
Supplementary material

A Software and hardware

For most model-dataset pairs the workflow was as follows:

• tune the model on any suitable hardware
• evaluate the tuned model on one or more NVidia Tesla V100 32Gb

All the experiments were conducted under the same conditions in terms of software versions. For
almost all experiments the used hardware can be found in the source code.

B Data

B.1 Datasets

Table 1: Datasets description

Name Abbr # Train # Validation # Test # Num # Cat Task type Batch size

California Housing CA 13209 3303 4128 8 0 Regression 256
Adult AD 26048 6513 16281 6 8 Binclass 256
Helena HE 41724 10432 13040 27 0 Multiclass 512
Jannis JA 53588 13398 16747 54 0 Multiclass 512
Higgs Small HI 62752 15688 19610 28 0 Binclass 512
ALOI AL 69120 17280 21600 128 0 Multiclass 512
Epsilon EP 320000 80000 100000 2000 0 Binclass 1024
Year YE 370972 92743 51630 90 0 Regression 1024
Covtype CO 371847 92962 116203 54 0 Multiclass 1024
Yahoo YA 473134 71083 165660 699 0 Regression 1024
Microsoft MI 723412 235259 241521 136 0 Regression 1024

B.2 Preprocessing

For regression problems, we standardize the target values:

ynew =
yold − mean(ytrain))

std(ytrain)
(1)

The feature preprocessing for DL models is described in the main text. Note that we add noise from
N (0, 1e − 3) to train numerical features for calculating the parameters (quantiles) of the quantile
preprocessing as a workaround for features with few distinct values (see the source code for the
exact implementation). The preprocessing is then applied to original features. We do not preprocess
features for GBDTs, since this family of algorithms is insensitive to feature shifts and scaling.

C Results for all algorithms on all datasets

To measure statistical significance in the main text and in the tables in this section, we use the
one-sided Wilcoxon (1945) test with p = 0.01.

Table 2 and Table 3 report all results for all models on all datasets.
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D Additional results

D.1 Training times

Table 4: Training times in seconds averaged over 15 runs.

CA AD HE JA HI AL EP YE CO YA MI

ResNet 72 144 363 163 91 933 704 777 4026 923 1243
FT-Transformer 187 128 536 576 257 2864 934 1776 5050 12712 2857

Overhead 2.6x 0.9x 1.5x 3.5x 2.8x 3.1x 1.3x 2.3x 1.3x 13.8x 2.3x

For most experiments, training times can be found in the source code. In Table 4, we provide the
comparison between ResNet and FT-Transformer in order to “visualize” the overhead introduced by
FT-Transformer compared to the main “conventional” DL baseline. The big difference on the Yahoo
dataset is expected because of the large number of features (700).

D.2 How tuning time budget affects performance?

In this section, we aim to answer the following questions:

• how does the relative performance of tuned models depends on tuning time budget?
• does the number of tuning iterations used in the main text allow models to reach most of

their potential?

The first question is important for two main reasons. First, we have to make sure that longer tuning
times of FT-Transformer (the number of tuning iterations is the same as for all other models) is not
the reason of its strong performance. Second, we want to test FT-Transformer in the regime of low
tuning time budget.

We consider four algorithms: XGBoost (as a fast GBDT implementation), MLP (as the fastest and
simplest DL model), ResNet (as a stronger but slower DL model), FT-Transformer (as the strongest
and the slowest DL model). We consider three datasets: California Housing, Adult, Higgs Small.
On each dataset, for each algorithm, we run five independent (five random seeds) hyperparameter
optimizations. Each run is constrained only by time. For each of the considered time budgets (15
minutes, 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours), we pick the best model
identified by Optuna on the validation set using no more than this time budget. Then, we report its
performance and the number of Optuna iterations averaged over the five random seeds. The results
are reported in Table 5. The takeaways are as follows:

• interestingly, FT-Transformer achieves good metrics just after several randomly sampled
configurations (Optuna performs simple random sampling during the first 10 (default)
iterations).

• FT-Transformer is slower to train, which is expected
• extended tuning (in terms of iterations) for other algorithms does not lead to any meaningful

improvements
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Table 5: Performance of tuned models with different tuning time budgets. Tuned model performance
and the number of Optuna iterations (in parentheses) are reported (both metrics are averaged over
five random seeds). Best results among DL models are in bold, overall best results are in bold red.

0.25h 0.5h 1h 2h 3h 4h 5h 6h

California Housing

XGBoost 0.437 (31) 0.436 (56) 0.434 (120) 0.433 (252) 0.433 (410) 0.432 (557) 0.433 (719) 0.432 (867)
MLP 0.503(16) 0.496(42) 0.493(103) 0.488(230) 0.489(349) 0.489(466) 0.488(596) 0.488(724)
ResNet 0.488(7) 0.487(15) 0.483(30) 0.481(64) 0.482(101) 0.482(131) 0.482(164) 0.484(197)
FT-Transformer 0.466 (4) 0.464 (9) 0.465 (20) 0.460 (47) 0.458 (74) 0.458 (99) 0.457 (124) 0.459 (153)

Adult

XGBoost 0.871 (165) 0.873 (311) 0.872 (638) 0.872 (1296) 0.872 (1927) 0.872 (2478) 0.872 (2999) 0.872 (3500)
MLP 0.856(20) 0.857(37) 0.858(71) 0.857(130) 0.856(190) 0.856(247) 0.856(310) 0.856(375)
ResNet 0.856(8) 0.854(16) 0.854(32) 0.856(69) 0.855(105) 0.855(140) 0.856(174) 0.855(208)
FT-Transformer 0.861 (6) 0.860 (12) 0.859 (27) 0.859 (52) 0.860 (78) 0.860 (99) 0.860 (125) 0.860 (148)

Higgs Small

XGBoost 0.725(88) 0.725(153) 0.724(291) 0.725(573) 0.725(823) 0.726(1069) 0.725(1318) 0.725(1559)
MLP 0.721(16) 0.720(29) 0.723(62) 0.722(137) 0.724(220) 0.723(300) 0.724(375) 0.724(447)
ResNet 0.724(8) 0.727(14) 0.727(32) 0.728(61) 0.728(84) 0.728(107) 0.728(132) 0.728(154)
FT-Transformer 0.727 (2) 0.729 (5) 0.728 (12) 0.728 (23) 0.729 (34) 0.729 (44) 0.730 (56) 0.729 (66)

E FT-Transformer

In this section, we formally describe the details of FT-Transformer its tuning and evaluation. Also,
we share additional technical experience and observations that were not used for final results in the
paper but may be of interest to researchers and practitioners.

E.1 Architecture

Formal definition.

FT-Transformer(x) = Prediction(Block(. . . (Block(AppendCLS(FeatureTokenizer(x))))))

Block(x) = ResidualPreNorm(FFN, ResidualPreNorm(MHSA, x))
ResidualPreNorm(Module, x) = x+ Dropout(Module(Norm(x)))

FFN(x) = Linear(Dropout(Activation(Linear(x))))

We use LayerNorm (Ba et al., 2016) as the normalization. See the main text for the description
of Prediction and FeatureTokenizer. For MHSA, we set nheads = 8 and do not tune this
parameter.

Activation. Throughout the whole paper we used the ReGLU activation, since it is reported to be
superior to the usually used GELU activation (Narang et al., 2021; Shazeer, 2020). However, we did
not observe strong difference between ReGLU and ReLU in preliminary experiments.

Dropout rates. We observed that the attention dropout is always beneficial and FFN-dropout is also
usually set by the tuning process to some non-zero value. As for the final dropout of each residual
branch, it is rarely set to non-zero values by the tuning process.

PreNorm vs PostNorm. We use the PreNorm variant of Transformer, i.e. normalizations are placed
at the beginning of each residual branch. The PreNorm variant is known for better optimization
properties as opposed to the original Transformer, which is a PostNorm-Transformer (Liu et al., 2020;
Nguyen and Salazar, 2019; Wang et al., 2019). The latter one may produce better models in terms of
target metrics (Liu et al., 2020), but it usually requires additional modifications to the model and/or
the training process, such as learning rate warmup or complex initialization schemes (Huang et al.,
2020; Liu et al., 2020). While the PostNorm variant can be an option for practitioners seeking for the
best possible model, we use the PreNorm variant in order to keep the optimization simple and same
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for all models. Note that in the PostNorm formulation the LayerNorm in the "Prediction" equation
(see the section “FT-Transformer” in the main text) should be omitted.

E.2 The default configuration(s)

Table 6 describes the configuration of FT-Transformer referred to as “default” in the main text. Note
that it includes hyperparameters for both the model and the optimization. In fact, the configuration is
a result of an “educated guess” and we did not invest much resources in its tuning.

Table 6: Default FT-Transformer used in the main text.

Layer count 3
Feature embedding size 192

Head count 8
Activation & FFN size factor (ReGLU, 4/3)

Attention dropout 0.2
FFN dropout 0.1

Residual dropout 0.0
Initialization Kaiming (He et al., 2015a)

Parameter count 929K The value is given for 100 numerical features

Optimizer AdamW
Learning rate 1e−4
Weight decay 1e−5 0.0 for Feature Tokenizer, LayerNorm and biases

where “FFN size factor” is a ratio of the FFN’s hidden size to the feature embedding size.

We also designed a heuristic scaling rule to produce “default” configurations with the number of
layers from one to six. We applied it on the Epsilon and Yahoo datasets in order to reduce the number
of tuning iterations. However, we did not dig into the topic and our scaling rule may be suboptimal,
see Wies et al. (2021) for a theoretically sound scaling rule.

In Table 7, we provide hyperparameter space used for Optuna-driven tuning (Akiba et al., 2019).
For Epsilon, however, we iterated over several “default” configurations using a heuristic scaling
rule, since the full tuning procedure turned out to be too time consuming. For Yahoo, we did not
perform tuning at all, since the default configuration already performed well. In the main text, for
FT-Transformer on Yahoo, we report the result of the default FT-Transformer.

Table 7: FT-Transformer hyperparameter space. Here (A) = {CA, AD, HE, JA, HI} and
(B) = {AL, YE, CO, MI}

Parameter (Datasets) Distribution

# Layers (A) UniformInt[1, 4], (B) UniformInt[1, 6]

Feature embedding size (A,B) UniformInt[64, 512]

Residual dropout (A) {0,Uniform[0, 0.2]}, (B) Const(0.0)
Attention dropout (A,B) Uniform[0, 0.5]

FFN dropout (A,B) Uniform[0, 0.5]

FFN factor (A) Uniform[2/3, 8/3], (B) Const(4/3)
Learning rate (A) LogUniform[1e-5, 1e-3], (B) LogUniform[3e-5, 3e-4]
Weight decay (A,B) LogUniform[1e-6, 1e-3]

# Iterations (A) 100, (B) 50

E.3 Training

On the Epsilon dataset, we scale FT-Transformer using the technique proposed by Wang et al. (2020)
with the “headwise” sharing policy; we set the projection dimension to 128. We follow the popular
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“transformers” library (Wolf et al., 2020) and do not apply weight decay to Feature Tokenizer, biases
in linear layers and normalization layers.

F Models

In this section, we describe the implementation details for all models. See section E.1 for details on
FT-Transformer.

F.1 ResNet

Architecture. The architecture is formally described in the main text.

We tested several configurations and observed measurable difference in performance between all of
them. We found the ones with “clear main path” (i.e. with all normalizations (except the last one)
placed only in residual branches as in He et al. (2016) or Wang et al. (2019)) to perform better. As
expected, it is also easier for them to train deeper configurations. We found the block design inspired
by Transformer (Vaswani et al., 2017) to perform better or on par with the one inspired by the ResNet
from computer vision (He et al., 2015b).

We observed that in the “optimal” configurations (the result of the hyperparameter optimization
process) the inner dropout rate (not the last one) of one block was usually set to higher values
compared to the outer dropout rate. Moreover, the latter one was set to zero in many cases.

Implementation. Ours, see the source code.

In Table 8, we provide hyperparameter space used for Optuna-driven tuning (Akiba et al., 2019).

Table 8: ResNet hyperparameter space. Here (A) = {CA, AD, HE, JA, HI, AL} and
(B) = {EP, YE, CO, YA, MI}

Parameter (Datasets) Distribution

# Layers (A) UniformInt[1, 8], (B) UniformInt[1, 16]

Layer size (A) UniformInt[64, 512], (B) UniformInt[64, 1024]

Hidden factor (A,B) Uniform[1, 4]

Hidden dropout (A,B) Uniform[0, 0.5]

Residual dropout (A,B) {0,Uniform[0, 0.5]}
Learning rate (A,B) LogUniform[1e-5, 1e-2]
Weight decay (A,B) {0,LogUniform[1e-6, 1e-3]}
Category embedding size ({AD}) UniformInt[64, 512]

# Iterations 100

F.2 MLP

Architecture. The architecture is formally described in the main text.

Implementation. Ours, see the source code.

In Table 9, we provide hyperparameter space used for Optuna-driven tuning (Akiba et al., 2019). Note
that the size of the first and the last layers are tuned and set separately, while the size for “in-between”
layers is the same for all of them.

F.3 XGBoost

Implementation. We fix and do not tune the following hyperparameters:

• booster = "gbtree"
• early-stopping-rounds = 50

• n-estimators = 2000
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Table 9: MLP hyperparameter space. Here (A) = {CA, AD, HE, JA, HI, AL} and
(B) = {EP, YE, CO, YA, MI}

Parameter (Datasets) Distribution

# Layers (A) UniformInt[1, 8], (B) UniformInt[1, 16]

Layer size (A) UniformInt[1, 512], (B) UniformInt[1, 1024]

Dropout (A,B) {0,Uniform[0, 0.5]}
Learning rate (A,B) LogUniform[1e-5, 1e-2]
Weight decay (A,B) {0,LogUniform[1e-6, 1e-3]}
Category embedding size ({AD}) UniformInt[64, 512]

# Iterations 100

In Table 10, we provide hyperparameter space used for Optuna-driven tuning (Akiba et al., 2019).

Table 10: XGBoost hyperparameter space. Here (A) = {CA, AD, HE, JA, HI} and
(B) = {EP, YE, CO, YA, MI}

Parameter (Datasets) Distribution

Max depth (A) UniformInt[3, 10], (B) UniformInt[6, 10]

Min child weight (A,B) LogUniform[1e-8, 1e5]
Subsample (A,B) Uniform[0.5, 1]

Learning rate (A,B) LogUniform[1e-5, 1]
Col sample by level (A,B) Uniform[0.5, 1]

Col sample by tree (A,B) Uniform[0.5, 1]

Gamma (A,B) {0,LogUniform[1e-8, 1e2]}
Lambda (A,B) {0,LogUniform[1e-8, 1e2]}
Alpha (A,B) {0,LogUniform[1e-8, 1e2]}

# Iterations 100

F.4 CatBoost

Implementation. We fix and do not tune the following hyperparameters:

• early-stopping-rounds = 50

• od-pval = 0.001

• iterations = 2000

In Table 11, we provide hyperparameter space used for Optuna-driven tuning (Akiba et al., 2019).
We set the task_type parameter to “GPU” (the tuning was unacceptably slow on CPU).

Evaluation. We set the task_type parameter to “CPU”, since for the used version of the CatBoost
library it is crucial for performance in terms of target metrics.

F.5 SNN

Implementation. Ours, see the source code.

In Table 12, we provide hyperparameter space used for Optuna-driven tuning (Akiba et al., 2019).

F.6 NODE

Implementation. We used the official implementation: https://github.com/Qwicen/node.
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Table 11: CatBoost hyperparameter space. Here (A) = {CA, AD, HE, JA, HI} and
(B) = {EP, YE, CO, YA, MI}

Parameter (Datasets) Distribution

Max depth (A) UniformInt[3, 10], (B) UniformInt[6, 10]

Learning rate (A,B) LogUniform[1e-5, 1]
Bagging temperature (A,B) Uniform[0, 1]

L2 leaf reg (A,B) LogUniform[1, 10]

Leaf estimation iterations (A,B) UniformInt[1, 10]

# Iterations 100

Table 12: SNN hyperparameter space. Here (A) = {CA, AD, HE, JA, HI, AL} and
(B) = {EP, YE, CO, YA, MI}

Parameter (Datasets) Distribution

# Layers (A) UniformInt[2, 16], (B) UniformInt[2, 32]

Layer size (A) UniformInt[1, 512], (B) UniformInt[1, 1024]

Dropout (A,B) {0,Uniform[0, 0.1]}
Learning rate (A,B) LogUniform[1e-5, 1e-2]
Weight decay (A,B) {0,LogUniform[1e-5, 1e-3]}
Category embedding size ({AD}) UniformInt[64, 512]

# Iterations 100

Tuning. We iterated over the parameter grid from the original paper (Popov et al., 2020) plus the
default configuration from the original paper. For multiclass datasets, we set the tree dimension
being equal to the number of classes. For the Helena and ALOI datasets there was no tuning since
NODE does not scale to classification problems with a large number of classes (for example, the
minimal non-default configuration of NODE contains 600M+ parameters on the Helena dataset), so
the reported results for these datasets are obtained with the default configuration.

F.7 TabNet

Implementation. We used the official implementation:
https://github.com/google-research/google-research/tree/master/tabnet.
We always set feature-dim equal to output-dim. We also fix and do not tune the following
hyperparameters (let A = {CA, AD}, B = {HE, JA, HI, AL}, C = {EP, YE, CO, YA, MI}):

• virtual-batch-size = (A) 2048, (B) 8192, (C) 16384

• batch-size = (A) 256, (B) 512, (C) 1024

In Table 13, we provide hyperparameter space used for Optuna-driven tuning (Akiba et al., 2019).

F.8 GrowNet

Implementation. We used the official implementation: https://github.com/sbadirli/
GrowNet. Note that it does not support multiclass problems, hence the gaps in the main tables
for multiclass problems. We use no more than 40 small MLPs, each MLP has 2 hidden layers,
boosting rate is learned – as suggested by the authors.

In Table 14, we provide hyperparameter space used for Optuna-driven tuning (Akiba et al., 2019).
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Table 13: TabNet hyperparameter space.

Parameter Distribution

# Decision steps UniformInt[3, 10]

Layer size {8, 16, 32, 64, 128}
Relaxation factor Uniform[1, 2]

Sparsity loss weight LogUniform[1e-6, 1e-1]
Decay rate Uniform[0.4, 0.95]

Decay steps {100, 500, 2000}
Learning rate Uniform[1e-3, 1e-2]

# Iterations 100

Table 14: GrowNet hyperparameter space.

Parameter (Datasets) Distribution

Correct epochs (all) {1, 2}
Epochs per stage (all) {1, 2}
Hidden dimension (all) UniformInt[32, 512]

Learning rate (all) LogUniform[1e-5, 1e-2]
Weight decay (all) {0,LogUniform[1e-6, 1e-3]}
Category embedding size ({AD}) UniformInt[32, 512]

# Iterations 100

F.9 DCN V2

Architecture. There are two variats of DCN V2, namely, “stacked” and “parallel”. We tuned and
evaluated both and did not observe strong superiority of any of them. We report numbers for the
“parallel” variant as it was slightly better on large datasets.

Implementation. Ours, see the source code.

In Table 15, we provide hyperparameter space used for Optuna-driven tuning (Akiba et al., 2019).

Table 15: DCN V2 hyperparameter space. Here (A) = {CA, AD, HE, JA, HI, AL} and
(B) = {EP, YE, CO, YA, MI}

Parameter (Datasets) Distribution

# Cross layers (A) UniformInt[1, 8], (B) UniformInt[1, 16]

# Hidden layers (A) UniformInt[1, 8], (B) UniformInt[1, 16]

Layer size (A) UniformInt[64, 512], (B) UniformInt[64, 1024]

Hidden dropout (A,B) Uniform[0, 0.5]

Cross dropout (A,B) {0,Uniform[0, 0.5]}
Learning rate (A,B) LogUniform[1e-5, 1e-2]
Weight decay (A,B) {0,LogUniform[1e-6, 1e-3]}
Category embedding size ({AD}) UniformInt[64, 512]

# Iterations 100
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F.10 AutoInt

Implementation. Ours, see the source code. We mostly follow the original paper (Song et al., 2019),
however, it turns out to be necessary to introduce some modifications such as normalization in order
to make the model competitive. We fix nheads = 2 as recommended in the original paper.

In Table 16, we provide hyperparameter space used for Optuna-driven tuning (Akiba et al., 2019).

Table 16: AutoInt hyperparameter space. Here (A) = {CA, AD, HE, JA, HI} and
(B) = {AL, YE, CO, MI}

Parameter (Datasets) Distribution

# Layers (A,B) UniformInt[1, 6]

Feature embedding size (A,B) UniformInt[8, 64]

Residual dropout (A) {0,Uniform[0.0, 0.2]}, (B) Const(0.0)
Attention dropout (A,B) Uniform[0.0, 0.5]

Learning rate (A) LogUniform[1e-5, 1e-3], (B) LogUniform[3e-5, 3e-4]
Weight decay (A,B) LogUniform[1e-6, 1e-3]

# Iterations (A) 100, (B) 50

G Analysis

G.1 When FT-Transformer is better than ResNet?

Data. Train, validation and test set sizes are 500 000, 50 000 and 100 000 respectively. One object is
generated as x ∼ N (0, I100). For each object, the first 50 features are used for target generation and
the remaining 50 features play the role of “noise”.

fDL. The function is implemented as an MLP with three hidden layers, each of size 256. Weights
are initialized with Kaiming initialization (He et al., 2015a), biases are initialized with the uniform
distribution U(−a, a), where a = d−0.5

input. All the parameters are fixed after initialization and are not
trained.

fGBDT . The function is implemented as an average prediction of 30 randomly constructed decision
trees. The construction of one random decision tree is demonstrated in algorithm 1. The inference
process for one decision tree is the same as for ordinary decision trees.

CatBoost. We use the default hyperparameters.

FT-Transformer. We use the default hyperparameters. Parameter count: 930K.

ResNet. Residual block count: 4. Embedding size: 256. Dropout rate inside residual blocks: 0.5.
Parameter count: 820K.

G.2 Ablation study

Table 17 is a more detailed version of the corresponding table from the main text.

Table 17: The results of the comparison between FT-Transformer and two attention-based alternatives.
Means and standard deviations over 15 runs are reported

CA ↓ HE ↑ JA ↑ HI ↑ AL ↑ YE ↓ CO ↑ MI ↓

AutoInt 0.474±3.3e-3 0.372±2.5e-3 0.721±2.3e-3 0.725±1.7e-3 0.945±1.3e-3 8.882±3.3e-2 0.934±3.5e-3 0.750±6.1e-4

FT-Transformer (w/o feature biases) 0.470±5.7e-3 0.381±1.6e-3 0.724±3.9e-3 0.727±1.9e-3 0.958±1.2e-3 8.843±2.5e-2 0.964±6.2e-4 0.751±5.6e-4

FT-Transformer 0.459±3.5e-3 0.391±1.2e-3 0.732±2.0e-3 0.729±1.5e-3 0.960±1.1e-3 8.855±3.1e-2 0.970±6.6e-4 0.746±4.9e-4
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Algorithm 1: Construction of one random decision tree.
Result: Random Decision Tree
set of leaves L = {root};
depths - mapping from nodes to their depths;
left - mapping from nodes to their left children;
right - mapping from nodes to their right children;
features - mapping from nodes to splitting features;
thresholds - mapping from nodes to splitting thresholds;
values - mapping from leaves to their associated values;
n = 0 - number of nodes;
k = 100 - number of features;
while n < 100 do

randomly choose leaf z from L s.t. depths[z] < 10;
features[z] ∼ UniformInt[1, . . . , k];
thresholds[z] ∼ N (0, 1);
add two new nodes l and r to L;
remove z from L;
unset values[z];
left[z] = l;
right[z] = r;
depths[l] = depths[r] = depths[z] + 1;
values[l] ∼ N (0, 1);
values[r] ∼ N (0, 1);
n = n+ 2;

end
return Random Decision Tree as {L, left, right, features, thresholds, values}.

H Additional datasets

Here, we report results for some datasets that turned out to be non-informative benchmarks, that is,
where all models perform similarly. We report the average results over 15 random seeds for single
models that are tuned and trained under the same protocol as described in the main text. The datasets
include Bank (Moro et al., 2014), Kick 1, MiniBooNe 2, Click 3. The dataset properties are given in
Table 18 and the results are reported in Table 19.

Table 18: Additional datasets
Dataset # objects # Num # Cat Task type (metric)

Bank 45211 7 9 Binclass (accuracy)
Kick 72983 14 18 Binclass (accuracy)
MiniBooNe 130064 50 0 Binclass (accuracy)
Click 1000000 3 8 Binclass (accuracy)

1https://www.kaggle.com/c/DontGetKicked
2https://archive.ics.uci.edu/ml/datasets/MiniBooNE+particle+identification
3http://www.kdd.org/kdd-cup/view/kdd-cup-2012-track-2
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Table 19: Results for single models on additional datasets.
Bank Kick MiniBooNE Click

SNN 0.9076 (0.0016) 0.9014 (0.0007) 0.9493 (0.0006) 0.6613 (0.0006)
Grownet 0.9093 (0.0012) 0.9016 (0.0006) 0.9494 (0.0007) 0.6614 (0.0009)
DCNv2 0.9085 (0.0010) 0.9014 (0.0007) 0.9496 (0.0005) 0.6615 (0.0003)
AutoInt 0.9065 (0.0014) 0.9005 (0.0005) 0.9478 (0.0008) 0.6614 (0.0005)
MLP 0.9059 (0.0014) 0.9012 (0.0004) 0.9501 (0.0006) 0.6617 (0.0006)
ResNet 0.9072 (0.0014) 0.9017 (0.0005) 0.9508 (0.0006) 0.6612 (0.0007)
FT-Transformer 0.9090 (0.0014) 0.9016 (0.0003) 0.9491 (0.0007) 0.6606 (0.0009)
FT-Transformer (default) 0.9088 (0.0013) 0.9013 (0.0006) 0.9476 (0.0007) 0.6610 (0.0007)
CatBoost 0.9068 (0.0015) 0.9021 (0.0009) 0.9465 (0.0005) 0.6635 (0.0002)
XgBoost 0.9087 (0.0009) 0.9034 (0.0003) 0.9461 (0.0005) 0.6399 (0.0006)
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