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1 Per-Target Results

There was not enough room in the main paper to display the Pearson correlation of each method for
each target dataset. We display full results for all methods here.

Note that there are two datasets that typically stand out as being more difficult than the others to
predict transfer accuracy for: NA Birds and CIFAR-10, both for opposite reasons. CIFAR-10 is the
easiest target dataset available by far, where any model can perform well after fine-tuning. This
means that the source feature quality doesn’t matter nearly as much. Since source feature quality
is the only metric these methods use to predict transfer performance, they do poorly here. On the
other hand, NA Birds is challenging and thus requires a high capacity model to transfer well. These
methods also fail to take this factor into account.

1.1 No Tweaks

In Tab. 1, we display the Pearson Correlation for each target dataset individually. We also include
results for additional baselines and skews of existing methods. k-NN (without CV) is nearest
neighbors that, instead of hold-one-out cross validation, trains on half the probe set and tests on
the other half (like Logistic). RSA and DDS Full are where the probe model provided to RSA or
DDS is the same architecture as the current model being queried. This doesn’t do nearly as well,
perhaps because the probe features need to be consistent across transfers. We also provided RSA and
DDS with GoogLeNet and ResNet-18 models here. Neither of those do as well as their ResNet-50
counterpart, but they perform better than AlexNet. This reiterates the point that the architecture used
for the RSA or DDS probe model must be the best one available.

Method Stan. Dogs Ox. Pets CUB 200 NA Birds CIFAR 10 Caltech 101 Mean PC

LEEP −6.3± 0.2 23.3± 0.6 25.8± 0.2 −5.9± 0.2 38.0± 0.6 −10.1± 0.3 10.8± 0.1

NCE −8.8± 0.2 4.4± 0.3 13.3± 0.6 9.6± 1.3 15.3± 2.4 −21.2± 0.5 2.1± 0.7
HScore −15.0± 16.9 −9.6± 12.7 9.5± 22.6 −3.8± 29.7 −5.3± 10.8 −8.4± 5.6 −5.4± 4.9

1-NN CV 75.2± 1.0 71.2± 1.7 53.6± 2.4 50.9± 4.2 54.1± 2.0 59.6± 0.9 60.8± 1.2
5-NN CV 75.0± 0.9 71.3± 1.7 53.0± 3.4 47.0± 9.1 51.7± 1.1 58.6± 0.9 59.4± 1.9

1-NN 74.4± 1.3 70.7± 2.7 52.6± 3.3 51.9± 5.0 52.5± 4.4 59.8± 1.6 60.3± 1.4

5-NN 75.4± 1.9 68.4± 2.3 58.1± 5.8 45.7± 10.9 47.6± 5.4 59.4± 2.3 59.1± 3.5
Logistic 75.2± 0.8 75.1± 2.3 55.6± 3.4 51.2± 2.4 51.5± 3.3 63.2± 1.6 61.9± 1.4

RSA Resnet-50 63.3± 0.6 75.9± 0.6 50.5± 1.5 41.5± 1.9 48.7± 1.5 63.7± 0.5 57.3± 0.4
RSA Resnet-18 63.0± 0.9 74.0± 0.7 37.7± 1.8 33.5± 2.3 50.8± 1.7 57.6± 0.9 52.8± 0.7

RSA GoogLeNet 47.8± 0.7 61.6± 0.5 5.9± 2.2 10.2± 3.1 31.5± 1.9 57.9± 1.6 35.8± 0.6

RSA Alexnet −31.5± 1.6 27.9± 1.3 −17.0± 1.5 −45.6± 0.7 46.0± 0.3 11.8± 1.1 −1.4± 0.6
RSA Full 9.2± 0.7 63.0± 0.6 −32.1± 0.9 −67.8± 0.8 27.9± 1.8 31.0± 0.9 5.2± 0.5

DDS Resnet-50 62.4± 0.6 75.4± 0.5 49.8± 1.0 38.5± 0.9 49.1± 0.9 61.2± 0.5 56.1± 0.3
DDS Resnet-18 62.2± 0.8 74.2± 0.5 38.7± 1.2 31.8± 1.2 49.8± 1.5 57.4± 0.4 52.4± 0.4

DDS GoogLeNet 49.2± 0.8 64.6± 0.6 12.5± 1.4 12.6± 1.8 39.2± 1.1 57.7± 1.1 39.3± 0.5

DDS Alexnet −27.8± 1.1 32.1± 1.3 −12.9± 1.5 −43.1± 0.7 47.2± 1.0 14.6± 0.9 1.7± 0.4
DDS Full 11.4± 0.5 63.5± 0.7 −27.0± 0.6 −63.3± 0.8 34.7± 1.6 30.9± 0.9 8.4± 0.4

PARC 58.9± 1.1 54.2± 2.9 45.0± 0.4 44.7± 2.9 47.0± 1.1 67.9± 1.2 53.0± 0.9

Table 1: All Targets: No Tweaks. Pearson Correlation for each target dataset without any tweaks
applied for a budget size of n = 500.
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1.2 Dimensionality Reduction

In Tab. 2, we show the Pearson Correlation for each dataset individually for each feature-based
method while varying the dimensionality of the input features after PCA. The Mean PC column in
this table is the data for the corresponding dimensionality reduction plot in the paper. We plot the
means in Fig. 1.

Method Stan. Dogs Ox. Pets CUB 200 NA Birds CIFAR 10 Caltech 101 Mean PC

HScore f = 16 67.1± 1.0 68.2± 0.6 48.2± 1.3 32.4± 2.2 47.1± 1.7 63.6± 0.8 54.4± 0.4

HScore f = 32 69.9± 0.6 67.8± 0.8 50.5± 1.5 35.2± 0.8 48.0± 1.9 64.3± 0.5 55.9± 0.6

HScore f = 64 69.5± 0.8 69.2± 1.0 48.5± 1.4 31.0± 1.2 50.0± 0.8 64.8± 0.5 55.5± 0.2
HScore f = 128 68.3± 1.4 70.3± 1.0 46.8± 1.2 27.3± 2.6 50.5± 1.1 66.4± 0.6 54.9± 0.4

HScore f = 256 67.8± 0.9 71.2± 1.4 46.8± 1.5 30.0± 3.4 48.2± 0.9 69.0± 0.6 55.5± 1.2

RSA R-50 f = 16 68.9± 1.6 73.2± 0.6 56.8± 1.2 45.4± 3.5 55.5± 1.9 61.2± 1.4 60.2± 1.0

RSA R-50 f = 32 73.6± 0.8 71.7± 0.4 67.6± 1.1 52.6± 1.1 59.1± 0.9 64.8± 0.5 64.9± 0.2

RSA R-50 f = 64 71.9± 0.4 67.1± 0.6 73.2± 1.1 63.4± 2.3 58.3± 0.7 63.2± 0.6 66.2± 0.5
RSA R-50 f = 128 67.9± 0.5 61.2± 0.3 72.7± 2.1 65.1± 1.4 55.4± 0.5 60.0± 0.3 63.7± 0.3

RSA R-50 f = 256 59.9± 0.7 54.9± 0.6 63.2± 2.3 41.1± 3.2 48.0± 0.8 57.1± 0.7 54.0± 1.1

DDS R-50 f = 16 67.5± 1.0 71.7± 0.5 55.3± 0.7 42.7± 1.6 53.9± 0.6 62.2± 1.5 58.9± 0.4

DDS R-50 f = 32 71.1± 0.6 72.2± 0.5 63.0± 0.9 47.3± 1.4 58.0± 1.7 65.4± 0.5 62.8± 0.3

DDS R-50 f = 64 69.8± 0.4 71.2± 0.5 65.5± 1.2 51.9± 1.2 59.1± 1.0 65.8± 0.4 63.9± 0.4
DDS R-50 f = 128 66.4± 0.2 66.7± 0.3 64.8± 1.7 47.6± 0.4 57.4± 0.7 65.6± 0.5 61.4± 0.2

DDS R-50 f = 256 60.1± 0.5 58.9± 0.6 60.6± 1.3 34.7± 1.6 50.2± 0.3 62.7± 0.6 54.5± 0.6

1-NN CV f = 16 72.1± 1.8 70.1± 1.9 48.1± 2.2 35.3± 6.1 53.9± 3.6 54.6± 1.5 55.7± 2.1
1-NN CV f = 32 73.1± 0.9 71.0± 1.5 50.5± 2.1 45.9± 5.8 54.0± 2.2 58.0± 1.8 58.7± 1.5

1-NN CV f = 64 73.8± 1.3 72.0± 1.9 52.3± 2.6 46.8± 4.8 53.5± 2.5 59.2± 0.9 59.6± 1.2
1-NN CV f = 128 74.4± 1.1 71.7± 1.8 52.7± 2.1 48.2± 4.0 52.9± 1.2 59.9± 0.6 60.0± 1.2

1-NN CV f = 256 75.1± 1.2 71.1± 1.6 53.4± 2.4 50.1± 4.8 54.2± 1.6 59.9± 0.8 60.6± 1.3

Logistic f = 16 72.0± 1.7 71.3± 1.9 46.1± 3.1 36.8± 6.3 49.1± 6.0 56.8± 1.3 55.3± 1.5
Logistic f = 32 74.7± 0.8 72.2± 2.7 52.2± 3.0 43.0± 4.5 46.7± 4.9 60.8± 0.9 58.3± 1.6

Logistic f = 64 75.3± 1.2 73.8± 2.2 53.6± 2.9 48.8± 5.2 50.0± 4.3 62.9± 2.4 60.7± 1.4
Logistic f = 128 75.8± 1.1 74.1± 2.9 54.4± 2.6 49.2± 3.5 51.4± 1.7 63.7± 1.2 61.4± 1.3

Logistic f = 256 76.1± 0.7 74.4± 2.6 55.0± 2.8 50.5± 2.7 50.8± 2.8 63.6± 1.4 61.7± 1.6

PARC f = 16 64.3± 2.2 55.0± 7.7 44.7± 1.5 40.1± 1.8 49.9± 2.3 67.9± 1.1 53.6± 1.1
PARC f = 32 68.6± 0.6 68.2± 4.4 49.8± 3.0 48.8± 1.8 50.5± 1.9 70.0± 0.8 59.3± 0.7

PARC f = 64 71.4± 0.9 73.2± 3.7 53.3± 3.0 50.7± 4.2 50.1± 1.4 71.8± 1.4 61.7± 1.3
PARC f = 128 72.8± 1.5 72.3± 3.5 57.0± 2.1 50.9± 3.6 46.7± 2.0 72.5± 1.0 62.0± 0.7

PARC f = 256 75.3± 1.0 69.7± 3.9 60.1± 2.3 52.5± 4.0 38.8± 2.6 71.6± 0.8 61.3± 0.6

Table 2: All Targets: Dimensionality Reduction. Pearson Correlation for each target dataset with
different levels of dimensionality reduction for a budget size of n = 500.
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1.3 Capacity to Change

In Tab. 3, we include the Pearson Correlation for each dataset individually for all methods while
incorporating the number of layers `s heuristic. We use this as a heuristic to gauge how well each
source architecture can learn from complex data (with more layers predicting better performance).
This helps tremendously on NA Birds, where a high capacity to learn is required to do well.

Method Stan. Dogs Ox. Pets CUB 200 NA Birds CIFAR 10 Caltech 101 Mean PC

LEEP 14.6± 0.2 37.3± 0.5 46.3± 0.1 24.0± 0.2 29.6± 0.4 9.3± 0.3 26.8± 0.1
NCE 18.4± 0.2 20.9± 0.2 48.5± 0.3 51.9± 1.4 16.4± 1.4 13.4± 0.3 28.3± 0.5

HScore 24.5± 27.9 22.7± 12.5 40.6± 27.7 26.7± 16.3 2.4± 9.5 36.4± 15.2 25.6± 9.2

1-NN CV 79.7± 0.6 70.6± 1.5 72.3± 1.6 75.5± 1.6 43.9± 1.9 66.0± 0.6 68.0± 0.7

5-NN CV 79.5± 0.5 70.6± 1.3 74.9± 2.1 78.0± 2.3 42.1± 0.7 65.8± 0.6 68.5± 0.7

1-NN 79.1± 1.0 70.1± 2.4 70.6± 2.2 73.6± 2.4 43.8± 3.8 65.6± 1.1 67.1± 0.8
5-NN 79.8± 1.5 67.8± 2.0 77.3± 1.0 77.4± 1.4 40.0± 4.4 65.7± 1.6 68.0± 1.2

Logistic 80.2± 0.7 74.6± 1.8 74.0± 2.4 74.7± 1.2 41.3± 2.9 70.4± 1.3 69.2± 1.1

RSA Resnet-50 70.8± 0.5 75.6± 0.4 67.7± 0.9 67.0± 0.8 44.2± 1.5 68.6± 0.3 65.7± 0.2

RSA Resnet-18 72.3± 0.7 76.3± 0.5 69.6± 1.0 64.5± 0.7 44.4± 1.5 68.3± 0.5 65.9± 0.4

RSA GoogLeNet 58.2± 0.5 65.8± 0.4 33.6± 1.8 45.0± 2.0 30.0± 1.6 69.0± 1.1 50.3± 0.4
RSA Alexnet −15.0± 1.7 41.3± 1.5 6.0± 1.6 −17.1± 1.2 46.8± 0.5 28.4± 1.1 15.1± 0.6

RSA Full 26.1± 0.7 73.3± 0.5 −7.4± 0.8 −42.0± 1.1 28.6± 1.6 50.8± 0.8 21.6± 0.4

DDS Resnet-50 70.0± 0.5 75.4± 0.4 67.0± 0.7 63.9± 0.4 44.4± 0.9 68.9± 0.3 64.9± 0.2

DDS Resnet-18 71.4± 0.6 76.1± 0.4 67.6± 0.8 62.0± 0.4 43.9± 1.2 69.0± 0.3 65.0± 0.3

DDS GoogLeNet 59.5± 0.7 68.5± 0.4 39.4± 1.2 46.3± 1.2 36.2± 0.8 69.1± 0.8 53.2± 0.4
DDS Alexnet −11.0± 1.1 45.4± 1.4 10.7± 1.4 −13.9± 1.2 47.2± 1.0 32.0± 0.7 18.4± 0.4

DDS Full 28.0± 0.5 73.6± 0.6 −1.6± 0.5 −35.2± 1.5 34.7± 1.5 50.8± 0.7 25.0± 0.4

PARC 73.8± 0.6 57.5± 2.0 75.9± 0.6 79.2± 0.8 42.9± 1.0 74.4± 0.7 67.3± 0.5

Table 3: All Targets: Capacity to Change. Pearson Correlation for each target dataset with the `s
heuristic incorporated for a budget size of n = 500.

(a) Varying f on its own. (b) Varying f with `s applied.

Figure 1: Dimensionality Reduction. In this figure, we vary the value of f used for dimensionality
reduction with and without the `s heuristic applied. The left plot is the same as the one in the main
paper except with PARC added. Note that the best choice for f is different with and without `s. We
failed to consider that in the original submission and will fix that for the final version.
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1.4 All Tweaks

In Tab. 4, we show the Pearson Correlation for each dataset individually for all feature-based methods
with both feature reduction and the `s heuristic applied. These are all tweaks outlined in our paper,
and they improve the performance on all datasets significantly over each method’s original versions.
We plot the means in Fig. 1.

Note that the best dimensionality for feature reduction changes for most methods when the layer
heuristic is applied. Thus, in our paper we report different values of f in the final table than in the
ablations for dimensionality reduction itself.

Method Stan. Dogs Ox. Pets CUB 200 NA Birds CIFAR 10 Caltech 101 Mean PC

HScore f = 16 77.0± 0.6 68.3± 0.5 74.6± 0.9 69.7± 0.8 31.4± 0.9 72.7± 0.5 65.6± 0.2

HScore f = 32 78.1± 0.5 66.3± 0.6 76.8± 0.5 72.1± 0.5 24.7± 0.4 72.7± 0.2 65.1± 0.3
HScore f = 64 76.6± 0.4 62.6± 0.7 77.6± 0.4 73.0± 0.5 18.7± 0.1 72.5± 0.4 63.5± 0.2

HScore f = 128 74.2± 0.5 54.1± 0.6 77.8± 0.2 74.4± 0.7 14.1± 0.1 70.8± 0.3 60.9± 0.2

HScore f = 256 70.0± 0.3 43.5± 0.3 76.7± 0.3 76.4± 0.4 11.4± 0.0 63.1± 0.0 56.9± 0.1

RSA R-50 f = 16 74.9± 1.2 72.3± 0.6 72.5± 0.8 67.3± 2.2 44.6± 0.8 66.8± 0.7 66.4± 0.6

RSA R-50 f = 32 77.2± 0.8 69.4± 0.4 78.0± 0.7 70.9± 0.5 48.8± 0.7 68.3± 0.4 68.8± 0.0
RSA R-50 f = 64 74.6± 0.4 64.3± 0.5 79.7± 0.6 76.9± 1.4 46.7± 0.5 65.5± 0.4 67.9± 0.3

RSA R-50 f = 128 70.3± 0.4 58.9± 0.3 77.9± 1.2 77.5± 0.8 43.0± 0.4 61.5± 0.2 64.9± 0.1

RSA R-50 f = 256 63.2± 0.5 53.6± 0.6 72.6± 1.1 67.0± 1.4 36.2± 0.7 59.2± 0.5 58.6± 0.6

DDS R-50 f = 16 74.1± 0.8 71.7± 0.4 71.7± 0.5 66.2± 1.0 44.6± 0.5 68.2± 0.8 66.1± 0.3

DDS R-50 f = 32 76.0± 0.5 71.2± 0.5 76.2± 0.6 68.4± 0.4 47.7± 1.3 70.0± 0.3 68.2± 0.2

DDS R-50 f = 64 73.9± 0.3 69.0± 0.4 77.4± 0.6 71.0± 0.9 47.1± 0.7 69.9± 0.3 68.0± 0.2
DDS R-50 f = 128 70.1± 0.2 64.1± 0.2 76.7± 1.0 69.0± 0.2 44.6± 0.5 68.9± 0.3 65.6± 0.1

DDS R-50 f = 256 64.1± 0.4 57.4± 0.5 73.2± 0.6 61.5± 1.0 38.4± 0.3 65.6± 0.3 60.0± 0.4

1-NN CV f = 16 78.5± 1.2 70.9± 1.5 71.3± 1.4 72.0± 2.4 44.3± 2.5 65.4± 0.9 67.1± 1.0

1-NN CV f = 32 78.7± 0.4 71.2± 1.2 71.4± 1.3 74.4± 2.3 44.5± 2.0 66.4± 1.1 67.8± 0.8

1-NN CV f = 64 79.1± 0.7 71.7± 1.6 72.2± 1.5 74.6± 2.1 43.7± 2.1 67.0± 0.7 68.0± 0.7
1-NN CV f = 128 79.3± 0.7 71.4± 1.4 72.2± 1.4 74.9± 1.7 43.2± 1.2 67.1± 0.5 68.0± 0.7

1-NN CV f = 256 79.7± 0.6 70.6± 1.3 72.2± 1.7 75.3± 1.7 44.0± 1.5 66.6± 0.5 68.1± 0.7

Logistic f = 16 78.8± 1.2 71.5± 1.3 70.6± 1.4 70.9± 2.5 39.8± 4.3 67.1± 0.7 66.5± 1.0

Logistic f = 32 80.3± 0.5 72.3± 2.1 72.4± 1.6 73.0± 2.9 37.6± 3.8 68.7± 0.3 67.4± 1.3

Logistic f = 64 80.4± 1.0 73.1± 1.5 73.1± 1.4 74.8± 2.6 40.1± 3.1 70.0± 2.2 68.6± 1.2
Logistic f = 128 80.6± 1.0 73.1± 2.1 73.3± 1.6 74.4± 1.9 41.2± 2.0 70.7± 1.0 68.9± 1.1

Logistic f = 256 80.8± 0.8 73.4± 2.1 73.8± 1.8 74.6± 1.9 40.8± 2.5 70.6± 1.1 69.0± 1.3

PARC f = 16 76.9± 1.2 61.1± 3.6 75.8± 0.9 76.4± 0.7 45.1± 1.9 76.6± 1.0 68.6± 0.5

PARC f = 32 78.3± 0.4 66.9± 2.2 76.3± 1.4 77.2± 0.8 45.1± 1.6 78.0± 0.5 70.3± 0.5

PARC f = 64 78.4± 0.7 67.2± 2.2 76.1± 1.3 76.5± 1.8 43.6± 1.2 78.7± 1.0 70.1± 0.8
PARC f = 128 78.1± 1.2 64.8± 2.3 76.6± 0.7 74.6± 2.0 38.5± 1.6 77.9± 0.7 68.4± 0.4

PARC f = 256 79.0± 0.9 59.6± 2.8 76.1± 1.5 72.5± 2.4 30.3± 1.4 75.4± 1.1 65.5± 0.7

Table 4: All Targets: All Tweaks. Pearson Correlation for each target dataset for each feature-based
method with PCA reduction down to f features and with the `s heuristic incorporated for a budget
size of n = 500.
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2 More Results for Varying Probe Set Size

In the main paper, we only varied the probe set size for the original version of each method. Because
the original methods all had vastly different correlations and time taken, we had to plot relative
correlation and the ratio of time taken instead. This showed how different methods scaled differently
with extra data, but it didn’t show how well each method performed relative to each other. In Fig. 2,
we show the performance and time taken while varying the probe set size n for each competitive
method with all beneficial tweaks applied. These plots are absolute so that the performance of each
method can be compared.

PARC outperforms all other methods for all values of n in this setting, though using more data
requires exponentially more time. This is mostly because PARC computes correlations on an n× n
matrix, meaning it scales poorly with n. Logistic scales better in time taken than PARC, becoming
faster at n = 5000. While it’s still slightly worse than PARC, it’s a good alternative to use if you plan
to use the full dataset, for instance.

(a) Mean PC of each method while varying n. (b) Time taken by each method while varying n.

Figure 2: Varying Probe Set Size. In this figure, we vary the probe set size n for the best version
of each competitive method (with all useful tweaks applied). Note that the absolute performance is
plotted here, not relative like in the main paper.
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3 Other Ways to Model Capacity to Change

In Section 4 of the main paper, we ensemble a heuristic with each method according to the following
equation:

(αt
s)
′
1 =

αt
s − µt

σt
+

`s
`max

(1)

This takes the form of normalizing the method’s output scores and then adding the ratio between the
number of layers in the network `s and the number of layers in the deepest network `max. For all
experiments, we used `max = 50, because the deepest network we used was ResNet-50.

In this section, we test more ways to perform this heuristic ensemble. Since all approaches output a
different range of scores, it was important to first normalize the output scores to be consistent across
methods. In the original paper, we subtract by the mean and divide by the standard deviation over
all source models to accomplish this normalization. However, another way to normalize the scores
would be to re-scale the empirical min to 0 and empirical max to 1.

(αt
s)
′
2 =

αt
s − mint

maxt − mint +
`s
`max

(2)

This is a more intuitive form of normalization, but it doesn’t perform as well as Eq. 1 because it puts
too much weight on the number of layers. To address this, we can simply scale the heuristic term:

(αt
s)
′
3 =

αt
s − mint

maxt − mint
+ λ`

`s
`max

(3)

We find λ` = 1
4 to be a good choice. In Tab. 5, we benchmark the performance of these ensembling

equations for each method. Eq. 1 works the best for all methods (within error bars), with Eq. 3
working similarly well for around half the methods. Note that Eq. 2 works the best only for LEEP
and NCE, indicating that their distribution of outputs is very different to that of the other methods
(which makes sense given that they both output a log-based score). We could find a value for λ`
that maximizes the performance of each method, but this risks overfitting to our benchmark. We
leave hyperparemeter tuning on a separate benchmark to future work. Thus, because it requires no
hyperparameter tuning and works on a broad range of methods, we use Eq. 1 in our original paper.

Method
Mean PC (%)

Original
Mean PC (%)

Eq. 1
Mean PC (%)

Eq. 2
Mean PC (%)

Eq. 3

LEEP 10.82± 0.13 26.83± 0.12 47.05± 0.09 26.03± 0.12

NCE 2.08± 0.67 28.27± 0.47 48.15± 0.14 29.75± 0.45
H-Score f = 32 55.95± 0.55 65.12± 0.28 60.44± 0.12 65.08± 0.29

RSA R-50 f = 64 66.17± 0.47 67.95± 0.28 61.24± 0.09 67.42± 0.23

DDS R-50 f = 64 63.90± 0.37 68.04± 0.20 62.80± 0.05 68.08± 0.17

1-NN CV 60.75± 1.25 68.01± 0.75 63.95± 0.41 67.95± 0.76
Logistic 61.94± 1.42 69.18± 1.10 64.60± 0.53 69.11± 1.13

PARC f = 32 59.31± 0.68 70.28± 0.47 60.80± 0.19 69.75± 0.42

Table 5: Adding Capacity to Change. Different ways to incorporate the number of layers heuristic
`s/`max. The best ensembling methods (and those within one standard deviation of the best) for each
method are shown in bold for each method. For all competetive methods, Eq. 1 works the best, so
that is what we use in the original paper.
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4 Sources for the Crowd-Sourced Benchmark

In Tab. 6 we list all source models use in our crowd-sourced benchmark (Sec. 6.2 in the original
paper). To extract features from each ResNet-based architecture, we simply globally pool the features
in the C5 layer. Also, while the crowd-sourced models contain ResNet-101 with `s = 101, we still
fix `max = 50 for Eq. 1 to be consistent with the original benchmark.

Method Backbone Dataset Model ID License Source

Faster R-CNN ResNet-101 C4 COCO 138204752 CC BY-SA 3.0 Detectron v2
Faster R-CNN ResNet-50 C4 COCO 137257644 CC BY-SA 3.0 Detectron v2
Faster R-CNN ResNet-50 C4 COCO 137849393 CC BY-SA 3.0 Detectron v2
Faster R-CNN ResNet-50 C4 VOC 07+12 142202221 CC BY-SA 3.0 Detectron v2
Faster R-CNN ResNet-50 FPN COCO 137257794 CC BY-SA 3.0 Detectron v2
Faster R-CNN ResNet-50 FPN COCO 137849458 CC BY-SA 3.0 Detectron v2
Faster R-CNN ResNet-101 FPN COCO 137851257 CC BY-SA 3.0 Detectron v2

Mask R-CNN ResNet-101 FPN COCO 138205316 CC BY-SA 3.0 Detectron v2
Mask R-CNN ResNet-101 C4 COCO 138363239 CC BY-SA 3.0 Detectron v2
Mask R-CNN ResNet-50 C4 COCO 137259246 CC BY-SA 3.0 Detectron v2
Mask R-CNN ResNet-50 C4 COCO 137849525 CC BY-SA 3.0 Detectron v2
Mask R-CNN ResNet-50 FPN COCO 137260431 CC BY-SA 3.0 Detectron v2
Mask R-CNN ResNet-50 FPN COCO 137849600 CC BY-SA 3.0 Detectron v2
Mask R-CNN ResNet-50 FPN Cityscapes 142423278 CC BY-SA 3.0 Detectron v2
Mask R-CNN ResNet-50 FPN LVIS 144219072 CC BY-SA 3.0 Detectron v2
Mask R-CNN ResNet-101 FPN LVIS 144219035 CC BY-SA 3.0 Detectron v2

Keypoint R-CNN ResNet-101 FPN COCO 138363331 CC BY-SA 3.0 Detectron v2
Keypoint R-CNN ResNet-50 FPN COCO 137261548 CC BY-SA 3.0 Detectron v2
Keypoint R-CNN ResNet-50 FPN COCO 137849621 CC BY-SA 3.0 Detectron v2

Panoptic R-CNN ResNet-101 FPN COCO 139514519 CC BY-SA 3.0 Detectron v2
Panoptic R-CNN ResNet-101 FPN COCO 139797668 CC BY-SA 3.0 Detectron v2
Panoptic R-CNN ResNet-50 FPN COCO 139514544 CC BY-SA 3.0 Detectron v2
Panoptic R-CNN ResNet-50 FPN COCO 139514569 CC BY-SA 3.0 Detectron v2

RetinaNet ResNet-101 COCO 190397697 CC BY-SA 3.0 Detectron v2
RetinaNet ResNet-50 COCO 190397773 CC BY-SA 3.0 Detectron v2
RetinaNet ResNet-50 COCO 190397829 CC BY-SA 3.0 Detectron v2

SimCLR ResNet-101 ImageNet 1k MIT VISSL
ClusterFit ResNet-50 ImageNet 1k MIT VISSL
DeepCluster v2 ResNet-50 ImageNet 1k MIT VISSL
Jigsaw ResNet-50 ImageNet 22k MIT VISSL
MOCO ResNet-50 ImageNet 1k MIT VISSL
NPID ResNet-50 ImageNet 1k MIT VISSL
PIRL ResNet-50 ImageNet 1k MIT VISSL
RotNet ResNet-50 ImageNet 22k MIT VISSL
SimCLR ResNet-50 ImageNet 1k MIT VISSL
SWAV ResNet-50 ImageNet 1k MIT VISSL
Semi-Supervised ResNet-50 Instagram MIT VISSL
Semi-Supervised ResNet-50 YFCC100M MIT VISSL
Supervised ResNet-50 Places205 MIT VISSL

Table 6: Crowd-Sourced Source Models. For our crowd-sourced benchmark, we download pre-
trained source models from two model banks. For each source model, we list the originating method,
the architecture it uses, the dataset it was trained on, the corresponding model ID, the license the
source model was released under, and the source model bank. For models without an ID (i.e., VISSL
models), we take the highest performing model released.
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5 A Note on Metrics

Is Pearson Correlation a suitable metric. We believe that Pearson Correlation (instead of some
top-k accuracy) is the right metric to use for Scalable Diverse Model Selection for several reasons:

1. We want our results to be meaningful no matter the model bank being used. If we just
looked at the top model output, our results would be entirely invalidated if models were
added or removed to the model bank. We care about the intrinsic quality of the selection
models themselves, rather than specifically how they perform on our exact model bank.

2. Our goal is to address diverse model selection, meaning that the source models should vary
in architecture, dataset, and task. If we only look at the top model returned by the selection
algorithm, we’re not evaluating how well that method can compare across these source
model variations. In order to do that, we need to take the ranking of all the models into
account.

3. Practitioners using these model selection algorithms will have different needs depending
on their situation. If they need to run their models on phones or other low-power devices,
ResNet-50 might not be an option. They’d want to compare e.g., ResNet-18, GoogLeNet,
and MobileNet among other more optimized architectures, meaning our evaluation method
must take that into account.

Other Metrics. Nevertheless, it would be useful to have additional metrics that depend more on the
actual top results predicted by the method. For this purpose, we think relative accuracy would be the
easiest to interpret. That is, take the top-k models suggested by the algorithm, fetch their transfer
performance and average those numbers. Finally, divide this average by the transfer performance of
the best model to obtain a notion of “model selection accuracy”. Here are the results for different
values of k. We list columns with the original performance of each method (w/o the tricks discussed
in the paper), as well as the same with the tricks added (w/ Tricks).

Method Original, k = 1 Original, k = 3 w/ Tricks, k = 1 w/ Tricks, k = 3 w/ Tricks, k = 5

LEEP 93.18%± 0.00 90.72%± 0.04 99.56%± 0.00 92.79%± 0.02 90.86%± 0.00

NCE 95.80%± 1.65 89.66%± 1.62 98.82%± 0.40 96.80%± 0.26 94.56%± 0.25
HScore 84.78%± 2.77 83.55%± 2.17 99.46%± 0.10 98.63%± 0.04 97.66%± 0.14

RSA R-50 98.27%± 0.12 98.32%± 0.15 99.35%± 0.04 98.66%± 0.03 97.75%± 0.11
DDS R-50 99.37%± 0.00 98.25%± 0.17 99.37%± 0.01 98.62%± 0.03 97.70%± 0.09

1-NN CV 99.60%± 0.05 97.07%± 0.79 99.60%± 0.05 97.75%± 0.27 96.94%± 0.02

Logistic 99.58%± 0.03 96.46%± 0.92 99.45%± 0.17 97.86%± 0.26 97.08%± 0.27
PARC · · 99.31%± 0.18 98.43%± 0.12 97.88%± 0.00

Table 7: Top-K Relative Accuracy. The accuracy of the predicted model divided by the accuracy
of the best possible model averaged across the top k models for each modle selection method. This
only considers the top models, but this gives an estimate of how well each method does in terms of
comparing raw accuracy.

Three points are clear from these results:

1. Adding the tricks described in the paper significantly improves the top-k results for almost
all methods. This seems to be true no matter what mode of analysis we use.

2. With the tricks applied, some methods like LEEP have very high top-1 accuracies, but
quickly fall off as more than 1 model is taken into account. Top-k results like these are
inherently flawed in that they depend significantly on the list of models used, as small
changes in that list can quickly shake up which algorithm performs the best, which is
alleviated by a metric like Pearson Correlation which takes all models into account.

3. While PARC w/ Tricks isn’t explicitly at the top except for k ≥ 5, it’s still a very strong
contender that’s fast and can be applied to any source task, architecture, or target task.
Moreover, it’s well calibrated for all types of models (which is what the Pearson Correlation
results show).
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We’d like to reiterate that this metric only tests 1-5 of the top selected models and does not test
whether the algorithm is robust across source, architecture, or task (as those variations aren’t likely to
come up in the top 5 models). Thus, we keep Pearson Correlation as our main metric for evaluation,
since top-k metrics don’t capture our goal of testing a method’s robustness to model diversity.
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