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A Comparison to GES

In order to compare GFBS to existing algorithms, in this appendix we present examples to compare
the output of GFBS to GES. We first consider a model where this is some ambiguity in the outputs,
and then exhibit a model where they always differ. The key takeaway is that GFBS really is a distinct
algorithm from GES.

A.1 A setting where GES sometimes differs from GFBS

We will first consider the following standard example of a non-faithful distribution used in prior
works [41] and show how GES differs from GFBS.

Consider a distribution generated as 𝑋1 = 𝑁1, 𝑋2 = −𝑋1 + 𝑁2, 𝑋3 = 𝑋1 + 𝑋2 + 𝑁3 where
𝑁1, 𝑁2, 𝑁3 are independent standard Gaussians. We will consider the score function

𝑆(𝑊 ) =
∑︁
𝑖≤3

(𝑋𝑖 −
∑︁

𝑗∈pa(𝑖)

𝑊𝑗𝑖𝑋𝑗)
2

to be minimized over all matrices 𝑊 whose support is a DAG.

In the second forward step of GES, there are two equivalence classes that GES could have ended up
with because they have the same scores, depending on how the tie is broken. One of them is the graph
𝑋1 −→ 𝑋2 ←− 𝑋3 and the other is the graph 𝑋1 −→ 𝑋2 −→ 𝑋3. If GES picked the former and
continued with the algorithm, then it ultimately outputs the correct DAG. But if GES picked the latter
which it very well could have, then it ends up outputting the wrong DAG 𝑋1 −→ 𝑋2 ←− 𝑋3 at the
end of the algorithm.

On the other hand, as shown in Section 4.1 and Section 5, in both the population setting and the
empirical setting for a reasonable sample size, GFBS will provably always output the correct DAG
for this distribution since the residual variances are equal.

We also considered the Gaussian BIC score that is traditionally used. In 100 experiments under this
score, GES fails all the time (also observed in prior works, for e.g. [41]) and outputs 𝑋1 −→ 𝑋2 ←−
𝑋3. But we note that GFBS succeeded in all 100 experiments, although we do not give theoretical
guarantees for this regularized score.

A.2 A setting where GES always differs from GFBS

We will tweak the weights of the model from the prior section and show that for this model, GES will
always fail whereas GFBS will always succeed for essentially the same reason: Residual variances
are equal.

Consider a distribution generated as 𝑋1 = 𝑁1, 𝑋2 = −𝑋1 + 𝑁2, 𝑋3 = 0.9𝑋1 + 0.9𝑋2 + 𝑁3.
We consider the same score function. We manually verify that GES will always output the DAG
𝑋1 −→ 𝑋2 ←− 𝑋3 in the population setting. In 100 experiments, GES also always outputted the
same wrong DAG. Contrast this to GFBS which will always output the correct DAG in the population
setting as well as the empirical setting with a reasonable number of samples.

Finally, under the Gaussian BIC score, in 100 experiments, GES always outputted the wrong DAG
and GFBS always outputted the correct DAG, although we do not give theoretical guarantees in
general for this phenomenon with the regularized score.

B Bregman divergences, Bregman information and Legendre duality

This set of definitions broadly follow the presentation of [5], but is specialized to our setting. Fix a
strictly convex, differentiable function 𝜑 : R→ R.
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Definition B.1. Define 𝑑𝜑 : R× R→ R to be the Bregman-divergence of 𝜑 defined as

𝑑𝜑(𝑥, 𝑦) = 𝜑(𝑥)− 𝜑(𝑦)− (𝑥− 𝑦)𝜑′(𝑦)

where 𝜑′ is the derivative of 𝜑.

The Bregman-divergence is a general notion of distance that generalizes Squared Euclidean distance,
Logistic Loss, Itakuro-Saito distance, KL-divergence, Mahalanobis distance and Generalized I-
divergence, among others [5]. In particular, it is nonnegative and is equal to 0 if and only if the two
arguments are equal.

Of particular interest to us, in order to see how it connects to prior works on causal DAG learning, we
illustrate with the following example that shows how the variance is a special case of the Bregman-
information.
Example B.2. Suppose 𝜑(𝑥) = 𝑥2. Then, 𝑑𝜑(𝑥, 𝑦) = (𝑥 − 𝑦)2 and 𝐼𝜑(𝒟) = E[(𝑥 − E[𝑥])2] =
var(𝒟).

When we study multiplicative DAG models, we study another kind of Bregman-information that
arises from the Itakura-Saito distance from signal processing theory. We explore this in more detail
in Appendix E.
Example B.3. Assume the domain of the distribution and let 𝜑 : R+ → R be strictly convex.
Suppose 𝜑(𝑥) = − log 𝑥. Then, 𝑑𝜑(𝑥, 𝑦) = 𝑥

𝑦 − log 𝑥
𝑦 − 1 and 𝐼𝜑(𝒟) = E[ 𝑥

E[𝑥] − log 𝑥
E[𝑥] − 1] =

logE[𝑥]− E[log 𝑥].

Any Bregman divergence defines a corresponding Bregman information:
Definition B.4. For a distribution 𝒟 over the reals, define the Bregman-information of 𝜑 as

𝐼𝜑(𝒟) = E𝑥∼𝒟[𝑑𝜑(𝑥, 𝜇)]

where 𝜇 = E𝑥∼𝒟[𝑥] is the mean. For a random variable 𝑋 whose range is distributed as 𝒟 over R,
we naturally define 𝐼𝜑(𝑋) := 𝐼𝜑(𝒟)

The Bregman-information of a distribution is a measure of randomness of the distribution, that’s
associated with 𝜑. Among others, it generalizes the variance, the mutual-information and the
Jensen-Shannon divergence of Gaussian processes [5].

Bregman divergences have the following nice property that we will exploit in our analysis.
Proposition B.5 ([5, Proposition 1]). The optimization problem

min
𝑦∈R

E𝑥∼𝒟[𝑑𝜑(𝑥, 𝑦)]

has a unique minimizer at 𝑦 = E𝑥∼𝒟[𝑥].

We note the following:

1. Proposition B.5 is surprising because 𝑑𝜑(𝑥, 𝑦) is convex with respect to the first argument 𝑥
but not necessarily with respect to the second argument 𝑦.

2. Bregman-divergences are the only functionals with this property, i.e. the converse of
Proposition B.5 is also true [5, Appendix B]

3. Bregman-information have many other nice properties that make them a useful analytic
measure for studying randomness or uncertainty of distributions. See [5] for details.

Now, we briefly review the theory of Legendre duality that will be used in the sequel.
Definition B.6. For a function 𝜓 : R→ R, define the dual function 𝜓* as

𝜓*(𝑡) = sup
𝜃∈R

(𝑡𝜃 − 𝜓(𝜃))

Proposition B.7. For a strictly convex, differentiable function 𝜓 : R→ R,

𝜓*(𝑡) = 𝑡𝑓(𝑡)− 𝜓(𝑓(𝑡))

where 𝑓(𝑡) = (𝜓′)−1(𝑡).
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Proof. Since 𝜓 is strictly convex and differentiable, 𝜓′ is monotonic and hence invertible, so 𝑓 is
well-defined. Now, we can set the derivative of 𝑡𝜃 − 𝜓(𝜃) to zero to obtain that the maximizer 𝜃* in
Definition B.6 satsifies

𝑡 = 𝜓′(𝜃*) =⇒ 𝜃* = 𝑓(𝑡)

Plugging this back in gives the result.

We also note that when 𝜓 is strictly convex and differentiable, 𝜓* is also a strictly convex, differen-
tiable function and (𝜓*)* = 𝜓.

An exponential random family (ERF) is a parametric family of distributions parametrized by the
natural parameter 𝜃 with log partition function 𝜓 whose density is given by

𝑝(𝜓,𝜃)(𝑥) = exp(𝑥𝜃 − 𝜓(𝜃))𝑝0(𝑥)

The log partition function 𝜓 must be strictly convex and differentiable. This is a general family of
distributions that subsumes many standard families of parametric distributions such as the Gaussian
distribution, the Poisson distribution and the Bernoulli distribution.

Equivalently, the family could be parameterized by its expectation parameter 𝜇 = E𝑥∼𝑝(𝜓,𝜃) [𝑥]

Fact B.8 ([1, 7]). For an ERF with natural parameter 𝜃, mean parameter 𝜇, log partition function 𝜓
and dual function 𝜑 = 𝜓*, we have the following duality:

𝜇 = 𝜓′(𝜃), 𝜃 = 𝜑′(𝜇)

Therefore, 𝜑′ and 𝜓′ are inverses of each other.

For a more general treatment of Legendre duality, see [5].

C Proof of Lemma 4.2

When the local conditional probability comes from an exponential family, P(𝑋𝑖|pa(𝑖)) ∼
ERF(𝜓𝑖, 𝑔𝑖) with log-partition function 𝜓𝑖 and mean function 𝑔𝑖(pa(𝑖)), we can write the den-
sity as

𝑝𝑔𝑖,𝜓𝑖(𝑋𝑖 | pa(𝑖)) = 𝑝(𝜓𝑖,𝜃𝑖)(𝑋𝑖 | pa(𝑖)) = exp
{︁
𝑋𝑖𝜃𝑖(pa(𝑖))− 𝜓(𝜃𝑖(pa(𝑖)))

}︁
𝑝0(𝑋𝑖) (9)

where 𝜃𝑖(pa(𝑖)) is the natural parameter corresponding to the mean parameter 𝑔𝑖(pa(𝑖)) associated
with an ERF. Note that our notation is consistent with the notation from the previous section.

We need to relate this expression to the Bregman-divergence. Towards that, we have the following
lemma.
Lemma C.1. For an ERF with density 𝑝(𝜓,𝜃) with mean parameter 𝜇, we have

𝑑𝜑(𝑥, 𝜇) = − log 𝑝(𝜓,𝜃)(𝑥) + 𝜑(𝑥) + log 𝑝0(𝑥).

A similar result had been obtained in different contexts - PCA [15], clustering [5] and learning theory
[18]. A proof follows from essentially similar ideas but we include a proof here for completeness.

Proof. Firstly, using Proposition B.7 and Fact B.8, we have
𝜑(𝜇) = 𝜓*(𝜇) = 𝜇((𝜓′)−1(𝜇))− 𝜓((𝜓′)−1(𝜇))

= 𝜇𝜑′(𝜇)− 𝜓(𝜑′(𝜇))

= 𝜇𝜃 − 𝜓(𝜃).

We also have
− log 𝑝(𝜓,𝜃)(𝑥) = 𝜓(𝜃)− 𝑥𝜃 − log 𝑝0(𝑥).

Therefore,
𝑑𝜑(𝑥, 𝜇) = 𝜑(𝑥)− 𝜑(𝜇)− (𝑥− 𝜇)𝜑′(𝜇)

= 𝜑(𝑥)− 𝜑(𝜇)− (𝑥− 𝜇)𝜃

= 𝜑(𝑥)− (𝜇𝜃 − 𝜓(𝜃))− (𝑥− 𝜇)𝜃

= 𝜑(𝑥) + 𝜓(𝜃)− 𝑥𝜃
= − log 𝑝(𝜓,𝜃)(𝑥) + 𝜑(𝑥) + log 𝑝0(𝑥).
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Lemma 4.2 now follows immediately.

Proof of Lemma 4.2. Using Lemma C.1,

𝑆𝜑(𝑊 ) =
∑︁
𝑖

Epa(𝑖)𝐼𝜑(𝑋𝑖|𝑋pa(𝑖))

=
∑︁
𝑖

Epa(𝑖)E𝑋𝑖 [𝑑𝜑(𝑋𝑖,E[𝑋𝑖|pa(𝑖)])|pa(𝑖)]

=
∑︁
𝑖

Epa(𝑖)E𝑋𝑖 [𝑑𝜑(𝑋𝑖, 𝑔𝑖(pa(𝑖)))|pa(𝑖)]

=
∑︁
𝑖

E[𝑑𝜑(𝑋𝑖, 𝑔𝑖(pa(𝑖)))]

=
∑︁
𝑖

E[− log 𝑝𝑔𝑖,𝜓(𝑋𝑖|pa(𝑖)) + 𝜑(𝑋𝑖) + log 𝑝0(𝑋𝑖)]

= −
∑︁
𝑖

E𝑋 log 𝑝𝑔𝑖,𝜓(𝑋𝑖 | pa(𝑖))− 𝐶(𝑋)

where 𝐶(𝑋) depends only on 𝑋 and not the underlying DAG 𝑊 .

D Proof of Theorem 4.6

We will prove the result for a more general class of functionals 𝑔 that subsume the Bregman-
information.

For a function 𝑓 : R× R −→ R and a distribution 𝒟 over R, define 𝜇(𝑓,𝒟) to be a minimizer (fix
an arbitrary choice) of E𝑥∼𝒟[𝑓(𝑥, 𝑦)] over 𝑦 ∈ R. That is, for all reals 𝑦 ∈ R,

E𝑥∼𝒟𝑓(𝑥, 𝑦) ≥ E𝑥∼𝒟[𝑓(𝑥, 𝜇(𝑓,𝒟))]

Fix 𝑓 and a random variable 𝑋 with distribution 𝒟. Define 𝑔(𝑋) = E𝑋∼𝒟[𝑓(𝑋,𝜇(𝑓,𝒟))]. The
choice of 𝜇, among all possible minimizers, doesn’t matter because the value of the functional 𝑔
will be the same for any such choice. For practical applications, we would generally want 𝑔 to be
efficiently approximable via finite samples.
Lemma D.1. Suppose 𝑓 = 𝑑𝜑 for a strictly convex, differentiable 𝜑 : R → R. Then, 𝑔 is the
Bregman-information 𝐼𝜑.

Proof. Using Proposition B.5, we obtain 𝜇(𝑓,𝒟) = E𝑥∼𝒟[𝑥]. Therefore,

𝑔(𝑋) = E[𝑓(𝑋,𝜇(𝑓,𝒟))] = E[𝑑𝜑(𝑋,E𝑋∼𝒟[𝑋])] = 𝐼𝜑(𝑋)

Consider a distribution 𝑋 = (𝑋1, . . . , 𝑋𝑑) with an underling DAG 𝑊 . Suppose for all 𝑖,

E[𝑔(𝑋𝑖|𝑋pa(𝑖))] = E𝑤[𝑔(𝑋𝑖|𝑋pa(𝑖) = 𝑤)] = 𝜏

where 𝜏 is a constant. Note that this reduces to the the equal Bregman-information assumption
Assumption 4.4 when 𝑓 = 𝑑𝜑.

We now prove the following generalization of a similar result by [19].
Lemma D.2. Let 𝑌 be a fixed set of variables. Then, for any 𝑖 such that 𝑋𝑖 ̸∈ 𝑌 and no element of
𝑌 is a descendant of 𝑋𝑖,

E[𝑔(𝑋𝑖|𝑌 )] = 𝜏 if 𝑋pa(𝑖) ⊆ 𝑌
E[𝑔(𝑋𝑖|𝑌 )] ≥ 𝜏 otherwise

Moreover, if for all ancestral sets 𝑌 of 𝑖 such that pa(𝑖) ̸⊆ 𝑌 , we had E[𝑔(𝑋𝑖|𝑋𝑌 )] >
E[𝑔(𝑋𝑖|𝑋pa(𝑖))], then the inequality above is strict.
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Proof of Lemma D.2. Let 𝒟 denote the marginal distribution of 𝑋𝑖 and let 𝒟𝐴 denote the marginal
distribution of 𝑋𝑖 conditioned on fixing the variable 𝐴.

If 𝑋pa(𝑖) ⊆ 𝑌 , then

E[𝑔(𝑋𝑖|𝑌 )] = E[𝑔(𝑋𝑖|𝑋pa(𝑖), 𝑌 ∖𝑋pa(𝑖))]

= E[𝑔(𝑋𝑖|𝑋pa(𝑖))]

= 𝜏

where we used the fact that conditioned on 𝑋pa(𝑖), 𝑋𝑖 is independent of 𝑌 ∖𝑋pa(𝑖).

On the other hand, suppose 𝑋pa(𝑖) ̸⊆ 𝑌 . Let 𝑍 = 𝑋pa(𝑖) ∖ 𝑌 be the set of free parent variables. For
the sake of brevity, denote by 𝜇𝑌 the quantity 𝜇(𝑓,𝒟𝑌 ) and denote by 𝜇𝑌,𝑍 the quantity 𝜇(𝑓,𝒟𝑌,𝑍).
We have

E[𝑔(𝑋𝑖|𝑌 )] = E[E[𝑓(𝑋𝑖, 𝜇𝑌 )|𝑌 ]]

= E[E[E[𝑓(𝑋𝑖, 𝜇𝑌 )|𝑌,𝑍]|𝑌 ]]

≥ E[E[E[𝑓(𝑋𝑖, 𝜇𝑌,𝑍)|𝑌,𝑍]|𝑌 ]]

= E[E[𝑔(𝑋𝑖|𝑌,𝑍)|𝑌 ]]

= E[𝑔(𝑋𝑖|𝑌, 𝑍)]

= 𝜏

where the inequality followed from the definition of 𝜇 and the last equality used the preceding case
that we’ve already shown, since 𝑋pa(𝑖) ⊆ 𝑌 ∪ 𝑍. Finally, if we had the condition E[𝑔(𝑋𝑖|𝑋𝑌 )] >
E[𝑔(𝑋𝑖|𝑋pa(𝑖))] for all ancestral sets 𝑌 not containing 𝑝𝑎(𝑖), then the inequality in the display above
also strictly holds because 𝑍 ̸= ∅.

We can now prove Theorem 4.6.

Proof of Theorem 4.6. Let 𝑓 = 𝑑𝜑. Then, we observe that 𝑔 = 𝐼𝜑 by Lemma D.1. Therefore,
Lemma D.2 can be applied in this setting, and by Assumption 4.3, strict inequality holds.

Consider the forward phase of GFBS. Let the vertices added to 𝑇 be 𝑣1, 𝑣2, . . . , 𝑣𝑑 respectively in
that order. We prove by strong induction on 𝑖 that for all 𝑖 ≥ 1, 𝑣𝑖 is a source node (a vertex of
indegree 0) of the graph 𝑊 ∖ {𝑣1, . . . , 𝑣𝑖−1}.
To prove the base case, observe that if a vertex 𝑣 has a parent in 𝑊 , then E[𝑔(𝑋𝑣)] >
E[𝑔(𝑋𝑣|𝑋pa(𝑣))] = 𝜏 . On the other hand, if 𝑣 is any source node of the graph, then E[𝑔(𝑋𝑣)] = 𝜏 .
Hence, 𝑣1 will be a source node of the graph, proving the base case.

Assume the result holds for all indices upto 𝑖 and consider 𝑣𝑖+1. Let 𝐻 be the DAG 𝑊 ∖ {𝑣1, . . . , 𝑣𝑖}.
Consider an arbitrary vertex 𝑤 in 𝐻 . Firstly, because of the induction hypothesis, no 𝑣𝑗 is a de-
scendant of 𝑤 for any 𝑗 ≤ 𝑖. Now, if 𝑤 is a source node in 𝐻 , that is, pa(𝑤) ⊆ {𝑣1, . . . , 𝑣𝑖},
then E[𝑔(𝑋𝑤|𝑋𝑣1 , . . . , 𝑉𝑣𝑖)] = E[𝑔(𝑋𝑤|𝑋pa(𝑤)] = 𝜏 , where used the Markov property. On
the other hand, if a vertex 𝑤 in 𝐻 has a parent in 𝐻 , that is, pa(𝑤) ( {𝑣1, . . . , 𝑣𝑖}, then
E[𝑔(𝑋𝑤|𝑋𝑣1 , . . . , 𝑉𝑣𝑖)] > E[𝑔(𝑋𝑤|𝑋pa(𝑤)] = 𝜏 . These two assertions prove that 𝑉𝑖+1 is a source
node of 𝐻 , proving the induction step.

Therefore, for all 𝑖 ≥ 1, we must have pa(𝑣𝑖) ⊆ {𝑣1, . . . , 𝑣𝑖−1}. This proves that 𝑇 = 𝑣1 . . . , 𝑣𝑑
is a topological sorting of the vertices of the graph. In the backward phase, all edges 𝑒 = (𝑖, 𝑗)
not in 𝑊 will be removed from 𝑊 because the score will not change after removing 𝑒 because 𝑗’s
current parents will contain pa𝑊 (𝑗). Ultimately, the true DAG 𝑊 remains which will be returned by
GFBS.

We now explain how Proposition 3.1 follows from Theorem 4.6. By Example B.2, if we take
𝜑(𝑥) = 𝑥2, then the corresponding Bregman information is the variance. In [10], they consider a
linear SEM with equal error variances. The assumption of equal error variances is precisely the
equal Bregman-information Assumption 4.4 we impose. Now, they iteratively find source nodes
for the graph and then condition on them. But by the above inductive proof of Theorem 4.6, this is
exactly what happens in the forward phase of GFBS. Therefore, GFBS recovers their algorithm when
specialized to equal error-variance linear SEMs.
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Other examples of functionals 𝑔 from previous works include:

• NPVAR [19]: 𝑔(𝑋𝑖 |𝐴) = var(𝑋𝑖 |𝐴)

• QVF-ODS [38]: 𝑔(𝑋𝑖 |𝐴) = var(𝑇𝑖(𝑋𝑖) |𝐴) − E(𝑇𝑖(𝑋𝑖) |𝐴) with 𝜏 = 0, 𝑇𝑖 is a linear
transformation that depends on E(𝑋𝑖 |𝐴).

• GHD [37]: 𝑔(𝑋𝑖 |𝐴) = ((𝑋𝑖)𝑟) − E𝑓 (𝑟)𝑖 (E(𝑋𝑖 |𝐴)) with 𝜏 = 0, where (𝑎)𝑟 = 𝑎(𝑎 −
1) · · · (𝑎− 𝑟+ 1) and 𝑓 (𝑟)𝑖 is a 𝑟th factorial constant moments ratio (CMR) function of form

𝑓
(𝑟)
𝑖 (𝑥; 𝑎(𝑖), 𝑏(𝑖)) = 𝑥𝑟

𝑝𝑖∏︁
𝑘=1

(𝑎𝑖𝑘 + 𝑟 − 1)𝑟
𝑎𝑟𝑖𝑘

𝑞𝑖∏︁
ℓ=1

𝑏𝑟𝑖ℓ
(𝑏𝑖ℓ + 𝑟 − 1)𝑟

such that
E[(𝑋𝑖)𝑟 | pa(𝑖)] = 𝑓

(𝑟)
𝑖

(︀
E[𝑋𝑖 | pa(𝑖)]; 𝑎(𝑖), 𝑏(𝑖)

)︀
for any integer 𝑟 ≤ max𝑋𝑖.

E A natural score function for non-parametric multiplicative models

Consider the multiplicative SEM model

𝑋𝑖 = 𝑓(𝑋pa(𝑖))𝜖𝑖

with an underlying DAG 𝑊 . We will also assume that 𝜖𝑖 is positive with probability 1. Examples of
such models include growth models from economics and biology [32].

Let 𝜑(𝑥) = − log 𝑥. Then, the Bregman divergence 𝑑𝜑 will be the Itakuro-Saito distance used in
Signal and Speech processing community. From Corollary 4.7, we get that the model is identifiable
under the condition

E[𝐼𝜑(𝑋𝑖|𝑋pa(𝑖))] = constant.

But we can compute this explicitly for a multiplicative model. Firstly, note that E[𝑋𝑖|𝑋pa(𝑖) = 𝑤] =
E[𝑓(𝑋pa(𝑖))𝜖𝑖|𝑋pa(𝑖)=𝑤] = 𝑓(𝑋pa(𝑖))E[𝜖𝑖]. Using the same calculations as in Example B.3, we get

E[𝐼𝜑(𝑋𝑖|𝑋pa(𝑖))] = E𝑤[E[− log
𝑋𝑖

E[𝑋𝑖|𝑋pa(𝑖) = 𝑤]
|𝑋pa(𝑖) = 𝑤]]

= E𝑤[E[− log
𝜖𝑖

E[𝜖𝑖]
|𝑋pa(𝑖) = 𝑤]]

= logE[𝜖𝑖]− E[log 𝜖𝑖]

Therefore, the equal Bregman-information assumption is equivalent to the following assumption on
the noise variables

logE[𝜖𝑖]− E[log 𝜖𝑖] = constant

This is satisfied for instance when 𝜖𝑖 are identically distributed. Our theory of Bregman scores
illustrates that when such assumptions are feasible, such as in the case of identically distributed noise
variables, then to estimate such models via score based approaches, a great candidate score would be
the Itakuro-Saito score

𝑆𝜑(𝑊 ) =
∑︁
𝑖≤𝑑

E[𝐼𝜑(𝑋𝑖|𝑋pa(𝑖))] =
∑︁
𝑖≤𝑑

(E logE[𝑋𝑖|𝑋pa(𝑖)]− E[log𝑋𝑖]).

F Proofs for Section 5

F.1 Proof of Lemma 5.3

Proof. For all 𝑖 ∈ [𝑑] and 𝐴 ⊆ 𝒜𝐺(𝑖),

E
(︂̂︀𝑆(𝑋𝑖 |𝐴)− 𝑆(𝑋𝑖 |𝐴)

)︂2

. E
(︂
E𝜑(𝑋𝑖)−

1

𝑛

∑︁
𝑡

𝜑(𝑋
(𝑡)
𝑖 )

)︂2

+ E

(︃
E𝜑(𝑓𝑖𝐴)− 1

𝑛

∑︁
𝑡

𝜑

(︂̂︀𝑓𝑖𝐴(𝐴(𝑡))

)︂)︃2
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. 𝑛−1 + E

(︃
E𝜑(𝑓𝑖𝐴)− 1

𝑛

∑︁
𝑡

𝜑

(︂̂︀𝑓𝑖𝐴(𝐴(𝑡))

)︂)︃2

due to the finite second moment and parametric rate. For the second term,

E

(︃
E𝜑(𝑓𝑖𝐴)− 1

𝑛

∑︁
𝑡

𝜑

(︂̂︀𝑓𝑖𝐴(𝐴(𝑡))

)︂)︃2

= E

(︃
E𝜑(𝑓𝑖𝐴)− 1

𝑛

∑︁
𝑡

𝜑

(︂
𝑓𝑖𝐴(𝐴(𝑡))

)︂
+

1

𝑛

∑︁
𝑡

𝜑

(︂
𝑓𝑖𝐴(𝐴(𝑡))

)︂
− 1

𝑛

∑︁
𝑡

𝜑

(︂̂︀𝑓𝑖𝐴(𝐴(𝑡))

)︂)︃2

. E

(︃
E𝜑(𝑓𝑖𝐴)− 1

𝑛

∑︁
𝑡

𝜑

(︂
𝑓𝑖𝐴(𝐴(𝑡))

)︂)︃2

+
1

𝑛

∑︁
𝑡

E

(︃
𝜑

(︂
𝑓𝑖𝐴(𝐴(𝑡))

)︂
− 𝜑

(︂̂︀𝑓𝑖𝐴(𝐴(𝑡))

)︂)︃2

. 𝑛−1 +
1

𝑛

∑︁
𝑡

E
(︂
𝜑′(𝑓𝑡𝐴(𝐴(𝑡)))

)︂2

E
(︂
𝑓𝑖𝐴(𝐴(𝑡))− ̂︀𝑓𝑖𝐴(𝐴(𝑡))

)︂2

. 𝑛−1 + 𝑛
−2𝑠
2𝑠+𝑑

For the first term, the inequality is by finite second moment and parametric rate. For second term,
apply first order Taylor expansion and absorb the high order estimation error terms into the constant
before the inequality. Finally, the tail probability bound follows by Markov’s inequality.

F.2 Proof of Theorem 5.4

Proof. Let ̂︀𝐴0 = ∅ and for 𝑗 ≥ 1, ̂︀𝐴𝑗 = {̂︀𝜋𝑖|𝑖 = 1, 2, . . . 𝑗}. Denote the event ℰ𝑗 =

{̂︀𝜋𝑗 is a source node of 𝐺[𝑉 ∖ ̂︀𝐴𝑗−1]}. Then

P(̂︀𝜋 is a valid ordering) =

𝑑−1∏︁
𝑗=0

P(ℰ𝑗+1 | ℰ𝑗)

For each term of the product,

P(ℰ𝑗+1 | ℰ𝑗) =
∑︁

𝐴 is a subset of non-descendants
|𝐴|=𝑗

P(ℰ𝑗+1 | ̂︀𝐴𝑗 = 𝐴, ℰ𝑗)P( ̂︀𝐴𝑗 = 𝐴 | ℰ𝑗)

ℰ𝑗 implies that ̂︀𝐴𝑗 = 𝐴 is of size 𝑗 and a subset of non-descendants of remaining nodes. More
importantly, all possibilities sum up to one∑︁

𝐴 is a subset of non-descendants
|𝐴|=𝑗

P( ̂︀𝐴𝑗 = 𝐴 | ℰ𝑗) = 1

Invoking Lemma 5.3, union bound the estimation error

P
(︂
∪𝑖/∈𝑉 ∖𝐴

{︂
|̂︀𝑆(𝑋𝑖 |𝐴)−𝑆(𝑋𝑖 |𝐴)| ≥ 𝑡

}︂)︂
≤
∑︁
𝑖/∈𝑉 ∖𝐴

P
(︂
|̂︀𝑆(𝑋𝑖 |𝐴)−𝑆(𝑋𝑖 |𝐴)| ≥ 𝑡

)︂
≤ (𝑑−𝑗)𝛿

2
𝑛

𝑡2

Thus, with probability at least 1− (𝑑− 𝑗)𝛿2𝑛/𝑡2, we have{︃̂︀𝑆(𝑋𝑖 |𝐴) ≤ 𝜏 + 𝑡 𝑖 is a source node of 𝐺[𝑉 ∖𝐴]̂︀𝑆(𝑋𝑖 |𝐴) ≥ 𝜏 + ∆− 𝑡 𝑖 is not a source node of 𝐺[𝑉 ∖𝐴]

Therefore, with 𝑡 ≤ ∆/2, the node ̂︀𝜋𝑗+1 found by GFBS which minimizes the score is still a source
node. This implies for all possible 𝐴,

P(ℰ𝑗+1 | ̂︀𝐴𝑗 = 𝐴, ℰ𝑗) ≥ 1− 4(𝑑− 𝑗) 𝛿
2
𝑛

∆2
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furthermore,

P(ℰ𝑗+1 | ℰ𝑗) ≥ 1− 4(𝑑− 𝑗) 𝛿
2
𝑛

∆2

and finally

P(̂︀𝜋 is a valid ordering) =
∏︁
𝑗

P(ℰ𝑗+1 | ℰ𝑗) ≥ 1−
𝑑−1∑︁
𝑗=0

(𝑑− 𝑗)4𝛿2𝑛
∆2
≥ 1− 4𝑑2𝛿2𝑛

∆2

Solving P(̂︀𝜋 is a valid ordering) > 1− 𝜖 yields the desired result.

F.3 Proof of Theorem 5.6

Proof. We only need to show parents of each node are correctly estimated. Theorem 5.4 guarantees
that the parents of ̂︀𝜋𝑗+1 are in ̂︀𝐴𝑗 . Thus,

𝑆(̂︀𝜋𝑗+1 | ̂︀𝐴𝑗) = 𝑆(̂︀𝜋𝑗+1 | pa(̂︀𝜋𝑗+1))

By the definition of ∆,{︃
𝑆(𝑋̂︀𝜋𝑗+1

| ̂︀𝐴𝑗 ∖ 𝑖)− 𝑆(𝑋̂︀𝜋𝑗+1
| ̂︀𝐴𝑗) ≥ ∆ 𝑖 ∈ pa(̂︀𝜋𝑗+1)

𝑆(𝑋̂︀𝜋𝑗+1
| ̂︀𝐴𝑗 ∖ 𝑖)− 𝑆(𝑋̂︀𝜋𝑗+1

| ̂︀𝐴𝑗) = 0 𝑖 ̸∈ pa(̂︀𝜋𝑗+1)

Invoking Lemma 5.3, with probability at least 1− 𝑑𝛿2𝑛/𝑡2, for all 𝑖 ∈ ̂︀𝐴𝑗 ∪ {∅}
|̂︀𝑆(𝑋̂︀𝜋𝑗+1

| ̂︀𝐴𝑗 ∖ 𝑖))− 𝑆(𝑋̂︀𝜋𝑗+1
| ̂︀𝐴𝑗 ∖ 𝑖))| ≤ 𝑡

which implies {︃
|̂︀𝑆(𝑋̂︀𝜋𝑗+1

| ̂︀𝐴𝑗)− ̂︀𝑆(𝑋̂︀𝜋𝑗+1
| ̂︀𝐴𝑗 ∖ 𝑖)| ≤ 2𝑡 𝑖 ∈ pa(̂︀𝜋𝑗+1)

|̂︀𝑆(𝑋̂︀𝜋𝑗+1
| ̂︀𝐴𝑗)− ̂︀𝑆(𝑋̂︀𝜋𝑗+1

| ̂︀𝐴𝑗 ∖ 𝑖)| ≥ ∆− 2𝑡 𝑖 /∈ pa(̂︀𝜋𝑗+1)

With 2𝑡 ≤ ∆/2 = 𝛾, we can distinguish parents of ̂︀𝜋𝑗+1 from other non-descendants, thuŝ︁pa(̂︀𝜋𝑗+1) = pa(̂︀𝜋𝑗+1). A union bound over 𝑑 nodes gives us the same sample complexity as
in Theorem 5.4, which completes the proof.

G Unequal Bregman score cases

In this section, we investigate the behaviour of GFBS when the equal Bregman information condition
is violated. As is evident from the proofs in Appendix D, exact equality is actually not necessary
for the proof and the algorithm to go through. The Assumption 4.4 has a straightforward extension
analogous in the literature [22], which also ensures identifiability. We present the result here, whose
proof follows Appendix D and previous work and thus is omitted.
Assumption G.1. There exists a valid ordering 𝜋 such that for all 𝑖 ∈ [𝑑] and ℓ ∈ 𝜋[𝑖+1:𝑑],

E[𝐼𝜑(𝑋𝑖 |𝑋𝜋[1:𝑖−1]
)] = E[𝐼𝜑(𝑋𝑖 | pa(𝑖))] < E[𝐼𝜑(𝑋ℓ |𝑋𝜋[1:𝑖−1]

)]

To demonstrate this assumption, we conduct experiments with 𝜑(𝑥) = 𝑥2, which leads to
E[𝐼𝜑(𝑋𝑖 | pa(𝑖))] = E var(𝑋𝑖 | pa(𝑖)). We can generate data satisfying this “unequal” assump-
tion for Markov chain + sine model + Gaussian noise. The idea is that to restrict the range of noise
variance.

Suppose the Markov chain is 𝑋1 → · · · → 𝑋𝑑, with 𝑋𝑖 = sin(𝑋𝑖−1) +𝑍𝑖, and 𝑍𝑖 ∼ 𝒩 (0, 𝜎2
𝑖 ). We

restrict the 𝜎2
𝑖 to be sampled from [1, 1.2]. To make sure Assumption G.1 is satisfied, we need for

any 𝑖 and 𝑖 < ℓ ≤ 𝑑,

𝜎2
𝑖 = E var(𝑋𝑖 |𝑋𝑖−1) < E var(𝑋ℓ |𝑋𝑖−1) = E var(sin(𝑋ℓ−1 + 𝜖ℓ−1) |𝑋𝑖−1) + 𝜎2

ℓ

It suffices to find a lower bound on var(sin(𝑎+𝑋)) for any 𝑎 ∈ [−1, 1] and 𝑋 ∼ 𝒩 (0, 𝜎2).
Lemma G.2. Suppose𝑋 ∼ 𝒩 (0, 𝜎2) with 𝜎2 ≥ 1, then for any 𝑎 ∈ [−1, 1], var(sin(𝑋+𝑎)) ≥ 1/4.
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With Lemma G.2, we can show that the identifiability is guaranteed:

E var(sin(𝑋ℓ−1 + 𝜖ℓ−1) |𝑋𝑖−1) ≥ E(1/4 |𝑋𝑖−1) = 1/4 > 0.2 = max(𝜎2
𝑖 − 𝜎2

ℓ )

Proof of Lemma G.2. Using the identity

sin(𝑋 + 𝑎) = sin 𝑎 cos𝑋 + cos 𝑎 sin𝑋

we have

E sin(𝑋 + 𝑎) = sin 𝑎E cos𝑋 = sin 𝑎× Re[E exp(−𝑖𝑋)] = sin 𝑎 exp(−𝜎2/2).

Moreover, a short calculation shows that

E sin2(𝑋 + 𝑎) =
1

2
− 1

2
cos 2𝑎 exp(−2𝜎2).

Finally,

var sin(𝑋 + 𝑎) = E sin2(𝑋 + 𝑎)− (E sin(𝑋 + 𝑎))2

=
1

2
− 1

2
𝑒−2𝜎2

+ sin2 𝑎× 𝑒−𝜎
2

(𝑒−𝜎
2

− 1)

> 1/4.

To illustrate this condition, we run a simple experiment as follows: Consider two settings for 𝜎2
𝑖 :

Sampled uniformly and randomly from (a) [1, 1.2] or (b) [0.1, 1.9]. Run GFBS and Gobnilp on
generated data, then compare the score obtained by two algorithms, and test whether the ordering of
estimated graph is correct. Since the true graph is a Markov chain, there is only one true ordering.

As shown in Figure 2, when Assumption G.1 is satisfied through Lemma G.2, the score output by
GFBS is close to the true one, and the topological ordering can be recovered. When the range of
𝜎2
𝑖 is not well-controlled, GFBS does not return the correct ordering, and neither does Gobnilp.

Interestingly, GFBS nonetheless does a good job at optimizing the score.

H Experiment details

In this appendix we collect all the details of the experiments in Section 6.

H.1 Experiment settings

Bregman scores: We define them through convex functions

• Residual variances: 𝜑1(𝑥) = 𝑥2

• Itakuro-Saito: 𝜑2(𝑥) = − log(𝑥)

Graph types: We let the expected number of edges to scale with 𝑑, e.g. ER-2 stands for Erdös-Rényi
with 2𝑑 edges.

• ER: randomly choose 𝑠 edges from all possible
(︀
𝑑
2

)︀
directed edges, then randomly permute

the nodes
• SF: scale-free graphs generated through Barabasi-Albert process
• MC: Markov chain, randomly permute the nodes

Model types: We specify the parental functions 𝑓𝑖 to be as follows: linear model (LIN), sine model
(SIN), additive Gaussian Process (AGP) and non-additive Gaussian Process (NGP) with with kernel
𝐾(𝑥, 𝑦) = 𝑒− | 𝑥−𝑦 | 2/2.

• For 𝜑1, data is generated according to the form of 𝑋𝑖 = 𝑓𝑖(pa(𝑖)) + 𝑍𝑖

– 𝜎: additive noise standard deviation, set to 1
– Noise distribution:
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Figure 2: Unequal Bregman score experiments. Left column: score output by GFBS and Gobnilp;
Right column: P(correct ordering) v.s. sample size; Upper row: range of 𝜎2

𝑖 is [1, 1.2]; Bottom row:
range of 𝜎2

𝑖 is from [0.1, 1.9]. The gray dashed lines indicate average true score (
∑︀
𝑖 𝜎

2
𝑖 , left) or the

optimal probability of recovery (right).

* Gaussian: 𝑍𝑖 = 𝜎 ×𝒩 (0, 1)

* t: 𝑍𝑖 = 𝜎 × 𝑡(3)/
√

3

* Gumbel: 𝑍𝑖 = 𝜎 ×𝐺𝑢𝑚𝑏𝑒𝑙(0,
√

6/𝜋)

– Parental functions:

* LIN: 𝑓𝑖 =
∑︀
ℓ∈pa(𝑖) 𝛽𝑖ℓ𝑋ℓ, where 𝛽𝑖ℓ = 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟 × 𝑈𝑛𝑖𝑓(0.5, 1.2)

* SIN: 𝑓𝑖 =
∑︀
ℓ∈pa(𝑖) sin(𝑋ℓ)

* AGP: 𝑓𝑖 =
∑︀
ℓ∈pa(𝑖)𝐺𝑃 (𝑋ℓ)

* NGP: 𝑓𝑖 = 𝐺𝑃 (pa(𝑖))

• For 𝜑2, data is generated according to the form of 𝑋𝑖 = 𝑓𝑖(pa(𝑖))× 𝑍𝑖.
– Noise distribution:

* Uniform: 𝑍𝑖 ∼ 𝑈𝑛𝑖𝑓(1, 2)

– Parental function:

* SIN: 𝑓𝑖 = 1
| pa(𝑖)|

∑︀
ℓ∈pa(𝑖) sin2(𝑋ℓ);

* AGP: 𝑓𝑖 = 1
| pa(𝑖)|

∑︀
ℓ∈pa(𝑖)𝐺𝑃

2(𝑋ℓ) + 0.5;

* NGP: 𝑓𝑖 = 1
2𝐺𝑃

2(pa(𝑖)) + 0.5

Other parameters:

• Dimension: 𝑑 = 5, 10, 20, 30

• Number of edges: 𝑠 = 𝑘𝑑, 𝑘 = 1, 2, 4

• Sample size: 𝑛 =[50,80,110,140,200,260,320] for 𝜑1, 𝑛 =[100,400,700,...,2200] for 𝜑2
• Replications of simulation: 𝑁 = 30
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H.2 Implementation of algorithms

For GFBS, use Generalized Additive Model (GAM) to estimate all conditional expectations and
compute all local scores as reference for all other methods. In particular, GAM is replaced by ordinary
least square for LIN model. In backward phase, use threshold 𝛾 = 0.05 for 𝜑1 and 𝛾 = 0.0005 for
𝜑2. GAM is implemented by Python package pygam with default parameters to avoid favoring one
particular method due to hyper-parameter tuning,

We compare GFBS with following score-based structure learning algorithms:

• Gobnilp[16]: is an exact solver for score-based Baysian network learning through Constraint
Integer Programming. We input the local scores output by GFBS for it to optimize. The
implementation is available at https://www.cs.york.ac.uk/aig/sw/gobnilp/.

• NOTEARS[58, 59]: uses an algebraic characterization of DAGs for score-based struc-
ture learning of nonparametric models via partial derivatives. We adopt example hyper-
parameters to run, then compute the total score of output DAG using local scores output by
GFBS. The implementation is available at https://github.com/xunzheng/notears.

• GDS[40]: greedily searches over neighbouring DAGs differed by adding / deleting / revers-
ing one edge. Switch the score from log likelihood to our score setting, use gam function
in R package mgcv with P-splines bs=‘ps’ and the default smoothing parameter sp=0.6
to estimate the conditional expectations. In particular, GAM is replaced by ordinary least
square for LIN model. Implementation is available at https://academic.oup.com/
biomet/article/101/1/219/2364921#supplementary-data. Omitted for 𝑑 > 10
due to computational cost.

• GES[13]: greedily searches over neighbouring Markov equivalence class to optimize the
score. We use sem-bic score with penaltyDiscount=0, which amounts to score equals
𝐵𝐼𝐶 = 2𝐿 where 𝐿 is the likelihood. Only run for linear model and compare SHD.
Implementation is available at https://github.com/bd2kccd/py-causal.

These simulations used an Intel E5-2680v4 2.4GHz CPU running on an internal cluster.

H.3 Evaluation metrics

• Structural Hamming Distance (SHD): common metric for comparing performance in struc-
ture learning, which counts the total number of edge additions, deletions, and reversals
needed to convert the estimated graph into the true graph.

• Bregman Score:
∑︀
𝑖 E𝜑(𝑋𝑖)− E𝜑(E(𝑋𝑖 | pa(𝑖))). Except for the true score indicated by

grey dashed lines, this metric is evaluated in finite sample using estimator defined in (7).

H.4 Additional experiments

Here we present some additional experiments.

H.4.1 Main figures with other noise

In Figure 3, we present the left four columns of Figure 1 under other two noise distribution: Gaussian
and Gumbel. Note that the experiment settings are under 𝜑1.

H.4.2 Structure learning

We illustrate the performance of GFBS on structural learning by considering experiment settings
under higher dimensions and 𝜑1, where Gobnilp and GDS are omitted due to heavy computational
cost.

• Figure 4: SHD v.s. sample size 𝑛 for 𝑑 = 20, 30, Gaussian noise, and 𝜑1.
• Figure 5: SHD v.s. sample size 𝑛 for 𝑑 = 20, 30, t noise, and 𝜑1.
• Figure 6: SHD v.s. sample size 𝑛 for 𝑑 = 20, 30, Gumbel noise, and 𝜑1.
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Figure 3: Score of output DAG vs. sample size 𝑛 for GFBS and 3 other algorithms for 𝜑1 settings.
Left four columns: 𝑍𝑖 is Gaussian distribution with variance 1; Right four columns: 𝑍𝑖 is Gumbel
distribution with variance 1. The grey dashed line is the score of the true graph.

0

10

20

30

sin
 M

od
el

ER-1

0

20

40

60

80

ER-4

0

5

10

15

20
SF-1

0

20

40

60

SF-4

0

5

10

15

20

25

MC

0

10

20

30

AG
P 

M
od

el

0

20

40

60

80

0

5

10

15

20

25

0

20

40

60

0

10

20

250 500 750 1000
0

10

20

NG
P 

M
od

el

250 500 750 1000
0

20

40

60

80

250 500 750 1000
0

5

10

15

20

25

GFBS NOTEARS GES zero error
250 500 750 1000

0

20

40

60

80

250 500 750 1000
0

10

20

shd    d=20    gaussian noise

0

10

20

30

40

sin
 M

od
el

ER-1

0

50

100

150

ER-4

0

10

20

30

40
SF-1

0

25

50

75

100

SF-4

0

10

20

30

40
MC

0

20

40

60

AG
P 

M
od

el

0

50

100

150

200

0

20

40

60

0

20

40

60

80

100

0

10

20

30

40

50

250 500 750 1000
0

20

40

60

NG
P 

M
od

el

250 500 750 1000
0

50

100

150

250 500 750 1000
0

20

40

GFBS NOTEARS GES zero error
250 500 750 1000

0

25

50

75

100

125

250 500 750 1000
0

10

20

30

40

50

shd    d=30    gaussian noise

Figure 4: SHD v.s. sample size for 𝑑 = 20, 30 and Gaussian noise.

H.4.3 Score optimization

We consider the experiment setting under 𝜑1. Record the estimated score of estimated DAG at each
step of iteration (5 for 𝑑 = 5 in total), starting from empty graph. The different sample size is
indicated by darkness of the color. The gray dashed line is the true score (5 for 𝑑 = 5).

• Figure 7: Score v.s. iteration for 𝑑 = 5 and Gaussian noise
• Figure 8: Score v.s. iteration for 𝑑 = 5 and t noise
• Figure 9: Score v.s. iteration for 𝑑 = 5 and Gumbel noise
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Figure 5: SHD v.s. sample size for 𝑑 = 20, 30 and t noise.
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Figure 6: SHD v.s. sample size for 𝑑 = 20, 30 and Gumbel noise.
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Figure 7: Score v.s. iteration for 𝑑 = 5 and Gaussian noise
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Figure 8: Score v.s. iteration for 𝑑 = 5 and t noise
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Figure 9: Score v.s. iteration for 𝑑 = 5 and Gumbel noise
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