√Ea

[
(2γd

∫ akh

0

ψ1(u)2du)2

]

≤ 1√
6

√
γdh3

(97)
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B.5.9 Upper bound of Qk and Ak

Starting from this section, we assume L = 1 and γ = 2. We further assume h < 1
10 to simplify upper

bounds in previous sections.√
Qk ≤2h2

√
Θmax

i<k

√
Qi + 4hAk + 4h

√
d (99)

In order to give a tractable upper bound of Ak+1, we further apply Young’s inequalities to ∥Vt∥2L2

and ∥∇f(Xu)∥2L2
.
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k (100)
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We further assume h ≤ 1
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m
γ , which implies h ≤
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By [35, Lemma 7], if x2k+1 ≤ ((1− α)xk +B)2 +A, then
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Therefore, we have
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√
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We can then control maxi<k

√
Qi as follows.√
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√
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max
i<k

√
Qi ≤10h

√
d+ 8hA0 (108)

Finally we can give upper bound of Ak.

Ak ≤(1−
mh

2γ
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h3

m

√
ΘA0 + (12 + 57

√
Θ)

√
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√
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(109)

B.6 Discretization error

Consider a ULD process Zt starting from the same initial point as the algorithm. Let zk = Zkh and

Bk =
∥∥∥z(e)∇̃

k − zk

∥∥∥
L2

. Based on (50), we have Bk ≥ ∥x(o)∇̃
k −Xkh∥L2 .

We can control the error Bk similarly to what we have done for Ak. Actually we don’t need to
analyze the error from scratch again. The following result can be obtained directly by modifying
(102). This is because the error in variance and bias terms is the same, and the only difference is that

we are controlling difference between z
(e)∇̃
k and zk instead of between z

(e)∇̃
k and z∗

k .

B2
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Qi + 17h4A2
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We use simplified upper bounds for Ak and Qk in eqs. (108) and (109):

Ak ≤2A0 + 2
√
d

max
i<k

√
Qi ≤10h

√
d+ 8hA0.

(111)

With B0 = 0 and inequality [35, Lemma 7] or (104), we can derive the following result

Bk ≤(19 + 46
√
Θ)

√
h3

m
A0 + (31 + 57

√
Θ)

√
h3d

m
. (112)

C Proof of information-based complexity lower bound

We first introduce some notations in appendix C.1. We prove theorems 5 and 6 for d = 1 case in
appendices C.2 and C.3. Then we generalize these results to high dimension in appendix C.4. Finally,
we prove corollary 2 in appendix C.5.

C.1 Preliminary

We let [N ] means {i ∈ N|1 ≤ i ≤ N}. For set Θ, |Θ| means the cardinality or number of elements if
Θ is finite.

C.2 Flat error when n < N

We first show the intuition behind Theorem 5 as follows. Then we give rigorous analysis.

In our definition of problem class U , the mean of the distribution is restricted to a small ball. However,
the minimum of each component of the potential is not restricted. Therefore, we can construct a
family of adversarial models, such that each component potential function has a minimum being very
far away from the origin, in the meantime, the sum potential has a minimum close to the origin. In
this case, every component could affect the mean of the final distribution arbitrarily, and the lack of
information for even just one component makes the prediction very uninformative.
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C.2.1 Proof of theorem 5 for 1-d Case

We consider the class of randomized algorithms An with step number n < N . We first assume N to
be positive odd integer in the following proof. At the end of this subsection, we extend the method to
even integer N .

A N − 1-steps algorithm could ignore the last N − 1− n oracle evaluation and be essentially the
same as a n-steps algorithms. Therefore, eAN−1,U ≤ eAn,U and we can only consider n = N − 1
without loss of generality.

Parameterized model We consider a class of parameterized model as a subset of U to give a lower
bound of eA,U .

Let parameter be θ ∈ Θ = {(a0, . . . , aN ) ∈ {−1, 1}N+1|
∑N

0 ai = 0}. We define potentials
fi(x) = u

2N x
2 −
√
uaix, such that

∑N
i fi(x) = u

2x
2 −
√
u(
∑N

1 ai)x and global minimum is
x∗ = 1√

u

∑N
1 ai = − 1√

u
a0 ∈ {− 1√

u
, 1√

u
}. We assume m ≤ u ≤ L, and it is easy to see that

U = (f1, . . . , fN ) is inside U .

We extend the notation to use XT (ω, θ) and A(ω, ω̃, θ) to mean XT (ω,U) and A(ω, ω̃, U) where
U is above model with parameter θ.

e2An,U = inf
A∈An

sup
U∈U

Eω∈PEω̃∈P̃[XT (ω,U)−A(ω, ω̃, U)]
2

≥ inf
A∈An

sup
θ∈Θ

Eω∈PEω̃∈P̃[XT (ω, θ)−A(ω, ω̃, θ)]2

≥ inf
A∈An

1

|Θ|
∑
θ∈Θ

Eω∈PEω̃∈P̃[XT (ω, θ)−A(ω, ω̃, θ)]2

≥ inf
A∈An

Eω∈PEω̃∈P̃
1

|Θ|
∑
θ∈Θ

[XT (ω, θ)−A(ω, ω̃, θ)]2

(113)

We next give a lower bound on the quantity 1
|Θ|
∑

θ∈Θ[XT (ω, θ) − A(ω, ω̃, θ)]2 under a fixed ω
and ω̃. The basic idea is that due to lack of information, multiple θ could generate same A(ω, ω̃, θ),
therefore the error could be lower-bounded by differences between XT (ω, θ) with equivalence θ.

Mask We use a mask on parameters to represent how much information could be accessed by the
algorithm.

The algorithm takes N − 1 steps to calculate A(ω, ω̃, θ). During this process, N − 1 oracle are
evaluated. Therefore, there is at most N − 1 gradient oracle evaluation ΥU (i, x). Those indexes i
that appear at least once in these gradient evaluations are collected into a mask.

Let J = {m ⊆ [N ]} = 2[N ], we define a mapping β : θ ∈ Θ 7→ β(θ) ∈ J to represent the mask.
More specifically, β(θ) contains index i if and only if, at a certain step during calculating A(ω, ω̃, θ),
the algorithm evaluates the gradient oracle ΥU (i, x) with some x.

Expanded mask We have |β(θ)| ≤ N − 1, since there is at most N − 1 gradient evaluation.
We next expand this mask into β′(θ) to make sure |β′(θ)| = N − 1. This is done by simply
adding the largest element in [N ] that is still not inside β(θ) until the size reaches N − 1. More
specifically, we can always find k, such that |β(θ) ∪ {i ∈ N+|k ≤ i ≤ N}| = N − 1 and we let
β′(θ) = β(θ) ∪ {i ∈ N+|k ≤ i ≤ N}.

Complementary mask We define β̃′(θ) = {i ∈ N|i ≤ N} \ β′(θ) as complementary mask
to represent how much information is not relevant to the algorithm output. It is easy to see that
|β̃′(θ)| = 2 and 0 ∈ β̃′(θ).

Equivalent parameters For each i ∈ β̃′(θ), the gradient of fi(x) is not used in the algorithm, and
therefore changing the function fi or parameter ai will not affect algorithm output A(ω, ω̃, θ).

37



Therefore, we say two parameters to be equivalent if they have the same mask, and they are the
same under this mask. More specifically, two parameters θ = (a0, . . . , aN ) and θ′ = (a′0, . . . , a

′
N )

are equivalent if and only if β′(θ) = β′(θ′) and for any i ∈ β′(θ), ai = a′i. For any two equivalent
parameters θ and θ′, the algorithm gives the same output A(ω, ω̃, θ) = A(ω, ω̃, θ′).

Equivalent class We divide the parameter space Θ into a family of disjoint equivalent class Θi,
such that Θ = ∪iΘi.

Lemma 5. For any equivalent class, the size is either 1 or 2. Moreover, the number of equivalent
classes with 2 elements is at least |Θ|

4 .

Proof of lemma 5. We first show that the size of each equivalent class is either 1 or 2. For each
parameter θ = (a0, . . . , aN ), we have |β̃′(θ)| = 2 and 0 ∈ β̃′(θ). We denote the other element in
β̃′(θ) to be u such that β̃′(θ) = {0, u}. Then we have

∑
i∈β(θ) ai = −

∑
i∈β′(θ) ai = −a0 − au ∈

{−2, 0, 2}. If
∑

i∈β(θ) ai = −2, then it is mandatory that a0 = −1 and au = −1, therefore, there is
no other parameter to be equivalent to θ and the size of equivalent class is 1. The situation is similar
if
∑

i∈β(θ) ai = 2. When
∑

i∈β(θ) ai = 0, there are two possible value for a0, au. a0 = 1, au = −1
and a0 = −1, au = 1 are both valid, so the size of the equivalent class is 2.

Before we control the number of equivalent classes, we extend the notation to represent the "path"
of the mask and construct a bijection between parameters Θ and the path. Recall that β′(θ) can be
constructed sequentially. We can start from an empty mask β′

0(θ) and i = 0. At each step of the
algorithm, if gradient oracle is evaluated, we denote the index parameter for gradient oracle as ti+1,
we add it into the mask as β′

i+1(θ) = β′
i(θ) ∪ {ti+1} and set i← i+ 1. At the end of the algorithm,

we still have i ≤ N + 1. We then repeatedly select largest index from {c ∈ N|c ≤ N, c /∈ β′
i(θ)} as

ti+1, then append it to mask to form β′
i+1(θ) and increase i by 1. The above process is repeated until

i = N + 1. It is easy to see that |β′
i(θ)| = i and β′(θ) = β′

N−1(θ).

We define the mapping p : θ ∈ Θ 7→ (at1 , . . . , atN+1
) ∈ Θ. This mapping is injective, as two

different θ will give ati at certain step in the construction. In the meantime, p is also a self-map.
Therefore, p is a bijection, and every path (at1 , . . . , atN+1

) ∈ Θ can be realized by exactly one
θ ∈ Θ.

We next show that the number of equivalent classes with 2 elements is at least |Θ|
4 . First, we have

|Θ| =
(N+1

N+1
2

)
. This is because choosing a θ is equivalent to selecting N+1

2 indexes from all N + 1

indexes to set 1 and set −1 for all other indexes. Next, we consider all θ that has distinct equivalent
parameter. ∃!θ′ ∈ Θ, θ ̸= θ′, β′(θ) = β′(θ′) ⇐⇒

∑
i∈β′(θ) ai = 0 ⇐⇒

∑N−1
i=1 ati = 0.

Selecting a θ that has distinct equivalent parameter is equivalent to selecting half indexes for previous
N − 1 elements in (at1 , . . . , atN+1

) to be −1, one of aN and aN+1 to be −1, and all others
to be 1, and finally mapped back to θ with p−1. Therefore, the number of θ that has distinct
equivalent parameter is 2

(N−1
N−1

2

)
. Finally, the number of equivalent classes with 2 elements is(N−1

N−1
2

)
= 1

4 (1 +
1
N )|Θ| ≥ 1

4 |Θ|.
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We only consider equivalent classes with 2 elements to derive a lower bound as follows.
1

|Θ|
∑
θ∈Θ

[XT (ω, θ)−A(ω, ω̃, θ)]2

≥ 1

|Θ|
∑
Θi

|Θi|=2

∑
θ∈Θi

[XT (ω, θ)−A(ω, ω̃, θ)]2

≥ 1

|Θ|
∑
Θi

|Θi|=2

([XT (ω, θ)−A(ω, ω̃, θ)]2 + [XT (ω, θ
′)−A(ω, ω̃, θ)]2)

∣∣
θ,θi∈Θi,θ ̸=θi

≥ 1

|Θ|
∑
Θi

|Θi|=2

1

2
[XT (ω, θ)−XT (ω, θ

′)]2
∣∣
θ,θi∈Θi,θ ̸=θi

1⃝
≥ 1

|Θ|
∑
Θi

|Θi|=2

1

2
C(T )2

1

u

≥ 1

|Θ|
1

4
|Θ|1

2
C(T )2

1

u

=
1

8
C(T )2

1

u

(114)

Inequality 1⃝ comes from lemma 6. We can just set u = m for largest error.

If N is even integer, we just need to modify our construction of parameterized model. We define
θ ∈ Θ = {(a0, . . . , aN ) ∈ {−1, 1}N+1|

∑N
0 ai = 1}, and fi(x) = u

2N x
2 −
√
u(ai − 1/N)x such

that the global minimum still falls in {− 1√
u
, 1√

u
}. Similarly, we can still define masks, equivalent

parameters, equivalent class, and we can still have the number of equivalent classes with exactly two
elements being larger than 1

4 times total number of parameters. Finally, we can still give a lower
bound in the same form.

C.2.2 Explicit ULD solution for 1-d quadratic potential

We consider ULD process on potential function f(x) = u
2x

2 starting from x0, v0.

d

[
xt
vt

]
=

[
0 1
−u −γ

] [
xt
vt

]
dt+

[
0√
2γ

]
dBt (115)

We define H =

[
0 1
−u −γ

]
. It is easy to verify that the following solution solves the SDE.[
xt
vt

]
= eHt

[
x0
v0

]
+

∫ t

0

eH(t−s)

[
0√
2γ

]
dBt (116)

We can also derive eHt explicitly.

eHt =
1

λ+ − λ−

(
eλ−t

[
λ+ 1
−u −λ−

]
− (eλ+t

[
λ− 1
−u −λ+

])
(117)

λ± =
γ ±

√
γ2 − 4u

2
(118)

C.2.3 Difference between two ULD processes with same Brownian motion but different
quadratic potential

Lemma 6. Given two quadratic potential f(x) = u
2x

2 −
√
ux and f ′(x) = u

2x
2 +
√
ux, consider

two ULD process XT (ω, f) and XT (ω, f
′) starting from same initialization X0 = 0, V0 = 0. Then,

we have
0 ≤ XT (ω, f)−XT (ω, f

′) ≤ C(T ) 1√
u
,

where C(T ) only depends on T , γ, u.
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Proof. First consider a quadratic potential f̃(x) = u
2x

2. Then we have XT (ω, f) =
1√
u
+ X̃T (ω, f̃)

where X̃T (ω, f̃) is ULD process starting fromX0 = − 1√
u

. Similarly,XT (ω, f
′) = − 1√

u
+X̃ ′

T (ω, f̃)

where X̃ ′
T (ω, f̃) is ULD process starting from X0 = 1√

u
.

X̃T (ω, f̃) and X̃ ′
T (ω, f̃) and be calculated explicitly by result in appendix C.2.2. Therefore, we have

the following result.

0 ≤ XT (ω, f)−XT (ω, f
′) ≤(1− e−λ−Tλ+ − eλ+Tλ−

λ+ − λ−
)
2√
u

(119)

C.3 Error by perturbation

With similar tools in previous section, we can derive a lower bound by applying perturbation on a
quadratic potential function.

C.3.1 Proof of theorem 6 for 1-d Case

Parameterized model For positive values m < u < L ,Cx and ε, we define xi = NCx

2n (i− n
N ) for

0 ≤ i ≤ 2n
N , Ii = [xi, xi+1) for 0 ≤ i < 2n

N , and f0(x) = u
2N x

2.

Let parameter be θ ∈ Θ = {0, 1}2n, we define fi(x) by it’s gradient and global optimal. We require

that∇fi(x) = ∇f0(x) +
∑ 2n

N −1
j=0 θjN+i g(x− xj) and 0 = argminx fi(x) for 1 ≤ i ≤ N .

The function g represents a local perturbation.

g(x) :=


4nξ

N2Cx
x2 x ∈ [0, NCx

8n ]
4nξ

N2Cx
[−(x− NCx

4n )2 + 2(NCx

8n )2] x ∈ [NCx

8n , 3NCx

8n ]
4nξ

N2Cx
(x− NCx

2n )2 x ∈ [ 3NCx

8n , NCx

2n ]

0 x /∈ [0, NCx

2n ]

(120)

It can be easily verify that ∥g′∥∞ = ξ
N , ∥g∥∞ = Cxξ

8n and when u −m ≤ ξ ≤ L − u, we have
U = (f1, . . . , fN ) ∈ U for every parameter θ.

Similar to the flat error case, we extend the notation to use XT (ω, θ) and A(ω, ω̃, θ) to mean
XT (ω,U) and A(ω, ω̃, U) where U is above model with parameter θ.

e2An,U ≥ inf
A∈An

Eω∈PEω̃∈P̃
1

|Θ|
∑
θ∈Θ

[XT (ω, θ)−A(ω, ω̃, θ)]2 (121)

Mask The algorithm takes n steps to calculate A(ω, ω̃, θ). During this process, n oracle are
evaluated. Therefore, there is at most n gradient oracle evaluation ΥU (i, x). For each gradient oracle
evaluation, if x ∈ [−Cx

2 ,
Cx

2 ), then there exists exactly one j such that x ∈ Ij . In this case, we add
jN + i into the mask.

Let J = {m ⊆ [2n]} = 2[2n], we define a mapping β : θ ∈ Θ 7→ β(θ) ∈ J to represent the mask.
More specifically, β(θ) contains index jN + i if and only if, at a certain step during calculating
A(ω, ω̃, θ), the algorithm evaluates the gradient oracle ΥU (i, x) with x ∈ Ij .

Expanded mask We have |β(θ)| ≤ n, since there is at most n gradient evaluation. We expand
this mask into β′(θ) to make sure |β′(θ)| = n by repeatedly adding the largest element in [2n] that
is still not inside β(θ) until the size reaches n. More specifically, we can always find k, such that
|β(θ) ∪ {i ∈ N+|k ≤ i ≤ 2n}| = n and we let β′(θ) = β(θ) ∪ {i ∈ N+|k ≤ i ≤ 2n}.

Complementary mask We define β̃′(θ) = {i ∈ N+|i ≤ 2n} \ β′(θ) as complementary mask
to represent how much information is not relevant to the algorithm output. It is easy to see that
|β̃′(θ)| = n.
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Equivalent parameters We say two parameters to be equivalent if they have the same mask, and
they are the same under this mask. More specifically, two parameters θ and θ′ are equivalent if and
only if β′(θ) = β′(θ′) and for any i ∈ β′(θ), θi = θ′i. For any two equivalent parameters θ and θ′,
the algorithm gives the same output A(ω, ω̃, θ) = A(ω, ω̃, θ′).

Equivalent class We divide the parameter space Θ into a family of disjoint equivalent class Θi,
such that Θ = ∪iΘi.

For each parameter θ, by altering different digits at β̃′(θ), we can construct 2n different equivalent
parameter, therefore, the size of any equivalent class is always 2n. Then the number of equivalent
classes is just 22n/2n = 2n.

We next construct a pairing between parameters in each equivalent class Θi with a self-map S on
Θi. For any θ, θ′ ∈ Θi, we construct an order between them θ ≻ θ′ ⇐⇒ ∀i ∈ β̃′(θ), θi ≥ θ′i.
Based on this order, all 2n elements in Θi forms a Boolean lattice. The rank of θ in this lattice is
just ρ(θ) = |{i ∈ β̃′(θ)|θi = 1}|. We select a symmetric chain decomposition C for this Boolean
lattice. For any parameter θ ∈ Θi, there exist only one symmetric chain C ∈ C that contains θ. We
pick the element θ′ in chain C with rank ρ(θ′) = n− ρ(θ). This always possible because the chain is
rank-symmetric and saturated. We then define the map S : θ 7→ θ′. This mapping is bijective and
S(S(θ)) = θ.

1

|Θ|
∑
θ∈Θ

[XT (ω, θ)−A(ω, ω̃, θ)]2

=
1

|Θ|
∑
Θi

n∑
k=0

∑
θ∈Θi

ρ(θ)=k

[XT (ω, θ)−A(ω, ω̃, θ)]2

=
1

|Θ|
∑
Θi

n∑
k=0

∑
θ∈Θi

ρ(θ)=k

1

2
([XT (ω, θ)−A(ω, ω̃, θ)]2 + [XT (ω, S(θ))−A(ω, ω̃, θ)]2)

≥ 1

|Θ|
∑
Θi

n∑
k=0

∑
θ∈Θi

ρ(θ)=k

1

4
[XT (ω, θ)−XT (ω, S(θ))]

2

1⃝
≥ 1

|Θ|
∑
Θi

n∑
k=0

∑
θ∈Θi

ρ(θ)=k

1

4
[C
Nξ

n2
(n− k − k)]2IE(ω)

=
1

22n
2n

n∑
k

(
n

k

)
1

4
[C
Nξ

n2
(n− k − k)]2IE(ω)

=
1

4
C2ξ2

N2

n4
IE(ω)

(122)

Inequality 1⃝ comes from lemma 7.

e2An,U ≥ inf
A∈An

Eω∈PEω̃∈P̃
1

|Θ|
∑
θ∈Θ

[XT (ω, θ)−A(ω, ω̃, θ)]2

≥ inf
A∈An

Eω∈PEω̃∈P̃
1

4
C2ξ2

N2

n3
IE(ω)

=
1

4
C2ξ2P(E)N

2

n3

(123)

Then we can optimize all free parameter including ξ,Cx and Cv introduced in appendix C.3.2 to
derive final result.

e2An,U ≥C2
N2

n3
(124)

41



According to the discussion in appendix C.3.2, ε = NCxξ
8n ≤ Cxξ

8 and we can always select
parameters, so that ε is small enough and Cv is large enough such that P(E) > 0. Therefore, we have
C2 > 0.

C.3.2 Perturbation error

For positive values ε > 0,Cv > 0 we define

Uu,ε = {(f1, . . . , fN ) ∈ U|∥
N∑
i

∇fi(x)− ux∥∞ ≤ ε} (125)

E = {ω ∈M|∀U ∈ Uu,ε, sup
0≤t≤T

Xt(ω,U) ≥ Cx,

inf
0≤t≤T

Xt(ω,U) ≤ −Cx, sup
0≤t≤T

Vt(ω,U) ≤ Cv}
(126)

[10, Lemma 2.3, Lemma 3.2] When ε is small enough and Cv is large enough, the event E happens
with a positive probability. More specifically, there exists ε > 0 that only depends on L, u, Cx, Cv

and Cv that only depends on L, u, Cx , such that when ε ≤ ε and Cv ≥ Cv , we have P(E) > 0.

[10, Proposition 3.1] Given U (1), U (2) ∈ Uu,ε, I ⊆ [−Cx

2 ,
Cx

2 ] as finite union of closed bounded
interval, such that

g(x) =

N∑
i=1

∇f (1)i (x)−
N∑
i=1

∇f (2)i (x) ≥ cεII(x),∀x ∈ R

where I is the indicator function. Then for every ω ∈ E we have

XT (ω,U
(2))−XT (ω,U

(1)) ≥ Ccεµ(I)

where C is always positive and only depends on L, u, Cx, Cv .
Remark 4. The statement in the above proposition is not exactly the same as the original statement
in [10]. Some modification is made to adapt to this paper’s setup. We address these differences as
follows.

Value uR: The original statement in [10] assumes∇2U(x) ≤ uR ≤ L. Here we just assume uR = L
for simplicity.

Sign: The original statement in [10, Proposition 3.1] only gives lower bounds for absolute value
|XT (U

(1), ω) − XT (U
(2), ω)|. However, [10, Lemma 3.7] already shows that XT (U

(1), ω) −
XT (U

(2), ω) ≤ 0.

Scale of g(x): The original statement in [10, Proposition 3.1] assumes c = 1
2 , however, this is not

necessary. In the proof of [10, Proposition 3.1], g(x) is used linearly, therefore the proposition should
be valid for all c. We always have c ≤ 2 because U (1), U (2) ∈ Uu,ε.

Scale of ULD process: The SDE for ULD in [10] has different scale than this paper, this can be
resolved by a linear transformation as discussed in Appendix A.3 or simply assuming γ = 2 and
L = 1.
Lemma 7. Let ε = NCxξ

8n . If ω ∈ E , then for any two parameter θ, θ′ in an equivalent class Θi, if
θ ≺ θ′, we have

XT (ω, θ)−XT (ω, θ
′) ≥ CNξ

n2
(ρ(θ′)− ρ(θ))

where C is always positive and only depends on L, u, Cx, Cv .

Proof of lemma 7. For any θ, we have U ∈ Uu,ε.

Recall that Θi forms a finite Boolean lattice with order ≻. Therefore, we can always find a saturated
chain θ(ρ(θ)) ≺ θ(ρ(θ))+1 ≺ · · · ≺ θ(ρ(θ′)), so that θ = θ(ρ(θ)) and θ′ = θ(ρ(θ

′)).

For any two adjacent element in this chain θ(u), θ(u+1) ∈ 2[2n], we know that θ(u+1) is only greater
than θ(u) at one index jN + i. Therefore, the corresponding functions f (u) =

∑N
i=1 f

(u)
i (x) and

42



f (u+1) =
∑N

i=1 f
(u+1)
i (x) only differ at fi(x) within interval Ij . More specifically,∇f (u+1)(x)−

∇f (u)(x) = g(x− xj) ≥ 1
2N εII where I = [xj +

NCx

8n , xj +
3NCx

8n ]. [10, Proposition 3.1] can be
applied to give

XT (ω,U
(u))−XT (ω,U

(u+1)) ≥ CNC
2
xξ

64n2

Telescoping the above inequality for all u, we have

XT (ω,U
(ρ(θ)))−XT (ω,U

(ρ(θ′))) ≥ CNC
2
xξ

64n2
(ρ(θ′)− ρ(θ))

C.4 High dimension case

In this section we extend the proof in previous sections to high dimensional space.

We have already established a parameterized model for controlling both flat error and perturbation
error in 1 -dimensional space. We now define a parameterized model for high dimensional space. The
parameter space is just the Cartesian product of parameters for a single dimension Θ = ×d

i=1Θ
(i).

Given a parameter (θ(1), . . . , θ(d)) ∈ Θ, we construct a potential function as follows. For each 1 ≤
i ≤ d, let f̃ (i) be the 1-d potential corresponding to θ(i). Then we define f(X) =

∑d
i=1 f

(i)(X) =∑d
i=1 f̃

(i)(X(i)). Clearly, the different dimension components of ULD decouple with each other, so

X
(i)
T is just a ULD on the 1-dimensional potential f̃ (i) and is only affected by θ(i).

e2A,U = inf
A∈A

sup
U∈U

Eω∈PEω̃∈P̃∥XT (ω,U)−A(ω, ω̃, U)∥22

= inf
A∈A

sup
U∈U

Eω∈PEω̃∈P̃

d∑
i=1

[X
(i)
T (ω,U)−A(i)(ω, ω̃, U)]2

≥ inf
A∈A

1∏d
i=1 |Θ(i)|

∑
θ(i)∈Θ(i)

i=1,...,d

Eω∈PEω̃∈P̃

d∑
i=1

[X
(i)
T (ω, θ)−A(i)(ω, ω̃, θ)]2

≥ inf
A∈A

d∑
i=1

1∏
j ̸=i |Θ(j)|

∑
θ(j)∈Θ(j)

j ̸=i

Eω∈PEω̃∈P̃

1

|Θ(i)|
∑

θ(i)∈Θ(i)

[X
(i)
T (ω, θ)−A(i)(ω, ω̃, θ)]2

(127)

By fixing dimension index i, all other parameters θ(j) ∈ Θ(j) with j ̸= i, random events ω, ω̃, we
reduce the problem into constructing lower bounds for 1

|Θ(i)|
∑

θ(i)∈Θ(i) [X
(i)
T (ω, θ)−A(i)(ω, ω̃, θ)]2.

This is exactly the same as the case for 1-d problem, and we can again define the mask, expanded
mask, complementary mask, equivalent parameters under this setting and generate the same lower
bounds. Therefore, the lower bound for error of d dimensional space is just d times the result from 1
dimensional case.

C.5 Proof of corollary 2

When ε2 < dC1, according to theorem 5, we know that n ≥ N .

Let n′ = ⌈ nN ⌉N , we have n ≤ n′ ≤ n+N − 1. According to theorem 6, we have e2An′ ,U ≥ dC2
N2

n′3 .
According to monotonicity, we have eAn,U ≥ eAn′ ,U . We also have ε ≥ eAn,U . Combining the

above inequities gives us n ≥ C
1
3
2 d

1
3N

2
3 ε−

2
3 −N + 1.
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We then combine above two lower bounds to finish the proof.

n ≥2

3
N +

1

3
(C

1
3
2 d

1
3N

2
3 ε−

2
3 −N + 1)

≥1

3
(N + C

1
3
2 d

1
3N

2
3 ε−

2
3 + 1)

(128)

D Extra discussion on experiments

D.1 Estimating the discretization error

We wish to calculate discretization error
√
∥xK −XKh∥22 + ∥vK − VKh∥22 for comparing different

algorithms, where xk,vk are generated by the algorithm, and Xt,Vt are the true solution.

For an arbitrary non-linear model, the true solution of ULD process might not be available in closed
form. Therefore, instead of calculating the error between an algorithm and the true solution, we
calculate the error between an algorithm and another algorithm which is guaranteed to have much
smaller discretization error. This typically can be achieved with a full gradient RMM with small
enough step size.

Naturally, a following question is how to make sure these two algorithms are approximating the same
ULD process. In another word, we need to make sure that the noise terms in these two algorithms
are derived from the same realization of Brownian motion. We introduce a novel technique by
accumulating the noise terms in the algorithms with smaller step size to generate the noise term for
algorithms with larger step size. If the two algorithms uses step size h′ and nh′ respectively with
positive integer n, we show that the noise terms ex,[0,nh′], ev,[0,nh′], ex,[0,anh′] can be represented
as a combination of ex,[ih′,(i+1)h′], ev,[ih′,(i+1)h′], ex,[⌊an⌋h′,anh′]. The detailed derivation can be
found in appendix A.11.

Finally, we calculate an average of errors along the path instead of at last iterate to reduce variance.
We call this as trajectory error.

The final method to estimate the discretization error is shown in Algorithm 3. Typically, we select
algorithm B as RMM with full gradient and segments number n = 10 to approximate discretization
error for an algorithm A.

A following question is: how accurate this estimation is to the real trajectory error
1
K

∑K
i=1

√
∥xk −Xkh∥22 + ∥vk − Vkh∥22? We know that when n increases, h′ = h

n decreases,
so the reference path converge to the real solution. Therefore, by selecting a large enough n, we
can approximate the trajectory error to arbitrary accuracy. We apply Algorithm 3 to estimate the
trajectory error of RMM with fixed step size under different segments number n. Figure 4 shows that
selecting n = 10 could generate an accurate enough estimate.
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Figure 4: Estimated trajectory error of RMM with different segments number.
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Algorithm 3: Method to estimating trajectory error.
Input: Initial point (x0,v0), parameter γ, iteration number K and step size h > 0.
Input: Two algorithms A,B ∈ {LPM,RMM,ALUM,VR-ALUM, . . . }, number of segments n.
Initialize x′

0 = x0,x′
0 = x0.

for k = 0 to K − 1 do
h′ = h

n ;
// Generate noise terms
for i = 0 to n− 1 do

Randomly sample ai uniformly from [0, 1];
Generate ex,[ih′,(i+1)h′], ev,[ih′,(i+1)h′], ex,[ih′,(i+ai)h′] according to appendix A.5;

end for
// Generate reference path
Initialize x′′

0 = x′
k,x′′

0 = x′
k.

for i = 0 to n− 1 do
Generate x′′

i+1 and v′′
i+1 by algorithm B with input x′′

i and v′′
i and noise terms

ex,[ih′,(i+1)h′], ev,[ih′,(i+1)h′], ex,[ih′,(i+ai)h′];
end for
x′
k+1 = x′′

n,v′
k+1 = v′′

n.
// Accumulate noise terms
Randomly sample j ∈ {0, . . . , n− 1} with uniform distribution and let a′ = j + aj , a = a′

n ;
ex,[0,h] =

∑n−1
i=0

(
ex,[ih′,(i+1)h′] + ψ1((n− i− 1)h′)ev,[ih′,(i+1)h′]

)
;

ev,[0,h] =
∑n−1

i=0 ψ0((n− i− 1)h′)ev,[ih′,(i+1)h′];

ex,[0,ah] = ex,[⌊a′⌋h′,a′h′] +
∑⌊a′⌋−1

i=0

(
ex,[ih′,(i+1)h′] + ψ1((a

′ − i− 1)h′)ev,[ih′,(i+1)h′]

)
;

// Generate original path with large step size
Generate xk+1 and vk+1 by algorithm A with input xk and vk and noise terms ev,[0,h], ev,[0,h],
ex,[0,ah];

end for
Output: 1

K

∑K
i=1

√
∥xk − x′

k∥22 + ∥vk − v′
k∥22.

There also exists theoretical guarantee on the accuracy of this trajectory error estimation. Since we use
RMM for algorithm B, we have discretization error for this reference path as O(h′

3
2 ) = O(h

3
2n−

3
2 ).

Therefore, by selecting n = 10, we know the discretization error for this reference path is at least
10

3
2 ≈ 30 times smaller than RMM with original step size. The accuracy can then be derived as

∥zk −Zkh∥L2
− ∥z′

k −Zkh∥L2
≤ ∥zk − z′

k∥L2
≤ ∥zk −Zkh∥L2

+ ∥z′
k −Zkh∥L2

. 11

D.2 Detailed setup

Datasets For Gaussian model:

fi(x) =
1

2N
(di − x)⊤Σ−1(di − x), (129)

we let d = 5 and N = 100. The vectors di are generated from N (2, 2I), where 2 is a vector with 2
in all its elements. Σ is generated by QR decomposition of a random Gaussian matrix and then re
normalized to have smallest and largest eigenvalue of m = 1,L = 10.

For logistic regression:

fi(x) =
m

2N
∥x∥22 +

N∑
i=1

log(1 + exp(−yia⊤
i x)), (130)

we summarize four datasets used in Table 4. We split the dataset by half randomly for training
and testing model. We set parameter m according to L = 1

4σmax(A
⊤A) +m such that the final

condition number κ is 104 for australian, 105 for phishing dataset, 103 for german dataset, and 10 for
mushromms dataset.

11Actually, this analysis is not tight. As we can see in fig. 4, n = 2 could achieve about 1/10 relative accuracy,
but the theory predicts about 2

3
2 ≈ 1/3. Most error of RMM comes from the variance instead of bias, which

affects the estimate error differently. We leave the tight analysis of trajectory error estimation for future works.
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Table 4: The summary of different datasets used in our experiments.

Dataset australian german phishing mushrooms

N 690 1000 11055 8124
d 14 24 68 112

Hyperparameters If there is no further explanation, we use b = 20 for Gaussian model and b = 40
for Logistic regression models.

We use τ ≈ N/b for SVRG. More specifically, we update the full gradient after every N evaluations
of the single component gradient ∇fi(x). This means that the epoch length of different epochs
can vary up to 1. This setup doesn’t affect our theoretical result, as the bounded MSE property in
Appendix B.3 always holds for SVRG with Θ = N2

b3 .

Tasks

1. Discussing the relationship between error and gradient evaluation number: We first transform
the potential to satisfy L = 1, as discussed in Remark 1. Then we choose certain step size h,
run different algorithms to estimate ULD till time T . Time T is T = 10 for Gaussian model
and T = 100 for logistic regression. For any chosen step size h, we can record how many
gradient oracles∇fi(x) was evaluated for x-axis and record the trajectory error as y-axis.

2. Discussing the relationship between error and step size: We use same T and other settings
as above. The only difference is that we report step size in x-axis.

3. Discussing the relationship between error and batch size: We select a group of batch sizes b.
For each b, we use the same settings as Item 1 to generate the plot.

4. Sampling: The detailed setup for sampling is shown in Appendix D.6.

D.3 Results on other datasets
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Figure 5: Logistic regression on phishing dataset.

We show discretization error on phishing, german, and mushrooms datasets in Figures 5 to 7.

We can see that SAGA-ALUM constantly outperforms all other algorithms.

Although in Figure 5, the difference between SAGA-ALUM and SAGA-LPM seems small when
we only consider less than 107 gradient evaluations, we know that gradient complexity of LPM has
worse dependence on accuracy ε, therefore the difference will grow larger when we increase the
budget of gradient evaluations.
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Figure 6: Logistic regression on german dataset.
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Figure 7: Logistic regression on mushrooms dataset.

D.4 Dependency on step size

In contrast to Figure 1, we adopt a different point of view in this section by considering the relationship
between accuracy and step size.

Figure 8 verifies our theoretical result that discretization error is O(h
3
2 ) for ALUM.

We can also see that SAGA-ALUM has higher discretization error than SVRG-ALUM when using
same step size. However, practically, SAGA uses less gradient evaluations per iteration, therefore
achieves better gradient efficiency.

We also notice that given the same step size, the SAGA-RMM and SVRG-RMM have smaller
error than SAGA-ALUM and SVRG-ALUM respectively. However, ALUM uses only one gradient
evaluation per iteration in contrast to RMM which takes two, therefore ALUM based algorithms
achieves better gradient efficiency.

Finally, we note that our theory analysis is only valid for small enough step size. For example,
Theorem 4 requires h3 ≤ 1

2304cb
3mN−2 and h ≤ m

22 . For a given step size h, our theory might not
be applicable if N is too large or b is too small. This happens on phishing and mushrooms datasets
where sample size N is much larger than australian and german datasets, but we use the same batch
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size. Figures 8c and 8e shows that trajectory error’s dependence of step size h is roughly O(h1/2)
when step size is relatively large, and then becomes O(h3/2) when step size keeps decreasing.
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(a) Gaussian model
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(b) Logistic regression on australian dataset
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(c) Logistic regression on phishing dataset
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(d) Logistic regression on german dataset
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(e) Logistic regression on mushrooms dataset

Figure 8: Discretization error on australian dataset for different algorithms under different step size.12

D.5 Dependency on batch size

Here, we give an intuition why our method is not sensitive to batch size when batch size is relatively
small, and why the efficiency deteriorate for very large batch size.

We can roughly split the discretization error between the vector generated by the VR-ALUMs z(o)∇̃
k

and true solution Zkh as two part: (1) Difference between z
(o)∇̃
k and z

(o)
k generated by the full

gradient ALUM. We denote E1 = ∥z(o)∇̃
k − z

(o)
k ∥2L2

. (2) Difference between z
(o)
k and Zkh as two

part. We denote E2 = ∥z(o)
k −Zkh∥2L2

.

According to analysis in Appendix B, we have E1 = O(h3N2

b3 ) and E2 = O(h3).

Next, we show that E1 is irrelevant to b if we fix the total number of gradient evaluation n. Since
every iteration need O(b) gradient evaluation, we can have at most K = O(nb ) iterations. Then the

12On phishing dataset and mushrooms datasets, SAGA-LPM, SVRG-LPM highly overlap with SAGA-ALUM
and SVRG-ALUM respectively.
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step size is h = T
K = O(Tb

n ). Therefore, we can see E1 = T 3N2

n3 so this part of error doesn’t change
with respect to batch size.

On the other hand, E2 = h3 = O(T
3b3

n3 ), therefore E2 will increase as batch size increases.

When b = O(N
2
3 ), E1 is larger than or at same order as E2, and the change in E2 doesn’t affect the

overall performance too much. Therefore, our methods are not sensitive to batch size when batch size
is relatively small. When b is very large, E2 is dominant, and E2 increases as batch size increases.
Therefore, the overall efficiency deteriorates significantly for extremely large batch size.

Finally, we show Figure 9 which is larger and contains more information than Figure 3.
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(a) SVRG-ALUM
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Figure 9: Discretization error for SVRG-ALUM and SAGA-ALUM with different batch sizes on
australian dataset.

D.6 ALUM for Sampling

In previous subsections, we discussed the accuracy of ALUM for approximating a ULD process and
show that ALUM achieves smaller discretization error on estimating a ULD process than LPM and
RMM with same number of gradient evaluation. When time T is very large, the continuous ULD
process converge to the target distribution. Therefore, any output of ALUM can be used as a sample
approximately drawn from the target distribution.

In this section, we apply ALUM to sample from the posterior of a Bayesian logistic regression
model. We use prior distribution as p(x) ∼ N (0,mI), likelihood as p(yi|ai,x) =

1
1+exp(−yia⊤

i x)

for yi ∈ {1,−1} and yi,ai comes from training set. The posterior is just p∗(x) ∝ exp(
∑N

i=1 fi(x))
where the potentials fi are defined as in Appendix D.2.

Within any gradient evaluation budgets, ALUM and VR-ALUMs can generate a sample x from a
distribution that is similar to target distribution p∗(x). We evaluate these sampling algorithms with
the following tasks:

1. Estimating the mean potential: we sample M = 100 number of independent
xm by ALUM or VR-ALUMs, and report the mean potential 1

M

∑M
m=1 f(xm) =

1
M

∑M
m=1

∑N
i=1 fi(xm).

2. Estimating the mean accuracy on test set: we sample M = 100 number of independent xm

by ALUM or VR-ALUMs, and report the mean accuracy 1
M

∑M
m=1

1
N ′

∑N ′

i=1 I(yia⊤
i xm >

0) where N ′ is the size of test set, yi, ai comes from test set and I is the indicator function.

3. Estimating the posterior predictive distribution: we sample M = 100 number of inde-
pendent xm by ALUM or VR-ALUMs, and report the estimated posterior predictive dis-
tribution 1

N ′

∑N ′

i=1
1
M

∑M
m=1

1
1+exp(−yia⊤

i xm)
where N ′ is the size of test set and yi, ai

comes from test set. This should approximate the true posterior predictive distribution
1
N ′

∑N ′

i=1 p(yi|Dtrain) =
1
N ′

∑N ′

i=1

∫
p(yi|ai,x)p

∗(x)dx.
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Although our theory in Theorems 1 and 3 control the sampling error in 2-Wasserstein distance, we
don’t conduct experiments to measure sampling error directly due to high computational cost.13

In order to apply ALUM for sampling, we first transform the potential to satisfy L = 1 as discussed
in Remark 1, then we use hyperparameters b = 1 and h = 1

40 .

The results for the above tasks are shown in Figures 10 to 13, where the x-axis represent the number
of gradient evaluations needed to generate a single sample. We can see that SAGA-ALUM and
SVRG-ALUM converge much faster than full gradient version, since only a small batch is used for
each iteration. SVRG-ALUM has multiple "plateau" in the plot, which represent the periodic update
of full gradient.
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Figure 10: Sampling from posterior of Bayesian logistic regression model on australian dataset.
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Figure 11: Sampling from posterior of Bayesian logistic regression model on phishing dataset.
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Figure 12: Sampling from posterior of Bayesian logistic regression model on german dataset.

13The 2-Wasserstein distance between these two continuous distributions cannot be calculated directly,
therefore we must draw many samples from these distributions and calculate 2-Wasserstein distance between two
discrete distribution as an approximation. The final stationary distribution of ALUM and VR-ALUMs could have
very small sampling error (e.g. about 10−2). In order to experimentally measure this error, we must be able to
approximate the 2-Wasserstein distance between two continuous distributions up to an accuracy which is at least
one order of magnitude smaller than sampling error. Due to the curse of dimension, we need an exponentially
large number of samples to do that. The cost of generating these samples and the cost of calculating the distance
afterwards are unaffordable in high dimensional space.

50



4000 5000 6000 7000 8000
Gradient Evaluation

2000

2200

2400

2600

2800

M
ea

n
P

ot
en

ti
al

FG-ALUM

SVRG-ALUM

SAGA-ALUM

4000 5000 6000 7000 8000
Gradient Evaluation

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n
A

cc
u

ra
cy

FG-ALUM

SVRG-ALUM

SAGA-ALUM

4000 5000 6000 7000 8000
Gradient Evaluation

0.50

0.55

0.60

0.65

0.70

P
os

te
ri

or
P

re
d

ic
ti

ve
D

is
tr

ib
u

ti
on

OM GD

OM SVRG

OM SAGA

Figure 13: Sampling from posterior of Bayesian logistic regression model on mushrooms dataset.

We call the sampling error of ALUM and VR-ALUMs after running infinite steps with a fixed
step size as flat sampling error. All results in this subsection illustrate how quickly the ALUM
and VR-ALUMs converge with a fixed step size, but don’t directly measure the flat sampling error.
According to Section 5, we know both the discretization error and the flat sampling error have upper
bound of O(h3/2). We show in Appendix D.4 that this upper bound is tight for discretization error.
However, it is still not clear whether the upper bound is tight for the flat sampling error.
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