
A Kronecker Product and Vectorization

Given two matrices A 2 Rm⇥n and B 2 Rp⇥q , the Kronecker product A⌦B 2 Rpm⇥qn is defined
as follows:

A⌦B =

0

B@
A11B · · · A1nB

...
. . .

...
Am1B · · · AmnB

1

CA .

One of the most important properties of the vectorization with the kronecker product is vec[AB] =
(Im ⌦A) vec[B] where the vectorization of B (i.e., vec[B] 2 Rmn) can be obtained by stacking the
columns of the matrix B 2 Rm⇥n into a single column vector. We summarize a few other properties
of kronecker product and vectorization used in our proofs as follows:

• kA⌦Bk2 = kAk2kBk2
• [A⌦B]> = A> ⌦B>

• vec[ABC] == (C> ⌦A) vec[B] = (In ⌦AB) vec[C] = (C>B> ⌦ Ik) vec[A]

• [AB]⌦ [CD] = [A⌦ C][B ⌦D]

B Proofs

B.1 Proof of Proposition 1

Proof. Since S is symmetric,

vec[Z(l+1)] = vec[X] + � vec[g(F )Z(l)S] = �[S ⌦ g(F )] vec[Z(l)] + vec[X].

By repeatedly apply this to Z(l),

vec[Z(H)] =
HX

k=0

�k[S ⌦ g(F )]k vec[X] =
HX

k=0

�k[Sk ⌦ g(F )k] vec[X].

Let sH =
P

H

k=0 �
k[Sk ⌦ g(F )k]. Then for H > l, by using the triangle inequality of a norm and

the submultiplicativity of an induced matrix norm,

ksH � slk2 =

�����

HX

k=l+1

�k[Sk ⌦ g(F )k]

�����
2


HX

k=l+1

���k[Sk ⌦ g(F )k]
��
2


HX

k=l+1

kY

i=1

k�[S ⌦ g(F )]k2

=
HX

k=l+1

kY

i=1

�kSk2kg(F )kF

where the last line follows from the property of the Kronecker product. Since S is symmetric and
normalized,

kSk2 = |�max(S)|  1.

Since ✏F > 0,

kg(F )k2  kg(F )kF =

����
1

kF>FkF + ✏F
F>F

����
F

=
kF>FkF

kF>FkF + ✏F
< 1.

In other words, there exists � 2 [0, 1) such that kg(F )k2  �. Combining,

ksH � slk2 
HX

k=l+1

kY

i=1

�kSk2kg(F )kF 
HX

k=l+1

kY

i=1

�� =
HX

k=l+1

(��)k.
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Here, we have �� 2 [0, 1) since � 2 (0, 1] and � 2 [0, 1). Thus, we have
P

H

k=0(��)
k = 1�(��)H+1

1��� .
Therefore,

HX

k=l+1

(��)k =
HX

k=0

(��)k �
lX

k=0

(��)k =
(��)l+1 � (��)H+1

1� ��
 (��)l+1

1� ��
.

Combining

ksH � slk2 
HX

k=l+1

(��)k  (��)l+1

1� ��
.

Since ksH � slk2  (��)l+1

1��� with �� < 1, we have that for any ✏ > 0, there exists an integer l̄ such
that ksH � slk2 < ✏ for any H, l � l̄. Thus, the sequence (sl)l = (

P
l

k=0 �
k[Sk ⌦ g(F )k])l is a

Cauchy sequence and converges.

Since it converges, by recalling the fact that for an matrix M ,

(1�M)

 
HX

k=0

Mk

!
= I �MH+1,

we have that

(I � �[S ⌦ g(F )])

 
lim

H!1

HX

k=0

�k[Sk ⌦ g(F )k]

!
= lim

H!1
(I � �[S ⌦ g(F )])

 
HX

k=0

�k[Sk ⌦ g(F )k]

!

= lim
H!1

(I � �H+1[SH+1 ⌦ g(F )H+1])

= I

where the last line follows from the fact that

k�H+1[SH+1⌦g(F )H+1]k2 
HY

i=1

k�[S ⌦ g(F )]k2 =
HY

i=1

�kSk2kg(F )kF  (��)H ! 0 as H ! 1

where the inequalities follows from the above equations used to bound ksH � slk2.

This implies that
 

lim
H!1

HX

k=0

�k[Sk ⌦ g(F )k]

!
= (I � �[S ⌦ g(F )])�1 ,

if the inverse (I � �[S ⌦ g(F )])�1 exists. This inverse exists, which can be seen by the following
facts. From the above equations used to bound ksH � slk2 (and the fact that S and g(F ) are
symmetric and hence their singular values are the absolute values of their eigenvalues), we have
�max(�[S ⌦ g(F )]) = ��max(S)�max(g(F )) < 1. Also, since (I � �[S ⌦ g(F )]) is real symmetric
(as [S⌦g(F )]> = [S>⌦g(F )>] = [S⌦g(F )]), all the eigenvalues of the matrix (I��[S⌦g(F )])
are real numbers. Combining these facts, all the eigenvalues of (I��[S⌦ g(F )]) are strictly positive
(since the eigenvalues of the identity matrix I are ones). Therefore, (I � �[S ⌦ g(F )]) is positive
definite and invertible.

Using these results, we have

lim
H!1

vec[Z(H)] = (I � �[S ⌦ g(F )])�1 vec[X].

vec[f(X,F,B)] = vec
h
B
⇣

lim
H!1

Z(H)
⌘i

= [In⌦B] vec
h⇣

lim
H!1

Z(H)
⌘i

= [In⌦B] (I � �[S ⌦ g(F )])�1 vec[X].
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B.2 Proof of Proposition 3

Proof. By the definition of Z(H) = Z(H)
X,F

,

lim
H!1

vec[Z(H)] = lim
H!1

vec[�g(F )Z(H�1)S+X] = �[S⌦g(F )]
⇣

lim
H!1

vec[Z(H�1)]
⌘
+vec[X].

Since we have shown that the limit exists in Proposition 1, we can define ZX,F = limH!1 Z(H).
Then the above equation can be rewritten as

vec[ZX,F ] = �[S ⌦ g(F )] vec[ZX,F ] + vec[X],

which is equivalent to

vec[ZX,F ]� �[S ⌦ g(F )] vec[ZX,F ]� vec[X] = 0.

Define a function

'(vec[F ], vec[Z]) = vec[Z]� �[S ⌦ g(F )] vec[Z]� vec[X],

where F and Z are independent variables of this function '. For general F and Z, '(vec[F ], vec[Z])
is allowed to be nonzero. In contrast, we have '(vec[F ], vec[ZX,F ]) = 0 where F and ZX,F are
dependent variables because of the definition of ZX,F = limH!1 Z(H)

X,F
.

With this definition, we have

J(F̄ , Z̄) =
@'(vec[F ], vec[Z])

@ vec[Z]

����
(F,Z)=(F̄ ,Z̄)

= I � �[S ⌦ g(F̄ )].

Here, '(vec[F ], vec[ZX,F ]) = 0 and the Jacobian J(F,ZX,F ) = I � �[S ⌦ g(F )] is invertible
as shown in Appendix B.1. Therefore, applying the implicit function theorem to the function
' yields the following: there exists an open set containing F and a function  defined on the
open set such that  (F ) = vec[ZX,F ] , '(vec[F̄ ], (F̄ )) = 0 for all F̄ in the open set, and
@ (F̄ )
@ vec[F̄ ]

= �J(F̄ , Z̄)�1 @'(vec[F̄ ],vec[Z̄])
@ vec[F̄ ]

for all F̄ in the open set. From the above equivalent
definition of ZX,F (i.e., '(vec[F ], vec[ZX,F ]) = 0) , this implies that

@ vec[ZX,F ]

@ vec[F ]
= �J(F,ZX,F )

�1 @'(vec[F ], vec[Z])

@ vec[F ]

����
Z=ZX,F

Using the definition of '

@'(vec[F ], vec[Z])

@ vec[F ]
=

@

@ vec[F ]
vec[Z]� � vec[g(F )ZS]� vec[X]

=
@

@ vec[F ]
vec[Z]� �[SZ> ⌦ Im] vec[g(F )]� vec[X]

= ��[SZ> ⌦ Im]
@ vec[g(F )]

@ vec[F ]

Combining,

@ vec[ZX,F ]

@ vec[F ]
= �J(F,ZX,F )

�1 @'(vec[F ], vec[Z])

@ vec[F ]

����
Z=ZX,F

= �(I��[S⌦g(F )])�1[SZ>
X,F

⌦Im]
@ vec[g(F )]

@ vec[F ]
,

where ZX,F = limH!1 Z(H)
X,F

and Proposition 1 has shown that

lim
H!1

vec[Z(H)
X,F

] = (I � �[S ⌦ g(F )])�1 vec[X].
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B.3 Derivations of Equation (8) and (9)

By the chain rule,
@L(B,F )

@ vec[F ]
=
@`Y (fX,F,B)

@ vec[fX,F,B ]

@ vec[fX,F,B ]

@ vec[F ]
.

Since vec[fX,F,B ] = [In ⌦B] vec[ZX,F ],
@L(B,F )

@ vec[F ]
=
@`Y (fX,F,B)

@ vec[fX,F,B ]

@ vec[fX,F,B ]

@ vec[F ]
=
@`Y (fX,F,B)

@ vec[fX,F,B ]
[In ⌦B]

@ vec[ZX,F ]

@ vec[F ]
.

Using the formula of @ vec[ZX,F ]
@ vec[F ] from Appendix B.2,

@L(B,F )

@ vec[F ]
= �

@`Y (fX,F,B)

@ vec[fX,F,B ]
[In ⌦B]U�1

⇥
SZ>

X,F
⌦ Im

⇤ @ vec[g(F )]

@ vec[F ]
.

Similarly, since vec[fX,F,B ] = [Z>
X,F

⌦ Imy
] vec[B],

@L(B,F )

@ vec[B]
=
@`Y (fX,F,B)

@ vec[fX,F,B ]

@ vec[fX,F,B ]

@ vec[B]
=
@`Y (fX,F,B)

@ vec[fX,F,B ]
[Z>

X,F
⌦ Imy

]

B.4 Derivations of Equation (10) and (11)

The matrix g(F ) is real symmetric since

g(F )> =

✓
1

kF>FkF + ✏F
F>F

◆>
=

1

kF>FkF + ✏F
F>F = g(F ).

Since S is also real symmetric, we can use eigendecomposition of g(F ) and S as

g(F ) = QF⇤FQ
>
F

S = QS⇤SQ
>
S

where QS and QF are unitary matrices. Thus,
[S ⌦ g(F )] = [QS⇤SQ

>
S
⌦QF⇤FQ

>
F
] = [QS ⌦QF ][⇤S ⌦ ⇤F ][Q

>
S
⌦Q>

F
].

Imn = [In ⌦ Im] = [QSQ
>
S
⌦QFQ

>
F
] = [QS ⌦QF ][In ⌦ Im][Q>

S
⌦Q>

F
].

Combining,
U = Imn � �[S ⌦ g(F )]

= [QS ⌦QF ][In ⌦ Im][Q>
S
⌦Q>

F
]� �[QS ⌦QF ][⇤S ⌦ ⇤F ][Q

>
S
⌦Q>

F
]

= [QS ⌦QF ]([In ⌦ Im]� �[⇤S ⌦ ⇤F ])[Q
>
S
⌦Q>

F
].

Thus,
U�1 = [QS ⌦QF ]([In ⌦ Im]� �[⇤S ⌦ ⇤F ])

�1[Q>
S
⌦Q>

F
]

= [QS ⌦QF ] diag(vec[G])[Q>
S
⌦Q>

F
],

where the matrix G 2 Rm⇥n is defined by Gij = [([In⌦Im]��[⇤S⌦⇤F ])�1](i+(j�1)m)(i+(j�1)m)

(so that vec[G]i = [([In ⌦ Im] � �[⇤S ⌦ ⇤F ])�1]ii for i = 1, 2, . . . ,mn). By the definition of
Kronecker product, this is equivalent to Gij = 1/(1� �(⇤̄F ⇤̄>

S
)ij).

Using this form of U�1,

vec[f(X,F,B)] = vec
h
B
⇣

lim
H!1

Z(H)
⌘i

= [In ⌦B]U�1 vec[X]

= [In ⌦B][QS ⌦QF ] diag(vec[G])[Q>
S
⌦Q>

F
] vec[X]

= [QS ⌦BQF ] diag(vec[G]) vec[Q>
F
XQS ]

= [QS ⌦BQF ](vec[G] � vec[Q>
F
XQS ])

= [QS ⌦BQF ] vec[G � (Q>
F
XQS)]

= vec[BQF (G � (Q>
F
XQS))Q

>
S
] 2 Rmyn
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Therefore,

fX,F,B = f(X,F,B) = BQF (G � (Q>
F
XQS))Q

>
S
2 Rmy⇥n.

Similarly,

vec[ZX,F ] =
⇣

lim
H!1

Z(H)
⌘
= U�1 vec[X] = [QS ⌦QF ] diag(vec[G])[Q>

S
⌦Q>

F
] vec[X]

= [QS ⌦QF ] vec[G � (Q>
F
XQS)]

= vec[QF (G � (Q>
F
XQS))Q

>
S
] 2 Rmn

Therefore,

ZX,F = QF (G � (Q>
F
XQS))Q

>
S
2 Rm⇥n.

Moreover, using the form of U�1,

@L(B,F )

@ vec[F ]
= �

@`Y (fX,F,B)

@ vec[fX,F,B ]
[In ⌦B]U�1

⇥
SZ>

X,F
⌦ Im

⇤ @ vec[g(F )]

@ vec[F ]

= �
@`Y (fX,F,B)

@ vec[fX,F,B ]
[In ⌦B][QS ⌦QF ] diag(vec[G])[Q>

S
⌦Q>

F
]
⇥
SZ>

X,F
⌦ Im

⇤ @ vec[g(F )]

@ vec[F ]

= �
@`Y (fX,F,B)

@ vec[fX,F,B ]
[QS ⌦BQF ] diag(vec[G])

⇥
Q>

S
SZ>

X,F
⌦Q>

F

⇤ @ vec[g(F )]

@ vec[F ]
.

Thus,

rvec[F ]L(B,F ) =

✓
@L(B,F )

@ vec[F ]

◆>

= �

✓
@ vec[g(F )]

@ vec[F ]

◆> ⇥
Q>

S
SZ>

X,F
⌦Q>

F
]> diag(vec[G])]

⇥
QS ⌦BQF ]

>
✓
@`Y (fX,F,B)

@ vec[fX,F,B ]

◆>

= �

✓
@ vec[g(F )]

@ vec[F ]

◆>
[ZX,FSQS ⌦QF ] diag(vec[G])][Q>

S
⌦Q>

F
B>] vec


@`Y (fX,F,B)

@fX,F,B

�

= �

✓
@ vec[g(F )]

@ vec[F ]

◆>
[ZX,FSQS ⌦QF ] diag(vec[G])] vec


Q>

F
B> @`Y (fX,F,B)

@fX,F,B

QS

�

= �

✓
@ vec[g(F )]

@ vec[F ]

◆>
[ZX,FSQS ⌦QF ] vec


G �

✓
Q>

F
B> @`Y (fX,F,B)

@fX,F,B

QS

◆�

= �

✓
@ vec[g(F )]

@ vec[F ]

◆>
vec


QF

✓
G �

✓
Q>

F
B> @`Y (fX,F,B)

@fX,F,B

QS

◆◆
Q>

S
SZ>

X,F

�
2 Rmm

B.5 Derivation of Equation (12)

By using chain rule,

@ vec[g(F )]

@ vec[F ]
=

@

@ vec[F ]

1

kF>FkF + ✏F
vec[F>F ]

=
@

@ vec[F ]

1p
vec[F>F ]> vec[F>F ] + ✏F

vec[F>F ]

=

0

@
@ 1p

v>v+✏F
v

@v

�����
v=vec[F>F ]

1

A @ vec[F>F ]

@ vec[F ]
.
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For the first term, using chain rule,

@ 1p
v>v+✏F

v

@v
=

0

@ @av

@a

����
a= 1p

v>v+✏F

1

A
 
@ 1p

v>v+✏F

@v

!
+
@av

@v

����
a= 1p

v>v+✏F

= v

 
@ 1p

v>v+✏F

@v

!
+

1p
v>v + ✏F

Imm

= v

 
@a�1

@a

����
a=

p
v>v+✏F

! 
@
p
v>v + ✏F
@v

!
+

1p
v>v + ✏F

Imm

= v
⇣
�(

p
v>v + ✏F )

�2
⌘ @

p
v>v

@v

!
+

1p
v>v + ✏F

Imm

= v
⇣
�(

p
v>v + ✏F )

�2
⌘✓ @

p
a

@a

����
a=v>v

◆✓
@v>v

@v

◆
+

1p
v>v + ✏F

Imm

= v
⇣
�(

p
v>v + ✏F )

�2
⌘✓1

2
(v>v)�1/2

◆�
2v>

�
+

1p
v>v + ✏F

Imm

= � 1

(
p
v>v + ✏F )2

1p
v>v

vv> +
1p

v>v + ✏F
Imm

=
1p

v>v + ✏F

 
Imm � 1

(
p
v>v + ✏F )

p
v>v

vv>
!

Thus,

@ 1p
v>v+✏F

v

@v

�����
v=vec[F>F ]

=
1

kF>FkF + ✏F

✓
Imm � 1

(kF>FkF + ✏F )kF>FkF
vec[F>F ] vec[F>F ]>

◆

For the second term,

@F>F

@Fij

= F>�ij +�jiF,

where �ij 2 Rm⇥m is the matrix with the (i, j)-th entry being one and all other entries being zero.
Using vectorization and the square commutation matrix K(m,m),

@ vec[F>F ]

@Fij

= vec[F>�ij ] + vec[�jiF ]

= vec[F>�ij ] + vec[(F>(�ji)>)>]

= vec[F>�ij ] + vec[(F>�ij)>]

= vec[F>�ij ] +K(m,m) vec[F>�ij ]

= (Imm +K(m,m)) vec[F>�ij ]

= (Imm +K(m,m))[Im ⌦ F>] vec[�ij ].

Thus,

@ vec[F>F ]

@ vec[F ]

= (Imm +K(m,m))[Im ⌦ F>][vec[�11], . . . , vec[�m1], vec[�12], . . . , vec[�m2], · · · , vec[�1m], . . . , vec[�mm]]

= (Imm +K(m,m))[Im ⌦ F>]Imm

= (Imm +K(m,m))[Im ⌦ F>].
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Combining the first term and second term,

@ vec[g(F )]

@ vec[F ]

=
1

kF>FkF + ✏F

✓
Imm � 1

(kF>FkF + ✏F )kF>FkF
vec[F>F ] vec[F>F ]>

◆
(Imm +K(m,m))[Im ⌦ F>].

Since the square commutation matrix is symmetric, using the definition of the commutation matrix,

vec[F>F ] vec[F>F ]>K(m,m) = vec[F>F ] vec[F>F ]>(K(m,m))>

= vec[F>F ](K(m,m) vec[F>F ])>

= vec[F>F ](vec[(F>F )>])>

= vec[F>F ] vec[F>F ]>

Therefore,

vec[F>F ] vec[F>F ]>(Imm +K(m,m)) = 2 vec[F>F ] vec[F>F ]>.

Using this,

@ vec[g(F )]

@ vec[F ]

=
1

kF>FkF + ✏F

✓
Imm � 1

(kF>FkF + ✏F )kF>FkF
vec[F>F ] vec[F>F ]>

◆
(Imm +K(m,m))[Im ⌦ F>]

=
1

kF>FkF + ✏F

✓
Imm +K(m,m) � 2

(kF>FkF + ✏F )kF>FkF
vec[F>F ] vec[F>F ]>

◆
[Im ⌦ F>]

=
1

kF>FkF + ✏F
(Imm +K(m,m))[Im ⌦ F>]� 2

(kF>FkF + ✏F )2kF>FkF
vec[F>F ] vec[F>F ]>[Im ⌦ F>]

=
1

kF>FkF + ✏F
(Imm +K(m,m))[Im ⌦ F>]� 2

(kF>FkF + ✏F )2kF>FkF
vec[F>F ]([Im ⌦ F ] vec[F>F ])>

=
1

kF>FkF + ✏F
(Imm +K(m,m))[Im ⌦ F>]� 2

(kF>FkF + ✏F )2kF>FkF
vec[F>F ] vec[FF>F ]>

By using this form of @ vec[g(F )]
@ vec[F ] and by defining R =

QF

⇣
G �

⇣
Q>

F
B> @`Y (fX,F,B)

@fX,F,B

QS

⌘⌘
Q>

S
SZ>

X,F
,

rvec[F ]L(B,F )

= �

✓
@ vec[g(F )]

@ vec[F ]

◆>
vec [R] ,

= �

✓
1

kF>FkF + ✏F
(Imm +K(m,m))[Im ⌦ F>]� 2

(kF>FkF + ✏F )2kF>FkF
vec[F>F ] vec[FF>F ]>

◆>
vec [R]

= �

✓
1

kF>FkF + ✏F
[Im ⌦ F ](Imm +K(m,m))� 2

(kF>FkF + ✏F )2kF>FkF
vec[FF>F ] vec[F>F ]>

◆
vec [R]

=

✓
�

kF>FkF + ✏F
[Im ⌦ F ](Imm +K(m,m))� 2�

(kF>FkF + ✏F )2kF>FkF
vec[FF>F ] vec[F>F ]>

◆
vec [R]

We compute each of cross terms:

[Im ⌦ F ]Imm vec [R] = vec [FR]

[Im ⌦ F ]K(m,m) vec [R] = [Im ⌦ F ] vec
⇥
R>⇤ = vec

⇥
FR>⇤

vec[FF>F ] vec[F>F ]> vec [R] = vec[FF>F ]
⌦
F>F,R

↵
F
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Using these, since vectorization vec is a linear map,

rvec[F ]L(B,F )

=

✓
�
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C More on experiments

C.1 Datasets

Synthetic chains datasets To evaluate the ability of models to capture information from distant
nodes, we construct synthetic chains datasets as in Gu et al. [10]. In our experiments, we consider
both binary classification and multiclass classification. Assuming the number of classes is c, we then
have c types of chains and the information of the label class is only encoded as a one-hot vector in the
first c dimensions of the node feature vector of the starting end node of the chain. With c classes, nc

chains for each class, and l nodes in each chains, the chain dataset has c⇥ nc ⇥ l nodes in total. We
choose 20 chains for each class and c = 5 for multiclass classification setting. The train set consists
5% nodes while the validation and test set contain 10% and 85% nodes respectively.

Real-world datasets In our real-world experiments, following Pei et al. [21], we use the following
real-world datasets:

• Cornell, Texas and Wisconsin are web-page graphs of the corresponding universities, where
nodes are web pages and edges represent hyper-links between web pages. There are 5 label classes:
faculty, student, course, project and staff. These datasets are originally collected by the CMU
WebKB project 3. In our experiments, we use the preprocessed version in Pei et al. [21].

• Chameleon and Squirrel are graphs of web pages in Wikipedia of the corresponding topic,
originally collected by [22]. We use the labels generated by Pei et al. [21], where the nodes is
classified into 5 categories using the amount of their average monthly traffic.

In addition to the above single-graph datasets, we also use Protein-Protein Interaction (PPI) dataset,
which contains multiple graphs, to show that EIGNN is applicable to multi-label multi-graph inductive
learning setting. PPI dataset has 24 graphs in total and each graph corresponds to a different human
issue. In a graph, nodes represents proteins and edges indicates interaction between proteins. Each
node can have at most 121 labels, which is originally collected from the Molecular Signatures
Database [25] by Hamilton et al. [11]. We also follow the data splits used in [11], i.e., 20 graphs for
training, two graphs for validation, and the rest two graphs for testing.

3http://www.cs.cmu.edu/ webkb/
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C.2 Experimental setting

Node classification For node classification task on synthetic and real-world datasets, we mainly
choose 9 representative baselines to compare with EIGNN: Graph Convolution Network (GCN) [14],
Simple Graph Convolution (SGC) [29], Graph Attention Network [26], Jumping Knowledge Network
(JKNet) [32], APPNP [15], GCNII [4], and H2GCN [35]. The presented results are averaged by 20
different runs.

Noise sensitivity In synthetic experiments, we add uniform noise ✏ ⇠ U(�↵,↵) to node features
for constructing synthetic datasets with noises. Then, EIGNN and IGNN are trained and evaluated on
these datasets with ↵ = 0.01, 0.1. The results are averaged by 10 different runs.

In real-world experiments, we compare the robustness of H2GCN, EIGNN, and IGNN against adver-
sarial perturbations on node features. We evaluate the models on evasive setting, i.e., the perturbations
are added after the model is trained. We use the trained models of H2GCN, EIGNN, and IGNN
with their best performance on Cornell, Texas, and Wisconsin. For each node which is correctly
classified, we use two classic methods, i.e., Fast Gradient Sign Method (FGSM) [8] and Projected
Gradient Descent (PGD) [18], to add perturbations to node features. For FGSM, we add perturbation
✏ 2 (0.0001, 0.001, 0.01). For PGD, we run 15 iterations with different step sizes. Different combi-
nations of perturbation ✏ and step size ↵ are used: (0.01, 0.001), (0.001, 0.0001), (0.0001, 10�5).

Hyperparameter setting To avoid bias, we tune the hyperparameters for each baseline on each
real-world dataset. We report the best performance, using the set of hyperparameters which performs
the best on the validation set, for each method. For baselines, besides the hyperparameters suggested
in their papers, we also conduct a hyperparameter search on learning rate {0.001, 0.05, 0.01, 0.1} and
weight decay {5e-4, 5e-6}. For GAT, 8 attention heads are used. For APPNP, 10 propagation layers
are used as suggested in [15]. On university datasets (i.e., Cornell, Texas, and Wisconsin), for our
model EIGNN, we set the learning rate as 0.5, the weight decay as 5e-6, and � = 0.8. On Wikipedia
datasets (i.e., Chameleon and Squirrel), we employ batch normalization between the infinite-depth
layer and the final linear transformation. After that, the dropout is used with parameter 0.5. The
hyperparameter search space is set as follows: learning rate {1e-4, 1e-3, 1e-2}, weight decay {5e-4,
5e-6}.

Hardware specifications We run experiments on a machine with Intel(R) Xeon(R) Gold 6240
CPU @ 2.60GHz and a single GeForce RTX 2080 Ti GPU with 11 GB GPU memory.

C.3 Finite-depth IGNN v.s. Infinite-depth IGNN

(a) On the dataset with 50-length chains. (b) On the dataset with 100-length chains.

Figure 4: Train and Test losses versus the number of epochs for IGNN and IGNN-finite on datasets
with different chain length.

In Figure 4, we show the train and test loss trajectories of IGNN and IGNN-finite on datasets with
different chain lengths. It is clear that IGNN-finite can achieve both lower train and test loss compared
with IGNN. For IGNN, the train and test losses both cannot effectively decrease and their trajectories
are quite similar, which indicates the issue is that IGNN cannot be effectively learned instead of
overfitting problem. The reason why IGNN cannot be effectively learned is that the iterative solver
usually generated approximated solutions. To be specific, the error yielded by the iterative solver in
the forward pass would be further amplified in the backward pass. Thus, approximation errors make
IGNN cannot be optimized well, which leads to the inferior performance.
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Figure 5: oversmoothness

C.4 Statistical significance

In our experiments, we conduct multiple runs to get the averaged results. However, for clarity
purpose, we omit the error bars on figures represented in Section 5. To test whether the differences
are statistically significant, we calculate T-tests for two result series. For Figure 1b, comparing IGNN
and EIGNN, the p-values are all smaller than 0.001 for all chain lengths. Comparing IGNN and
APPNP (the third-best one), the p-values are all smaller than 0.05 when the chain length is larger
than 10. For Figure 1a, comparing IGNN and EIGNN, the p-values are all smaller than 0.05 when
the chain length is larger than 20. Comparing IGNN and APPNP (the third-best one), the p-values
are all smaller than 1e-4 for all chain lengths. For Figure 2, comparing IGNN and IGNN-fininte, the
p-values are smaller than 0.05 when the chain length is larger than 40. Based on the above results, we
can conclude the differences are statistically significant.

C.5 Oversmoothing

A straightforward way to help GNNs capture long-range dependencies is stacking layers. With
T hidden layers, GNN models are supposed to capture the information within T -hop neighbor-
hoods. However, stacking many layers for traditional GNN models like GCN, SGC, GAT cause
oversmoothing. Several works, i.e., APPNP [15], JKNet [32], and GCNII [4], are proposed to miti-
gate oversmoothing problem. Nevertheless, we demonstrate that they still cannot perfectly capture
long-range dependencies. Figure 5 shows the results of APPNP, JKNet and GCNII on datasets with
different chain lengths. On the dataset with T -length chains, we set the number of propagation layers
of these models as T . Ideally, with T layers, they should capture the label information from distant
nodes and achieve 100% test accuracy. As shown in Figure 5, their performance drops when the chain
length increases. The reason might be these model still cannot completely avoid oversmoothing,
which makes them ineffectively capture long-range dependencies.

D More discussions about limitations

Apart from training, EIGNN conduct eigendecomposition of S which is a one-time preprocessing
operation for each graph. The time complexity and memory complexity of a plain full eigendecom-
position algorithm are O(n3) and O(n2), respectively. It may limit the applicability of EIGNN on
some cases where the complexity of this preprocessing is of importance. However, we can consider
using truncated eigendecomposition (i.e., use top k eigenvalues and the corresponding eigenvectors)
to reduce the time and memory complexity. As the natural sparsity of graphs, using truncated
eigendecomposition is reasonable.

Furthermore, another possible solution to mitigate the cost of eigendecomposition of S is to use
graph coarsening to reduce the size of graph or graph partition to partition a large graph into several
small graphs without losing much information. Several works have proposed on this topics [3, 12].
Worth note that graph partition is also used in a well-known work Cluster-GCN [5] which focuses
on scaling up GCNs to a large graph with millions nodes. Cluster-GCN splits a given graph into k
non-overlapping subgraphs. Therefore, we believe that graph partition is indeed a potential solution
for mitigating the scalability problem in our work. How to scale up implicit graph model for large
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graphs is an interesting topic to explore in the future. We leave detailed analyses and empirical
experiments for future research.

Another potential limitation is that EIGNN can be slow when the number of feature dimensions is
very large (e.g., 1 million), which is rare in practice. Future work could propose a new model which
allows for efficient training even with large feature dimension.
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