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A Binomial estimation with 1 bit: proof of Lemma 2.2

We first provide the detailed algorithm for binomial estimation. Before doing so we recall a few
definitions. We start with the notion of distance between a point and a set: for A ⊆ [0, 1] and
x ∈ [0, 1], let d(x,A) := infy∈A |x− y|.
Our algorithms will crucially rely on the use of Gray codes, which we define next.
Definition A.1 (Gray code). An s-bit Gray code Gs : [0, 1]→ {−1,+1}s is defined by a collection
of Gray functions gi : [0, 1]→ {−1,+1}, i ∈ [s], where

gi(x) =
{
−1 if

⌊
2ix
⌋

mod 4 ∈ {0, 3},
1 if

⌊
2ix
⌋

mod 4 ∈ {1, 2}.
The encoding is then given by Gs(x) := (g1(x), g2(x), . . . , gs(x)).

Accordingly, we define the decoding function for an s-bit gray code:
Decs(b1, . . . , bs) := {x ∈ [0, 1] : gj(x) = bj , j = 1, . . . , s}. (7)

It can be shown [8] that, for all (b1, . . . , bs) ∈ {−1,+1}s, there exist 0 ≤ a < b ≤ 1 satisfying
b− a = 2−s and Decs(b1, . . . , bs) = (a, b].

Let CI be a constant and r := b
√

m
2CI c. We now recall the definition of the intervals {Ii}i∈[2r] and

{Ji}i∈[2r+1]. Let Ii := [li−1, li] for 1 ≤ i ≤ r, where

li := min
{
CI i

2

m
,

1
2

}
, 0 ≤ i ≤ r.

Furthermore I2r+1−i := [1 − li, 1 − li−1]. Let ji be the midpoint of Ii for 1 ≤ i ≤ 2r and
j0 = 0, j2r+1 = 1. Define Ji := [ji−1, ji], i ∈ [2r + 1].
It can be seen that both {Ii}i∈[2r] and {Ji}i∈[2r+1] are partitions of [0, 1]. The length of each interval
is chosen such that ∀i ∈ [2r] and p ∈ Ii, we have |Ii| � max{

√
p/m, 1/m} (up to multiplicative

constants), which is at least as large as the standard deviation of Z/m if Z ∼ Bin(m, p). Our
algorithm then builds on the fact that with high probability, Z/m falls into either the interval p
belongs to or one of its two adjacent intervals. The same statement holds for the Ji’s.

For p ∈ [0, 1], define the functions

R2(p) := Pr
(
Z

m
∈
⋃
i

I2i

)
, R3(p) := Pr

(
Z

m
∈
⋃
i

J2i

)
, R4(p) = Pr (Z ≥ 1) , (8)

where Z ∼ Bin(m, p). For an interval I , we define Ri,I , i = 2, 3, 4 as the restriction of Ri on the
interval I . We next describe the detailed protocol below.
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One-bit Binomial Estimation Protocol.
Divide users into 4 groups S1, . . . , S4, each with size N := n′

4 . Let s = log(m), M = N
s .

Localization stage. In this stage, the goal is to obtain an interval I , which corresponds to a
crude estimate of p.

• Users: S1 is further partitioned into s subgroups (Sj1)j≤s of equal size. All users
u ∈ Sj1 send the jth bit of the Gray code for Zu, i.e., Yu = gj(Zu/m).

• The server: For each j ∈ [s], let bj := 1
{∑

u∈Sj1
Yu ≥M/2

}
and decode

I := Decs(b1, . . . , bs).

Refinement stage. In this stage, we improve the accuracy to Θ(
√
p(1− p)/mn′).

• Users:
1. User u ∈ S2 sends Yu = 1{Zu/m ∈ ∪iI2i}.
2. User u ∈ S3 sends Yu = 1{Zu/m ∈ ∪iJ2i}.
3. User u ∈ S4 sends Yu = 1{Zu ≥ 1}.

• The server: One of the 3 following cases must hold.

If I ⊆ [0, 65CI/m], let Ȳ4 = 1
N

∑N
u∈S4

Yu

p̂ = R−1
4
(
Ȳ4
)

:=
{
p ∈ [0, 1] : R4(p) = Ȳ4

}
.

Else if there exists i ∈ [2r] such that I ⊆ I ′i :=
[
li − 0.55CI i

m , li + 0.55CI i
m

]
, let

Ȳ2 = 1
N

∑N
u∈S2

Yu

p̂ = R−1
2,I′

i

(
Ȳ2
)

:=
{
p ∈ I ′i : R2(p) = Ȳ2

}
.

Else if there exists i ∈ [2r+1] such that I ⊆ J ′i :=
[
ji − 0.55CI i

m , ji + 0.55CI i
m

]
,

let Ȳ3 = 1
N

∑N
u∈S3

Yu

p̂ = R−1
3,J′

i
:=
{
p ∈ J ′i : R3(p) = Ȳ3

}
.

Overview. Next we prove that the above protocol achieves the performance described in Lemma 2.2.
The proof requires two steps. First we show that for the localization stage, the expected error due to
failing to locate p is small, formally stated as Theorem A.2.

Theorem A.2. Let J =
{
x : d(x,DecK(b1, . . . , bK)) ≤ 8 max{p(1−p)m , 1

m}
}

. Then there exists
a constant Cloc such that

E
[
(p̂− p)21{p /∈ J}

]
≤ Cloc max

{
1
m2 ,

p

m

}
e−

n′
240 log(m) .

Then for the refinement stage, we show that conditioned on p is localized successfully, the expected
error is small, formally stated as the theorem below.

Theorem A.3. Let J be the interval defined in Theorem A.2. Then

E
[
(p̂− p)21{p ∈ J}

]
≤ O

( p

mn′

)
.

The proof idea is that J is contained in an interval where at least one of R2(p), R3(p), R4(p) is
monotonic and has derivative with high magnitude. Hence inverting the corresponding function
yields small estimation error.

Combining the two parts naturally implies the desired error rate in Lemma 2.2 (with a slightly
different constant in the exponential part).
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Next we present the proof of Theorem A.2 in Appendix A.1 and the proof of Theorem A.3 in Ap-
pendix A.2. Throughout this section we assume that m ≥ 300 and n′ ≥ 960 log(m) log(n′k).5

A.1 Localization: proof of Theorem A.2

The proof relies on the following lemmas which guarantee that p is close to the decoded interval at
the localization stage with high probability.

Lemma A.4. Let p ∈ [0, 1] and 1 ≤ K ≤ log(min{m,
√
m/p(1− p)}). Then there exists a

constant C1 > 0 such that for any L ≤ K,

Pr[ d(p, DecK(b1, . . . , bK)) ≥ 5
42−L − 2−K

]
≤ C1

(
exp

(
− m2−2(L+2)

4 min{p, 1− p}

)
+ exp

(
−mmax{min{p, 1− p}, 2−(L+2)}

4

))
.

Lemma A.5. Let p ∈ [0, 1] and 1 ≤ K ≤ log(min{m,
√
m/p(1− p)})− 5. Then for all L ≤ K,

Pr
[
d(p,DecK(b1, . . . , bK)) ≥ 5

42−L − 2−K
]
≤ L exp (−M/240) .

We now show how to prove Theorem A.2 using the lemmas above, and defer the proofs of these
lemmas to later sections. Denote A = d(p,DecK(b1, . . . , bK)).

Furthermore define N ′ such that M = 120 logN ′. Due to the assumption that n′ ≥
480 log(m) log(n′k), we have M = N/ logm ≥ 120 log(n′k), and hence N ′ ≥ n′k ≥ logm.
Let K = log(min{m,

√
m/p(1− p)}) and K ′ = max{K − logN ′, 0}.

E
[
A21{p /∈ J}

]
≤ E

[
A21

{
A ≥ 5

42−K
′
− 2−K

}]
+ E

[
A21

{
1
42−K ≤ A ≤ 5

42−K
′
− 2−K

}]
.

We bound the first term. If K ′ = 0, then since we always have A ≤ 1− 2−K , clearly

E
[
A21

{
A ≥ 5

42−K
′
− 2−K

}]
= 0.

Else, K ′ = K − logN ′. Applying Lemma A.4,

E
[
A2 1

{
A ≥ 5

42−K
′
− 2−K

}]

≤
K′−1∑
j=0

Pr
[

5
42−K

′+j − 2−K ≤ A ≤ 5
42−K

′+j+1 − 2−K
](

5
42−K

′+j+1
)2

≤
K′−1∑
j=0

Pr
[
A ≥ 5

42−K
′+j − 2−K

](
5
42−K

′+j+1
)2

≤ 25
162−2K′

K′−1∑
j=0

22j+2C1

(
exp

(
− m2−2(K′−j+2)

4 min{p, 1− p}

)
+ exp

(
−m2−(K′−j+2)

4

))
.

Since K ′ ≤ log(min{m,
√
m/p(1− p)}, we have that for N ′ ≥ 16,

exp
(
− m2−2(K′−j+2)

4 min{p, 1− p}

)
≤ exp

(
−m22(j+K−K′−2−log(

√
m/p(1−p)))

4 min{p, 1− p}

)
≤ exp

(
−22j−7 ·N ′2

)
≤ exp

(
−22j) exp

(
−N ′2/128

)
.

5The assumption is satisfied for both Theorem 1.1 and Theorem 1.2
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and

exp
(
−m2−(K′−j+2)

4

)
≤ exp

(
−2j−4N ′

)
≤ exp

(
−2j

)
exp(−N ′/16).

Note that S :=
∑∞
j=0 22j+2 (exp

(
−22j)+ exp

(
−2j

))
<∞. Hence, letting C2 := 25

16 (1 + C1S),
we get that if N ′ ≥ 100,

E
[
A21

{
A ≥ 5

42−K
′
− 2−K

}]
≤ max

{
1
m2 ,

p(1− p)
m

}
N ′

2
(

exp
(
−N

′

16

)
+ exp

(
−N

′2

128

))

≤ 1024 · 25
16 max

{
1
m2 ,

p

m

}
1
N ′

.

For the second term, we have

E
[
A21

{
1
42−K ≤ A ≤ 5

42−K
′−2−K

}]
≤ 1024 · 25

16 max
{

1
m2 ,

p(1− p)
m

}
N ′

2 K

N ′4

≤ 1024 · 25
16 max

{
1
m2 ,

p(1− p)
m

}
K

N ′2

≤ 1024 · 25
16 max

{
1
m2 ,

p(1− p)
m

}
1
N ′

,

where final inequality is due to the assumption that M = N/ logm ≥ 120 log(n′k), and hence
N ′ ≥ n′k ≥ logm. Combining the two parts yields

E
[
A21{p /∈ J}

]
≤ C ′3 max

{
1
m2 ,

p

m

}
1
N ′

.

where C ′3 = 3200. Finally,

E
[
(p̂− p)21{p /∈ J}

]
≤ E

[
(A+ 2−K)21{p /∈ J}

]
= E

[
A21{p /∈ J}

]
+ 2 · 2−KE[A1{p /∈ J}] + 2−2K Pr[ p /∈ J ]

≤ E
[
A21{p /∈ J}

]
+ 2 · 2−K

√
E[A2] + 2−2K Pr[ p /∈ J ]

≤ C ′3 max
{

1
m2 ,

p

m

}
1
N ′

+ 64 max
{

1
m2 ,

p

m

}√
C ′3
N ′

+ 1024 max
{

1
m2 ,

p

m

}
Ke−

M
30

≤ Cloc max
{

1
m2 ,

p

m

}
e−

M
240 ,

where Cloc := C ′3 + 64
√
C ′3 + 1024.

A.1.1 Proof of Lemma A.4

Let Gj be the set of change points of gj ,

Gj := {(2i− 1)2−j : 1 ≤ i ≤ 2j−1},

that is, the collection of points where gj changes from 0 to 1 or from 1 to 0. We first bound the
probability of error for each Gray code sent by a single user.

Lemma A.6. For user u ∈ Sj1 , recall that Yu = gj(Zu/m) where Zu ∼ Bin(m, p). We then have

Pr[Yu 6= gj(p) ] ≤ 2 exp
(
− md(p,Gj)2

2(min{p, 1− p}+ d(p,Gj))

)
.
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Proof. The proof follows by a Chernoff Bound. For p ≤ 1/2,

Pr[Yu 6= gj(p) ] ≤ Pr
[
Zu
m
≤ p− d(p,Gj)

]
+ Pr

[
X

m
≥ p+ d(p,Gj)

]
≤ exp (−mD(p− d(p,Gj)||p)) + exp (−mDKL(p+ d(p,Gj)||p))

≤ exp
(
−md(p,Gj)2

2p

)
+ exp

(
− md(p,Gj)2

2(p+ d(p,Gj))

)
≤ 2 exp

(
− md(p,Gj)2

2(p+ d(p,Gj))

)
.

The case p ≥ 1/2 follows by symmetry.

Since majority vote decreases the error for M ≥ 3, the upper bound in Lemma A.6 also holds for
Pr[ bj 6= gj(p) ].
We assume p ≤ 1/2 since p ≥ 1/2 then directly follows by symmetry. We first make the following
observations for L ≥ 2:

1. There exists a unique 1 ≤ L′ ≤ L such that

d(p,GL) + d(p,GL′) = 2−L.
This is because ∪Lj=1Gj = {x ∈ [0, 1] : x = k/2L, k = 1, . . . , 2L − 1}. Furthermore,
d(p,GL) ≤ 2−L, so there must exist a unique L′ such that d(p,GL) + d(p,GL0) = 2−L.

2. For l ∈ N, there exists at most one kl such that
d(p,Gkl) = d(p,GL) + l2−L.

Similar argument holds with d(p,GL) replaced by d(p,GL′).

If d(p,DecK(b1, . . . , bK)) ≥ 5
42−L − 2−K), then there must exist at least one j ∈ [L] such

that bj 6= gj(p). Otherwise there would exist an interval I of length 2−L such that p ∈ I and
DecK(b1, . . . , bK) ⊆ I , which implies d(p,DecK(b1, . . . , bK)) ≤ 2−L − 2−K , contradiction. We
bound the probability by a union bound. We consider two cases.

1. d(p,GL) ∈ [ 1
42−L, 3

42−L]. In this case, we also have d(p,GL′) ∈ [ 1
42−L, 3

42−L]). Hence,

Pr[ d(p,DecK(b1, . . . , bK)) ≥ 5
42−L − 2−K

]
≤

L∑
j=1

Pr[ bj 6= gj(p) ]

≤
∑

j≤L:d(x,Gj)≤p

2 exp
(
− 1

4pmd(p,Gj)2
)

+
∑

j≤L:d(x,Gj)>p

2 exp
(
−1

4md(p,Gj)
)

≤
∞∑
l=0

2 exp
(
− 1

4pm(d(p,GL) + l2−L)2
)

+
∞∑
l=0

2 exp
(
− 1

4pm(d(p,GL′)2 + l2−L)
)

+ 2
∞∑
l=0

2 exp
(
−1

4m
(

max{p, 1
42−L}+ l2−L

))
.

We bound the terms separately.
∞∑
l=0

2 exp
(
− 1

4pm(d(p,GL) + l2−L)2
)
≤
∞∑
l=0

2 exp
(
− 1

4pm(d(p,GL)2 + 2ld(p,GL)2−L)
)

≤ 2 exp
(
− 1

4pmd(p,GL)2
)

1
1− exp(− 1

4pm2−(2L+1))

≤ 2
1− exp (−1/8) exp

(
− 1

4pm2−2(L+2)
)
.
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The bound is the same for the second term. For the last term,

2
∞∑
l=0

2 exp
(
−1

4m
(

max{p, 1
42−L}+ l2−L

))
≤

4 exp
(
− 1

4mmax{p, 2−(L+2)}
)

1− exp
(
− 1

4m2−L
)

≤
4 exp

(
− 1

4mmax{p, 2−(L+2)}
)

1− exp (−1/4) .

Combining all the terms yields the desired bound.
2. d(p,GL) ∈ [0, 2−(L+2)) ∪ (3 · 2−(L+2), 2−L]

If d(p,GL) ∈ [0, 2−(L+2)), then to ensure d(p,DecK(b1, . . . , bK)) ≥ 5
42−L−2−K , at least

one j ∈ [L−1] must satisfy bj 6= gj(p). If otherwise, let xL = arg min{x ∈ GL : d(p, x)},
then we would have p ∈ [xL− 2−L, xL + 2−L] and DecK(b1, . . . , bK) ⊆ [xL− 2−L, xL +
2−L]. Hence

d(p,DecK(b1, . . . , bK)) < d(p,GL) + 2−L − 2−K ≤ 5
42−L − 2−K ,

which leads to a contradiction.
If d(p,GL) ∈ (3 · 2−(L+2), 2−L], then d(p,GL′) < 2−(L+2). Similar to the previous case,
at least one j ∈ [L] \ [L′] must satisfy bj 6= gj(p). Otherwise let xL′ = arg min{x ∈ GL′ :
d(p, x)}, the remaining argument follows with xL replaced by xL′ .
For both cases, we proceed using a union bound. We only present the proof for d(p,GL) ∈
[0, 2−(L+2)).

Pr[ d(p,DecK(b1, . . . , bK) ≥ 5
42−L − 2−K

]
≤
L−1∑
j=1

Pr[ bj 6= gj(p) ]

≤
∑

j≤L−1:d(x,Gj)≤p

2 exp
(
− 1

4pmd(p,Gj)2
)

+
∑

j≤L−1:d(x,Gj)>p

2 exp
(
−1

4md(p,Gj)
)

≤
∞∑
l=1

2 exp
(
− 1

4pm(d(p,GL) + l2−L)2
)

+
∞∑
l=0

2 exp
(
− 1

4pm(d(p,GL′)2 + l2−L)
)

+ 2
∞∑
l=0

2 exp
(
−1

4m
(

max{p, 3
42−L}+ l2−L

))
Each term is bounded analogously to the d(p,GL) ∈ [ 1

42−L, 3
42−L] case, and obtain the

same final upper bound.

Combining the two cases completes the lemma.

A.1.2 Proof of Lemma A.5

For each j ≤ logm, recall that we let M users vote on gj(p).
Lemma A.7. Let b1, . . . , bs be the majority votes from the localization stage. Fixed j ≤ s and
u ∈ Sj1 , let pj = Pr[Yu 6=6= gj(p) ] and γj = 1/2− pj . Recalll that |Sj1| = M . Then,

Pr[ bj 6= gj(p) ] ≤ exp
(
− M

1 + 2γj
γ2
j

)
Proof. The lemma follows directly from a Chernoff Bound, since

Pr[ bj 6= gj(p) ] = Pr

 1
M

∑
u∈Sj1

1{Yu 6= gj(p)} ≥
1
2

 ≤ exp
(
− M

2(1− pj)
γ2
j

)
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We once more assume without loss of generality that p ≤ 1/2, as the case p ≥ 1/2 follows by
symmetry. Similarly to Lemma A.4, we have two cases:

1. d(p,GL) ∈ [ 1
42−L, 3

42−L]. In this case, we also have d(p,GL′) ∈ [ 1
42−L, 3

42−L]). Fix
j ≤ L and u ∈ Sj1 .
If p ≤ d(p,Gj),

Pr[Yu 6= gj(p) ] ≤ 2 exp
(
− md(p,Gj)2

2(p+ d(p,Gj))

)
≤ 2 exp

(
−md(p,Gj)

4

)
≤ 2 exp

(
−m2−(L+2)

4

)
,

and that last quantity is at most 2e−2.
If p > d(p,Gj),

Pr[Yu 6= gj(p) ] ≤ 2 exp
(
− md(p,Gj)2

2(p+ d(p,Gj))

)
≤ 2 exp

(
−md(p,Gj)2

4p

)
≤ 2 exp

(
−m2−2(L+2)

4p

)
,

which is again at most 2e−2.
Hence γ2

k/(1 + 2γk) ≥ 0.072. Using the proof from Lemma A.4

Pr
[
d(p,DecK(b1, . . . , bK)) ≥ 5

42−L − 2−K
]
≤

L∑
j=1

Pr[ bj 6= gj(p) ]

≤
L∑
j=1

2 exp(−M/30)

= L exp (−M/30) .

2. d(p,GL) ∈ [0, 2−(L+2)) ∪ (3 · 2−(L+2), 2−L]
Analogously to Lemma A.4, we either have at least one j ∈ S where S = [L] \ {L} or
S = [L] \ {L′} such that bj 6= gj(p). Furthermore, γj ≥ 2/3 for j ∈ S. Hence,

Pr
[
d(p,DecK(b1, . . . , bK)) ≥ 5

42−L − 2−K
]
≤
∑
j∈S

Pr[ bj 6= gj(p) ].

Proceeding similarly as in the first case yields the desired result.

A.2 Refinement: proof of Theorem A.3

We only prove it for p ≤ 1/2 as the case when ≥ 1/2 follows by symmetry. Recall J = {x |
d(x,DecK(b1, . . . , bK)) ≤ 8 max{p(1−p)m , 1

m}}, throughout this section we condition on the event
that p ∈ J . To prove the performance, we consider following three cases,
Lemma A.8. At least one of the following must hold,

1. There exists i ∈ [2r], such that J ⊆ I ′i =
[
CI i

2

m − 0.55CI i
m , CI i

2

m + 0.55CI i
m

]
2. There exists i ∈ [2r + 1] such that J ⊆ J ′i =

[
ji − 0.55CI i

m , ji + 0.55CI i
m

]
3. J ⊆ [0, 65CI/m]

We provide the proof in Appendix A.2.1. Recall from the protocol that for Case 1, we invert R2(p) in
the corresponding interval. For Case 2, we invert R3(p). For Case 3, we invert R4(p).

For i ∈ {2, 3, 4}, recall that Ȳi = 1
N

∑
u∈Si Yu. Since ∀u ∈ Si Yu is a Bernoulli random variable

with bias Ri(p), by a standard variance analysis, we can show that

E
[
(Ȳi −Ri(p))2] ≤ Ri(p)

N
.

Our main goal is to prove Lemma A.9 which guarantees that these functions have sufficiently large
derivatives, and hence that we can define inverse functions and guarantee small estimation error.
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Lemma A.9. There exists some absolute constant C > 0 such that the following holds.

1. For all i ∈ [2r], R2(p) is monotonic in I ′i :=
[
li − 0.55CI i

m , li + 0.55CI i
m

]
, and for p ∈ I ′i ,∣∣∣∣dR2(p)

dp

∣∣∣∣ ≥ C√m

p
.

2. For all i ∈ [2r + 1], R3(p) is monotonic in J ′i :=
[
ji − 2CI i

m , ji + 0.55CI i
m

]
, and for p ∈ J ′i ,∣∣∣∣dR3(p)

dp

∣∣∣∣ ≥ C√m

p
.

3. R4(p) is monotonic in [0, 65CI/m], and for p ∈ [0, 65CI/m],

dR4(p)
dp

≥ Cm.

The proof of this lemma is provided in Appendix A.2.2. We now proceed to prove Theorem A.3
based on Lemmas A.8 and A.9.

If Case 1 holds in Lemma A.8, we have

E
[
(p̂− p)2 |p ∈ J

]
≤
(
dR2(p)
dp

)−2
E
[
(Ȳ2 −R2(p))2|p ∈ J

]
≤ 1
N

(
1
C

√
p

m

)2

= O
( p

mN

)
,

where we use Lemma A.9 and the fact that R2(p) ≤ 1.

When Case 2 holds, we can prove it similarly by inverting R3(p). When Case 3 holds, we have
p ≤ 8CI/m. Note that

R4(p) = 1− (1− p)m ≤ mp,
and then

E
[
(p̂− p)2 |p ∈ J

]
≤
(
dR4(p)
dp

)−2
E
[
(Ȳ4 −R4(p))2|p ∈ J

]
≤ mp

N
· 1
C2m2 = O

( p

mN

)
.

This concludes the proof of Theorem A.3.

It only remains to establish Lemmas A.8 and A.9, which we do next.

A.2.1 Proof of Lemma A.8

For p ∈ [0, 1], consider the following interval

Bp(C) =
[
p− C max

{
1
m
,

√
p

m

}
}, p+ C max

{
1
m
,

√
p

m

}]
∩ [0, 1].

Let C =
√
CI/25 = 32, then J ⊆ Bp(C).

We first prove the lemma for p ≤ 1/2. p ≥ 1/2 holds by symmetry (applying the same argument
with 1− p). If p ≤ 64CI/m, then

p+ C max
{

1
m
,

√
p

m

}
≤ 1
m

(64CI + C
√

64CI) ≤
65CI
m

.

Hence J ⊆ Bp(C) ⊆ [0, 65CI/m].
If p > 64CI/m, we fix some i ≥ 8. Notice that

|I ′i ∩ J ′i | ≥
CI i

10m −
CI
2m, |I ′i+1 ∩ J ′i | ≥

CI i

10m + CI
20m.

Furthermore, for p ∈ Ii,

C

√
p

m
≤ C
√
CI(i+ 1)
m

= CI(i+ 1)
25m .
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If p ∈ I ′i ∩ J ′i , then either p+ C
√

p
m ≤ li + 0.55CI i

m , or p− C
√

p
m ≥ ji −

0.55CI i
m . Otherwise we

would have

2C
√

p

m
≥ CI i

10m −
CI
2m,

contradiction. If the former is true, then J ⊆ Bp(C) ⊆ I ′i . Else, J ⊆ Bp(C) ⊆ J ′i .
If p ∈ I ′i+1 ∩ J ′i , then similarly either Bp(C) ⊆ I ′i+1 or Bp(C) ⊆ J ′i .

Finally we consider the case when p is not in any of the intersections above. If p < ji − 0.55CI i
m , then

p+ C

√
p

m
≤ 1
m

(
CI i

2 + CI i+ CI
2 − 0.55CI i+ CI(i+ 1)

25

)
≤ CI i

2

m
+ 0.55CI i

m
.

Hence Bp(C) ⊆ I ′i .

Similarly, if p > ji + 0.55CI i
m , we have Bp(C) ⊆ I ′i+1. If p ∈ (li + 0.55CI i

m , li+1 − 0.55CI i
m ), then

Bp(C) ⊆ J ′i .

A.2.2 Proof of Lemma A.9

First, for convenience we define a suitable random variable Sm(p) ∼ Bin(m, p). Let t ∈ [0,m].
Define the binomial tail,

Pm(p, t) = Pr
Z∼Bin(m,p)

[Z ≥ t ] =
∑

i∈[t,m]

(
m

i

)
pi(1− p)m−i.

For an interval I = [a, b), we define the probability mass of Bin(m, p) inside I as

Pm(p, I) := Pm(p, a)− Pm(p, b) =
∑
i∈I

(
m

i

)
pi(1− p)m−i.

Our argument will require the following results.
Claim A.10. Let Cu2/m ≤ p ≤ 1/2 for some Cu < 1/2 and t/m ∈ [p − Cu

√
p
m , p + Cu

√
p
m ].

Then, for some constant C0,
∂

∂p
Pm(p, t) ≥ C0e

−2Cu2
√
m

p
.

Proof. Due to the binomial-beta relation [5, Equation 2.14], we have for positive integers n and
integers t ∈ [n],

Pr[Sm(p) ≥ t ] = n

∫ p

0
Pr[Sm−1(u) = t− 1 ]du

Hence,
∂

∂p
Pm(p, t) = mPr[Sm−1(p) = t− 1 ].

We use Stirling’s approximation to bound the probability mass. For all integers n,√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n.

We bound the probability mass of binomial:

Pr[Sm(p) = t ] =
(
m

t

)
pt(1− p)m−t

≥
√

2π
e2√m

1√
t/m

√
1− t/m

pt(1− p)m−t

(t/m)t(1− t/m)m−t

=
√

2π
e2√m

1√
t/m

√
1− t/m

e−mKL(t/m||p))

≥
√

2π
e2√m

1√
t/m

√
1− t/m

e−m
(t/m−p)2
p(1−p)

≥
√

2π
e2
√
t
e−m

(t/m−p)2
p(1−p)

21



Hence for t/m ∈ [p− Cu
√
p/m, p+ Cu

√
p/m],

Pr[Sm−1(p) = t− 1 ] ≥
√

2π
e2
√
t− 1

e−
Cu

2
1−p ≥

√
2π

e2
√
t− 1

e−2Cu2
≥

√
2π

e2√2mp
e−2Cu2

The final inequality is due to p ≥ Cu
2/m, and hence t ≤ mp+ Cu

√
mp ≤ 2mp. Multiplying the

inequality by m completes the proof.

Claim A.11. Let Cl be a constant, (2Cl)2/m ≤ p ≤ 1/2, and |p − t/m| > Cl
√

p
m . Then there

exists a constant C ′0 such that

∂

∂p
Pm(p, t) ≤ C ′0e−Cl

2/3
√
m

p
.

Proof. We only need to prove the inequality for t such that |p− t/m| = Cl
√
p/m. Supppose that

for t/m = p+ Cl
√
p/m, we have

∂

∂p
Pm(p, t) ≤ C ′0e−Cl

2/3
√
m

p
.

Then for t′ > p+ Cl
√
p/m, since

Pm(p, t) = Pm(p, [t, t′)) + Pm(p, t′)
and

∂Pm(p, [t, t′ − 1))
∂p

≥ 0, ∂Pm(p, t)
∂p

≥ 0, ∂Pm(p, t′)
∂p

≥ 0,

we must have
∂Pm(p, t′)

∂p
≤ ∂Pm(p, t)

∂p
≤ C ′0e−Cl

2/3
√
m

p
.

A similar statement holds for t/m = p− Cl
√
p/m and t′ < p− Cl

√
p/m.

Hence we can assume that |t/m− p| = Cl
√
p/m. We again use the binomial-beta relation

∂

∂p
Pm(p, t) = mPr[Sm−1(p) = t− 1 ].

We need to upper bound the probability mass.

Pr[Sm(p) = t ] =
(
m

t

)
pt(1− p)m−t

≤ e

2π
1√

t/m
√

1− t/m
pt(1− p)m−t

(t/m)t(1− t/m)m−t

= e

2π
√
m

1√
t/m

√
1− t/m

e−mKL(t/m||p).

Since p ≥ (2Cl)2/m, we have Cl
√
p/m ≤ p/2. Since |t/m− p| = Cl

√
p/m,

t

m

(
1− t

m

)
≥ min

{(
p− Cl

√
p

m

)(
1− p+ Cl

√
p

m

)
,

(
p+ Cl

√
p

m

)(
1− p− Cl

√
p

m

)}
≥ p

4 .

Furthermore, since KL(p || q) ≥ (p− q)2/(2 max{p, q}), when t/m = Cl
√
p/m we have

KL(t/m || p) ≥ Cl
2p

2m(p+ Cl
√
p/m)

≥ Cl
2

3m.

The final inequality is due to p ≥ (2Cl)2/m and hence 2Cl
√
mp ≤ mp. Combining the above

results yields

Pr(Sm(p) = t) ≤ 2e
π
√
mp

e−Cl
2/3.
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We now have the following claim, which establishes the first two items of Lemma A.9 in the regime
p� 1/m.
Claim A.12. Let p > 64CI/m. Given fixed i ≤ r, then in I ′i∣∣∣∣dR2(p)

dp

∣∣∣∣ ≥ C√m

p
.

A similar statement holds for R3 inside J ′i .

Proof. Recall that

I ′i =
[
CI i

2

m
− 0.55CI i

m
,
CI i

2

m
+ 0.55CI i

m

]
.

Let t = CI i
2, and note that for p ∈ I ′i∣∣∣∣p− t

m

∣∣∣∣ ≤ 0.55CI i
m

≤ 0.55
√
CI

√
p

m
.

Thus, letting Cu = 0.55
√
CI , by Claim A.10

∂Pm(p, t)
∂p

≥ C0e
−2·(0.55)2CI

√
m

p
.

For t = (CIj)2 where |j − i| = 1,∣∣∣∣p− t

m

∣∣∣∣ ≥ 1.45CI i
m

≥ 1.45
√
CI

√
p

m
.

Hence, letting Cl = 1.45
√
CI , by Claim A.11

∂Pm(p, t)
∂p

≤ C ′0e−1.452CI/3
√
m

p
.

Thus for
√
CI/16 = 32, we have C0e

−2·(0.55)2CI/ ≥ 3C ′0e−1.452CI/3.

Note that

R2(p) =
∑
j

Pm(p, [ml2j ,ml2j+1]) =
∑
j

Pm(p, CI(2j)2)− Pm(p, CI(2j + 1)2).

Also for t′ > t,
∂Pm(p, t)

∂p
≥ ∂Pm(p, t′)

∂p
.

Therefore letting C = C ′0e
−1.452CI/3, we have∣∣∣∣dR2(p)

dp

∣∣∣∣ ≥ ∣∣∣∣∂Pm(p, CI i2)
∂p

∣∣∣∣− ∣∣∣∣∂Pm(p, CI(i− 1)2)
∂p

∣∣∣∣− ∣∣∣∣∂Pm(p, CI(i+ 1)2)
∂p

∣∣∣∣ ≥ C√m

p

establishing the claim.

The above claim provides guarantees for p > 64CI/m. It remains to prove the case for p ≤ 64CI/m.

Claim A.13. For p ≤ 64CI/m, we have dR4(p)
dp ≥ Cm, for some constant C > 0. A similar

statement holds for R2 and R3.

Proof. The proof is straightforward since R4(p) = 1− (1− p)m. For p ≤ 64CI/m, there must exist
a constant C ′ > 1 such that

dR4(p)
dp

= m(1− p)m−1 ≥ m
(

1− CI
m

)m
≥ m

C ′
e−64CI .

Together, the two claims above establish the first two items of Lemma A.9, and the last claimm
further shows the third item. This concludes the proof of Lemma A.9.
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B Extended proof for the regime m < k, ` > log(k/m)

In this section, we provide the complete proof for the rate in Theorem 1.2 in the regime where
m < k, ` > log(k/m). We first recall the protocol.

Divide the domain [k] into t = 2m non-overlapping blocks B1, . . . , Bt, each with size dk/(2m)e.
For p ∈ ∆k, let pB be the distribution over the blocks induced by p, where for all j ∈ [t]
pB(j) =

∑
x∈Bj px. For block j ∈ [t], let p̄j(x) be the normalized distribution over elements in set

Bj , i.e., for all x ∈ Bj , p̄j(x) = p(x)/pB(j) (if pB(j) = 0, we set p̄j(x) = 1/(2` − 1),which is
the uniform distribution over Bj). The protocol then estimates pB and p̄j’s separately.

Without loss of generality, we assume each user has ` ≥ 2 log(k/m) bits, else each user can just use
their first log(k/m) bits to conduct the protocol for the regime m2` ≤ k as described in Section 3.1
and obtain the same rate up to constants. Letting `0 := `/2, the protocol is as follows.

Estimating pB . Each user maps the observed samples to the set they belong to in B1, . . . , Bt.
Then users use the first `0 bits to conduct the protocol described in Section 3.3, i.e. the protocol for
the regime m = Θ(k)6, to obtain an estimate p̂B . This is feasible since the domain size of pB is
t = 2m = Θ(m).

Estimating normalized distributions. Since each block is only of size dk/(2m)e, given a block
index, each user can send an element within the block with log dk/(2m)e < `0 bits. To take
advantage of this, we assign each user t′ = b`0/ log dk/(2m)ec different blocks. More precisely,
user i is assigned blocks Bj for j = (i− 1)t′ + 1, (i− 1)t′ + 2, . . . , it′ mod t. For each assigned
Bj , the user sends the first sample they observe in Bj or sends ⊥ if none of them appears.

In total, n users send out nt′ messages, which we index as (Zi)i∈[nt′]. Based on which of the t blocks
the messages correspond to, we can divide them into t sets where Sj = {i ∈ [n′t] | j = i mod t}.
The server collects the messages from the users and uses the empirical estimator to estimate each
normalized distribution within each block, where for j ∈ [2t], x ∈ [dk/(2m)e],

p̂j(x) =
∑
i∈Sj 1{Zi = x}∑
i∈Sj 1{Zi 6= x}

. (9)

Accordingly, the final estimates are
p̂(x) = p̂B(j) · p̂j(x), ∀j ∈ [t], x ∈ Bj . (10)

Error for estimating pB . Using the bound we obtained in Section 3.3 (the second upper bound in
Theorem 1.2), and using the fact that the domain size is t for pB , we get

E[TV(p̂B ,pB)] = O

(√
t2

mn`0

)
= O

(√
m
n`

)
. (11)

Error for estimating p̄j’s. Recall the following two facts about the messages.

1. For j ∈ [t], let Nj :=
∑
i∈Sj 1{Zi 6= ⊥}, the number of samples the server receives

from Bj . Then Nj follows a binomial distribution Bin(bn/tc , βj) where βj := 1− (1−
pB(j))m = Θ(min{mpB(j), 1}).

2. For j ∈ [t], conditioned on the fact that the first sample inBj is sent, the sample is distributed
according to the normalized distribution p̄j .

Similar to Lemma 3.2 in the main text, we have the following lemma.

Lemma B.1. If pB(j) > 0, E[TV(p̂j , p̄j)] = O
(√

k
m|Sj |βj

)
.

Proof. By a Chernoff bound, we have Pr
(
Nj <

|Sj |βj
2

)
≤ exp

(
− |Sj |βj8

)
. When Nj ≥ |Sj |βj2 , it

is folklore that

E
[
TV(p̂j , p̄j) | Nj ≥

|Sj |βj
2

]
= O

(√
dk/2me
Nj

)
= O

(√
k

m|Sj |βj

)
.

6The protocol in Section 3.3 requires m > k, but the same protocol applies for the case when m = Θ(k)
with the same guarantee.

24



Combining both, we get

E[TV(p̂j , p̄j)] = O
(√

k
m|Sj |βj

)
+ exp

(
−|Sj |βj8

)
= O

(√
k

m|Sj |βj

)
,

completing the proof of the lemma.

By the way the blocks are assigned to users, it can be seen that for all j ∈ [k],

|Sj | ≥
⌊
nt′

t

⌋
= Θ

(
n`

m log(k/m+ 1)

)
.

Hence combining with Lemma B.1, we have if pB(j) > 0,

E[TV(p̂j , p̄j)] = O

(√
k log(k/m+ 1)

n`βj

)
. (12)

Recall in Lemma 3.1, we have

E[TV(p̂,p)] ≤ E[TV(p̂B ,pB)] +
∑
j∈[t]

pB(j)E[TV(p̂j , p̄j)].

Pluggin in Eq. (11) and Eq. (12), we have

E[TV(p̂,p)] = O

√m
n` +

∑
j∈[t]

pB(j)

√
k log(k/m+ 1)

n`βj


= O

√m
n` +

∑
j∈[t]

(
pB(j)

√
k log(k/m+ 1)

n`
+
√

pB(j)k log(k/m+ 1)
mn`

)
= O

(√
m
n` +

√
k log(k/m+ 1)

n`

)

= O

(√
k log(k/m+ 1)

n`

)
, (13)

where the last inequality is due to m < k.

C Lower bounds

In this section, we provide self-contained proofs of the three lower bounds: the lower bound of
Theorem 1.1 for m ≤ k/2`, and the two distinct lower bounds of Theorem 1.3 (under the assumption
that n > (k/`)2), for k/2` < m ≤ k log k and m > k log k, respectively. The proof follows the
outline sketched in Section 4 with a slight tweak in the information measure we bound for better
presentation. The same argument holds for the information measure used in Section 4 as well.

We begin with a simple lemma, which shows that in order to prove minimax rate lower bounds
in the multinomial setting (where each user receives exactly m i.i.d. samples from the unknown
distribution p) it is enough to establish lower bounds in the Poisson setting (where each user receives
Mt ∼ Poi(m) samples, the Mt’s being drawn independently). This simple fact will facilitate some
of our arguments, as after this “Poissonization” the numbers of occurrences of each domain element
will be independent across both users and domain elements, with the number of occurrence of i ∈ [k]
at each user following a Poi(mpi) distribution.

Formally, let the multinomial and Poissonized settings be defined as follows:

MULTINOMIAL(n,m): each of the n users obtains m samples from p. The mn samples are i.i.d.
POISSONIZED(n,m): For 1 ≤ t ≤ n, user t observing Mt samples from p, where (Mt)1≤t≤n are

independent Poi(m). The
∑n
t=1Mt samples are i.i.d.
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Lemma C.1 (Reduction to the Poissonized Model). Suppose that there exists an `-bit protocol for
estimation in the MULTINOMIAL(n,m) model, with expected error rate ε. Then there exists an
(`+ 1)-bit protocol for estimation in the POISSONIZED(20n, 2m) model, with expected error rate
ε+ e−2n/3. Moreover, the latter protocol is noninteractive if the former one was.

Given the information-theoretic bound showing that having n` & k log(1/ε) is required (from a
packing argument), the e−2n/3 term can for instance be ignored whenever ` . k. Overall, the
above lemma shows that, up to constant factors in m and n, establishing a rate lower bound in the
Poissonized model implies the same lower bound in the multinomial model.

Proof. The lemma follows from standard concentration of Poisson random variables. The probability
that a Poi(2m) random variable M is less than m is bounded as

Pr[M < E[M ]/2 ] ≤ e−m6 ≤ e− 1
6

and thus each of the 20n users gets at least m samples independently with probability at least
1− e− 1

6 > 3/20. By a Chernoff bound, this means that at least n (out of the 20n) users will obtain
at least m samples, except with probability at most e−

2
3n.

The 20n users can then use the extra bit of communication to indicate whether they indeed received at
least m samples, and the remaining ` to follow the MULTINOMIAL(n,m) `-bit protocol. Of course,
if fewer than n users got at least m samples, they will not be able to fully simulate that protocol, but
given above bound on the probability p this happens, we can bound the resulting expected error as
ε · (1− p) + 1 · p ≤ ε+ e−2n/3, as claimed.

In view of this lemma, we hereafter focus on establishing our two lower bounds in the
POISSONIZED(n,m) model; that is, to lower bound the following quantity

RPoi(`, k, n,m) := min
Wn∈Wn

`

min
p̂

max
p∈∆k

E[TV(p̂(Y n),p)] (14)

where the minimum is taken over all (possibly interactive) protocols in the POISSONIZED(n,m)
setting.

C.1 Preliminaries: The lower bound framework of [4]

This section summarizes the lower bound framework of Acharya et al. [4], which will be a key
ingredient in our lower proofs. Let Z := {−1,+1}k and {pz}z∈Z (where pz = pθz ) be a collection
of distributions over X , indexed by z ∈ Z . For z ∈ Z , denote by z⊕i ∈ Z the vector obtained by
flipping the sign of the ith coordinate of z.

Assumption 1. For every z ∈ Z and i ∈ [k] it holds that pz⊕i � pz , and there exist measurable
functions φz,i : X → R such that

dpz⊕i
dpz

= 1 + αz,iφz,i,

where |αz,i| ≤ α for some constant α ∈ R independent of z, i.

Assumption 2. There exists some κW ∈ [1,∞] such that

max
z∈Z,y∈Y

sup
W∈W

Epz⊕i [W (y | X)]
Epz [W (y | X)] ≤ κW . (15)

Assumption 3. For all z ∈ Z and i, j ∈ [k], Epz [φz,iφz,j ] = 1{i = j}. (In particular, Epz [φ2
z,i] =

1.)

Assumption 4. There exists some σ ≥ 0 such that, for all z ∈ Z , the random vector φz(X) :=
(φz,i(X))i∈[k] ∈ Rk is σ2-subgaussian for X ∼ pz , with independent coordinates.

Let Z be a random variable over Z with i.i.d. coordinates with parameter θ ∈ (0, 1/2] (i.e.,
E[Zi] = 2θ − 1 for all i ∈ [k]). Then the following holds:
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Theorem C.2 (Main theorem of [4]). Fix θ ∈ (0, 1/2]. Let Π be a sequentially interactive protocol
using W , and let Z be a random variable on Z with distribution Rad(θ⊗k). Let (Y n, U) be the
transcript of Π when the input X1, . . . , Xn is i.i.d. with common distribution pZ . Then, under
Assumption 1, 2, we have(

1
k

k∑
i=1

TV
(

pY
n

+i ,pY
n

−i

))2

≤ 2
k

(
κW ∧ θ−1)nα2 max

z∈Z
max
W∈W

k∑
i=1

∑
y∈Y

Epz [φz,i(X)W (y | X)]2

Epz [W (y | X)] ,

(16)

where pY n+i := E
[
pY nZ

∣∣ Zi = 1
]
, pY n−i := E

[
pY nZ

∣∣ Zi = 1
]
. Moreover, under the additional

Assumption 3,(
1
k

k∑
i=1

TV
(

pY
n

+i ,pY
n

−i

))2

≤ 2
k

(
κW ∧ θ−1)nα2 max

z∈Z
max
W∈W

∑
y∈Y

Varpz [W (y | X)]
Epz [W (y | X)] , (17)

Finally, if Assumption 4 holds as well, we have(
1
k

k∑
i=1

TV
(

pY
n

+i ,pY
n

−i

))2

≤ ln 2
k

(
κW ∧ θ−1) · nα2σ2 max

z∈Z
max
W∈W

I(pz;W ), (18)

where I(pz;W ) denotes the mutual information I(X;Y ) between the input X ∼ pz and the output
Y of the channel W with X as input.

Note that, as in [4], one can bound the quantity
∑
y∈Y

Varpz [W (y|X)]
Epz [W (y|X)] from the right-hand-side

of Eq. (17) by |Y| = 2`, and the quantity I(pz;W ) from the right-hand-side of Eq. (18) by log |Y| .
`.

In Section 4,
∑
i∈[k] I(Zi;Y n) is used as the information measure to bound. When Zi ∼ Bern(1/2),

I(Zi;Y n) and TV
(
pY n+i ,pY

n

−i
)2

are within constant factor of each other. In this proof, we focus on
deriving upper and lower bounds on

∑
i∈[k] TV

(
pY n+i ,pY

n

−i
)

for presentation purposes. The same
bound applies for

∑
i∈[k] I(Zi;Y n) up to constant factors using the proof in [4].

C.2 Our lower bound instances

In order to apply the results from Appendix C.1, we need to describe the family of distributions
{pz}z∈{−1,+1}k we consider, and show that it satisfies the assumptions with some values of α, κ,
and θ. Let γ ∈ (0, 1/2] be the purported expected error rate, and define, for z ∈ {−1,+1}k, pz as
the probability distribution over Nk such that

pz =
k⊗
i=1

Poi(θz(i)) (19)

where

θz(i) = m(1 + 2γzi)
k

, i ∈ [k] . (20)

We will choose the distribution of Z to be uniform over {−1,+1}k; that is, Z ∼ Rad(θ⊗k) for
θ = 1/2. With this choice, we get the following:

Lemma C.3. The family {pz}z∈{−1,+1}k of probability distributions over Nk satisfies Assumption 1,
3, and 2 with

α :=
√
e8mγ2/k − 1 = O

(√
mγ2/k

)
,

where the asymptotics are as γ → 0; and, for i ∈ [k] and z ∈ {−1,+1}k,

αz,i :=
√
e

4mγ2
k(1+γzi) − 1, φz,i(m) := 1

αz,i

((
1− γzi
1 + γzi

)mi

e
2mγzi
k − 1

)
and κ =∞.
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Proof. The claimed value of κ is trivially satisfied, so we only have to prove that our stated settings of
α, αz,i, and φz,i satisfy Assumption 1 and 3. Fix any z ∈ {−1,+1}k. For any m = (m1, . . . ,mk) ∈
Nk, we have

pz(m) =
k∏
i=1

( 1+γzi
k

)mi

mi!
e−

m(1+γzi)
k

and therefore, for every i ∈ [k],

pz⊕i(m)
pz(m) =

(
1− γzi
1 + γzi

)mi

e
2mγzi
k .

It can be verified, using the expression of the moment-generating function (MGF) of a Poisson
distribution, that

Epz

[(
pz⊕i(m)
pz(m) − 1

)2
]

= exp
(

4mγ2

k

1
1 + γzi

)
− 1

Letting αz,i :=
√

exp
(

4mγ2

k
1

1+γzi

)
− 1 ≤

√
exp
(

8mγ2

k

)
− 1 := α (since γ ≤ 1/2), we thus have

pz⊕i
pz = 1 + αz,iφz,i where

φz,i(m) := 1
αz,i

((
1− γzi
1 + γzi

)mi

e
2mγzi
k − 1

)
satisfies Epz [φz,iφz,j ] = 1{i = j} (by the previous computation for i = j, and using independence

and Epz

[
pz⊕i (m)

pz(m)

]
= Ep⊕iz [1] = 1 for i 6= j).

Remark C.4 (Choice of prior for Z). We observe that our choice of prior for Z (the uniform
distribution on {−1,+1}k) implies that the parameters θZ(i) (for i ∈ [k]) as defined in (20) may not
sum to m:

1− 2γ ≤ 1
m

k∑
i=1

θZ(i) ≤ 1 + 2γ, EZ

[
1
m

k∑
i=1

θZ(i)
]

= 1

Given the correspondence to the univariate probability distribution case (for which a lower bound
in our end goal), this may seem problematic, as of course a probability distribution is required to
sum to one. However, due to the tight concentration of

∑k
i=1 θZ(i) around its mean and by standard

renormalization arguments, the fact that our family of instances only corresponds to approximate
probability distributions over [k] does not affect the scope of the resulting lower bound.

Finally, in view of applying Theorem C.2 to derive a lower bound, we will require the following,
relatively standard “Assouad-type bound”:

Lemma C.5. Let Π be a sequentially interactive protocol for estimation achieving an expected
minimax rate γ, and let Z be a random variable uniformly distributed on {−1,+1}k. Let (Y n, U)
be the transcript of Π when the input X1, . . . , Xn is i.i.d. with common distribution pZ , where
{pz}z∈{−1,+1}k is as in (19). Then

k∑
i=1

TV
(

pY
n

+i ,pY
n

−i

)
= Ω(k) (21)

where pY n+i := E
[
pY nZ

∣∣ Zi = 1
]
, pY n−i := E

[
pY nZ

∣∣ Zi = 1
]
.

Proof. By an argument analogous to [4, Lemma 9], one can extract from the output p̂ of Π an
estimator Ẑ of Z such that, on the one hand,

1
k

k∑
i=1

Pr
(
Ẑi 6= Zi

)
≤ 1

10 .
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On the other hand, considering for fixed i ∈ [k] the Markov chain Zi → Y n → Ẑi, we get, by
considering the hypothesis testing problem of distinguishing Zi = 1 and Zi = −1 given our uniform
prior, that

Pr
(
Ẑi 6= Zi

)
≥ 1

2(1− TV
(

pY
n

+i ,pY
n

−i

)
) .

Summing over i ∈ [k] and combining the two bounds yields the result.

C.3 The lower bound for m < k/2`

We now prove our first lower bound:

Theorem C.6. For all m,n, ` ≥ 1, the minimax rate in the Poissonized setting satisfies

RPoi(`, k, n,m) = Ω
(√

k

mn
∨
√

k2

mn2`

)
.

Proof. With Lemmas C.3 and C.5 in hand, the claimed rate lower bound is straightforward. First,
note that by Lemma C.5, we have(

1
k

k∑
i=1

TV
(

pY
n

+i ,pY
n

−i

))2

= Ω(k) .

By Lemma C.3 and Theorem C.2 (since θ = 1/2, as our prior for Z is uniform), we have(
1
k

k∑
i=1

TV
(

pY
n

+i ,pY
n

−i

))2

≤ 4
k
nα2 max

z∈Z
max
W∈W

∑
y∈Y

Varpz [W (y | X)]
Epz [W (y | X)] ≤

4nα2

k
2` = O

(
nm2`γ2

k2

)
.

Combining the two yields our claimed minimax lower bound on the rate γ:

γ = Ω
(√

k2

nm2`

)
.

The second part of the lower bound, γ = Ω
(√

k
nm

)
, immediately follows from the known centralized

minimax lower bound.

C.4 The lower bound for m ≥ k log k and n > (k/`)2

We now prove our second lower bound:

Theorem C.7. For all m,n, ` ≥ 1 such that m ≥ k log k and n > (k/`)2, the minimax rate in the
Poissonized setting satisfies

RPoi(`, k, n,m) = Ω
(√

k

mn
∨
√

k2

mn`

)
.

Proof. As before, the Ω
(√

k
mn

)
lower bound follows from the known bound in the centralized case,

so it suffices to establish the second term.

In view of Theorem C.2, our goal would be to show that Assumption 4 is satisfied in this parameter
regime, in order to obtain an ` dependence via the bounds provided by (18). Unfortunately, the
functions φz,i obtained for our family {pz}z∈{−1,+1}k (as per Lemma C.3) do not satisfy the desired
subgaussian property. Still, we can get around this by decomposing the φz,i into several terms, among
which one satisfies (18) and the others can be bounded through other means.

Io implement this roadmap, we first decompose φz,i into a linear and a residual term,

φz,i(m) = −2γzi
αz,i

(
mi −

m(1 + γzi)
k

)
+ ψz,i(m), (22)
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where

ψz,i(m) := 1
αz,i

((
1− γzi
1 + γzi

)mi

e
2mγzi
k − 1 + 2γzi

(
mi −

m(1 + γzi)
k

))
.

It can be shown, via computations involving the MGF of a Poisson distribution, that the residual term
satisfies

Epz
[
ψ2
z,i

]
= 1
α2
z,i

(
exp
(

4mγ2

k

1
1 + γzi

)
− 1− 4mγ2(1− γzi)

k

)
= O

((m
k

+ 1
)
γ2
)
.

We then further decompose the linear term into a subgaussian term and another residual term, to
account with the two regimes of tail behaviour of a Poisson random variable. Specifically, let

ζz,i(m) = −2γzi
αz,i

(
mi −

m(1 + γzi)
k

)
1{mi ≤ 10θz(i)} (23)

ξz,i(m) = −2γzi
αz,i

(
mi −

m(1 + γzi)
k

)
1{mi > 10θz(i)} (24)

The next claim shows that, indeed, ζz,i(m) will now be subgaussian.

Claim C.8. Fix any i ∈ [k] and z ∈ {−1,+1}k. For ζz,i defined in (23), ζz,i(m) is C-subgaussian
as m ∼ pz , ζz,i(m), where C > 0 is an absolute constant.

Proof. Recall that mi ∼ Poi(θz(i)) with θz(i) = m(1+γzi)
k . Thus, for any t ≥ 0,

Pr (|ζz,i(m)| ≥ t) = Pr (ζz,i(m) ≤ −t) + Pr (ζz,i(m) ≥ t)

= Pr
(

mi ≤ E[mi]−
αz,it

2γ

)
+ Pr

(
(mi − E[mi])1{mi ≤ 10θz(i)} ≥

αz,it

2γ

)
By standard Poisson concentration bounds (e.g., Bennett’s inequality, or [9]), we have

Pr
(

mi ≤ E[mi]−
αz,it

2γ

)
≤ exp

(
−

α2
z,it

2

16γ2E[mi]
)
≤ e−t

2/16, (25)

since α2
z,i ≥

2mγ2

k and E[mi] ≤ 2m
k . For the other term, observing that

Pr ((mi − E[mi])1{mi ≤ 10E[mi]} ≥ u) = 0

whenever u > 9E[mi], we can focus on the case t′ := αz,it
2γ ≤ 9E[mi] and get

Pr
(

(mi − E[mi])1{mi ≤ 10E[mi]} ≥
αz,it

2γ

)
≤ Pr ((mi − E[mi]) ≥ t′)

≤ exp
(
− t′2

2(E[mi] + t′)

)
≤ exp

(
− t′2

20E[mi]

)
≤ exp

(
− t

2

80

)
using the same bounds α2

z,i ≥
2mγ2

k and E[mi] ≤ 2m
k . Overall, we have

Pr (|ζz,i(m)| ≥ t) ≤ 2e−t
2/80

for all t ≥ 0, showing that ζz,i(m) is C-subgaussian for some absolute constant C > 0.

The second residual term, while not subgaussian, can be bounded directly through other means:

Claim C.9. Fix any i ∈ [k] and z ∈ {−1,+1}k. For ξz,i defined in (24), we have Epz
[
ξ2
z,i

]
≤

8e− 2m
k .
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Proof. Fix i ∈ [k] and z ∈ {−1,+1}k. By Cauchy–Schwarz,

Epz
[
ξ2
z,i

]2 = 16γ4

α4
z,i

E
[
(mi − E[mi])21{mi > 10E[mi]}

]2
≤ 4k2

m2 E
[
(mi − E[mi])4]Pr (mi > 10E[mi])

≤ 64 Pr (mi > 10E[mi])

≤ 64e−4E[mi] ≤ e− 4m
k

using that E
[
(N − λ)4] = λ+ 3λ2 for N ∼ Poi(λ), and that 1 ≤ m

k ≤ E[mi] ≤ 2m
k .

For any fixed z and i, in view of bounding the RHS of (16),
k∑
i=1

∑
y∈Y

Epz [φz,i(X)W (y | X)]2

Epz [W (y | X)]

≤ 3
k∑
i=1

∑
y∈Y

Epz [ζz,i(X)W (y | X)]2

Epz [W (y | X)] + 3
k∑
i=1

∑
y∈Y

Epz [ξz,i(X)W (y | X)]2

Epz [W (y | X)]

+ 3
k∑
i=1

∑
y∈Y

Epz [ψz,i(X)W (y | X)]2

Epz [W (y | X)] . (26)

We can now use our analysis above to handle those three terms. By subgaussianity, we have
k∑
i=1

∑
y∈Y

Epz [ζz,i(X)W (y | X)]2

Epz [W (y | X)] ≤ O(`).

By a similar argument as in [4], by Cauchy–Schwarz we have
k∑
i=1

∑
y∈Y

Epz [ξz,i(X)W (y | X)]2

Epz [W (y | X)] ≤
k∑
i=1

∑
y∈Y

Epz
[
ξ2
z,i(X)W (y | X)

]
=

k∑
i=1

Epz
[
ξ2
z,i

]
≤ 8ke−2mk ,

and in the same way
k∑
i=1

∑
y∈Y

Epz [ψz,i(X)W (y | X)]2

Epz [W (y | X)] ≤
k∑
i=1

Epz
[
ψ2
z,i

]
. k

(m
k

+ 1
)
γ2 ≤ 2mγ2

Thus, we can further upper bound (26) as
k∑
i=1

∑
y∈Y

Epz [φz,i(X)W (y | X)]2

Epz [W (y | X)] . `+mγ2 + ke−2mk . `+mγ2, (27)

the last bound using that m ≥ k log k.

Combining (27) with Theorem C.2 and Lemma C.5 and recalling that α2 = O
(
mγ2/k

)
, we get

nmγ
2

k (`+mγ2)) = Ω(k), which implies

γ = Ω
(

min
{√

k2

mn`
,

√
k

m
√
n

})
= Ω

(√
k2

mn`

)
(28)

the last equality using our assumption that n > (k/`)2.

C.5 The lower bound for k/2` ≤ m < k log k and n > (k/`)2

The last part missing is the proof of the lower bound for k/2` ≤ m < k log k, which we give now.
Unlike the previous two, this does not require any particular argument, but instead follows directly
from the case m ≥ k log k:
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Theorem C.10. For all m,n, ` ≥ 1 such that k/2` ≤ m < k log k and n > (k/`)2, the minimax
rate in the multinomial setting satisfies

R(`, k, n,m) = Ω
(√

k

mn
∨

√
k

n` log k

)
.

Proof. Again, the first term is just the standard centralized setting lower bound, and thus we can
focus on establishing the second. The lower bound from Theorem C.7 implies the same lower bound
for the multinomial setting, by Lemma C.1. Now, assuming this lower bound, we observe that the
minimax rate is monotone nonincreasing in m (all other parameters being fixed), and thus the bound
obtained for m0 = k log k does apply when k/2` ≤ m < k log k. This leads to

R(`, k, n,m) = Ω

√ k2

m0n`

 = Ω
(√

k

n` log k

)
,

as long as n > (k/`)2 (so that Theorem C.7 applies to m0, n, `, k). This concludes the proof.

32


