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Abstract

Recently, bound propagation based certified robust training methods have been
proposed for training neural networks with certifiable robustness guarantees. De-
spite that state-of-the-art (SOTA) methods including interval bound propagation
(IBP) and CROWN-IBP have per-batch training complexity similar to standard
neural network training, they usually use a long warmup schedule with hundreds
or thousands epochs to reach SOTA performance and are thus still costly. In this
paper, we identify two important issues in existing methods, namely exploded
bounds at initialization, and the imbalance in ReLU activation states and improve
IBP training. These two issues make certified training difficult and unstable, and
thereby long warmup schedules were needed in prior works. To mitigate these
issues and conduct faster certified training with shorter warmup, we propose three
improvements based on IBP training: 1) We derive a new weight initialization
method for IBP training; 2) We propose to fully add Batch Normalization (BN)
to each layer in the model, since we find BN can reduce the imbalance in ReLU
activation states; 3) We also design regularization to explicitly tighten certified
bounds and balance ReLU activation states during wamrup. We are able to obtain
65.03% verified error on CIFAR-10 (✏ = 8

255 ) and 82.36% verified error on Tiny-
ImageNet (✏ = 1

255 ) using very short training schedules (160 and 80 total epochs,
respectively), outperforming literature SOTA trained with hundreds or thousands
epochs under the same network architecture. The code is available at https:
//github.com/shizhouxing/Fast-Certified-Robust-Training.

1 Introduction

While deep neural networks (DNNs) are successfully applied in various areas, its robustness problem
has attracted great attention since the discovery of adversarial examples (Szegedy et al., 2013;
Goodfellow et al., 2015; Carlini & Wagner, 2017; Kurakin et al., 2016; Chen et al., 2017; Madry et al.,
2018; Su et al., 2018; Choi et al., 2019), which poses concerns in DNN applications especially the
safety-critical ones such as autonomous driving. Methods for improving the empirical robustness of
DNNs, such as adversarial training (Madry et al., 2018), provide no provable robustness guarantees,
and thus some recent works aim to pursue certified robustness. Specifically, the robustness is evaluated
in a certifiable manner using robustness verifiers (Katz et al., 2017; Zhang et al., 2018; Wong &
Kolter, 2018; Singh et al., 2018, 2019; Bunel et al., 2017; Raghunathan et al., 2018b; Wang et al.,
2018b; Xu et al., 2020; Wang et al., 2021), which verify whether the model is provably robust against
all possible input perturbations within the range. This is achieved usually by efficiently computing
the output bounds.

To improve certified robustness, certified robust training methods (also referred to as certified defense)
minimize a certified robust loss computed by a verifier, and the certified loss is an upper bound of the
worst-case loss given specified input perturbations. So far, Interval Bound Propagation (IBP) (Gowal
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et al., 2018; Mirman et al., 2018) and CROWN-IBP (Zhang et al., 2020; Xu et al., 2020) are the
most efficient and effective methods for general models. IBP computes an interval with the output
lower and upper bounds for each neuron, and CROWN-IBP further combines IBP with tighter linear
relaxation-based bounds (Zhang et al., 2018; Singh et al., 2019) during warmup.

Both IBP and CROWN-IBP with loss fusion (Xu et al., 2020) have a per-batch training time
complexity similar to standard DNN training. However, certified robust training remains costly and
challenging, mainly due to their unstable training behavior – they could easily diverge or stuck at a
degenerate solution without a long “warmup” schedule. The warmup schedule here refers to training
the model with a regular (non-robust) loss first and then gradually increasing the perturbation radius
from 0 to the target value in the robust loss (some previous works also refer to it as “ramp-up”).
For example, generalized CROWN-IBP in Xu et al. (2020) used 900 epochs for warmup and 2,000
epochs in total to train a convolutional model on CIFAR-10 (Krizhevsky et al., 2009).

In this paper, we identify two important issues in existing certified training, so that a long warmup
schedule could not be easily removed in previous works. First, we find that the certified bounds can
explode at the start of training, which is partly due to the suboptimal weight initialization in prior
works. A good weight initialization is important for successful DNN training (Glorot & Bengio, 2010;
He et al., 2015a), but prior works for certified training generally use weight initialization methods
originally designed for standard DNN training, while certified training is essentially optimizing a
different type of augmented network defined by robustness verification (Zhang et al., 2020). The
long warmup with gradually increasing perturbation radii in prior works can somewhat be viewed as
finding a better initialization for final IBP training with the target radius, but it is too costly. Second,
we also observe that IBP leads to imbalanced ReLU activation states, where the model prefers
inactive (dead) ReLU neurons significantly more than other states because inactive neurons tend to
tighten IBP bounds. It can however hamper classification performance if too many neurons are dead.
This issue can become more severe if the warmup schedule is shorter.

We focus on improving IBP training, since IBP is efficient per batch, and it is also the base of
recent state-of-the-art methods (Zhang et al., 2020; Xu et al., 2020). We propose the following
improvements:

• We derive a new weight initialization, IBP initialization, for IBP-based certified training. The new
initialization can stabilize the tightness of certified bounds at initialization.

• We identify the benefit of Batch Normalization (BN) in certified training, and we find BN which
normalizes pre-activation outputs can balance ReLU activation states and also stabilize variance.
We propose to fully add BN to every layer, while it was partly or fully missed in prior works.

• We further propose regularizers to explicitly stabilize certified bounds and balance ReLU activation
states during warmup.

We are able to efficiently train certifiably robust models that outperform previous SOTA performance
in significantly shorter training epochs. We achieve a verified error of 65.03% (✏ = 8

255 ) on CIFAR-
10 in 160 total training epochs, and 82.36% on TinyImageNet (✏ = 1

255 ) in 80 epochs, based on
efficient IBP training. Under the same convolution-based architecture, we significantly reduce the
total training cost by 20 ⇠ 60 times compared to previous SOTA (Zhang et al., 2020; Xu et al., 2020)
or concurrent work (Lyu et al., 2021).

2 Background and Related Work

2.1 Certified Robust Training

Training robust neural networks can generally be viewed as solving the following min-max optimiza-
tion problem:

min
✓

E(x,y)2X


max

�2�(x)
L(f✓(x+ �), y)

�
, (1)

where f✓ stands for a neural network parameterized by ✓, X is the data distribution, x is a data
example, y is its ground-truth label, � is a perturbation constrained by specification �(x), and L is
the loss function. Empirical adversarial training methods (Goodfellow et al., 2015; Madry et al.,
2018) solve the inner maximization in Eq. (1) with adversarial attack, and then solve the outer
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minimization as regular DNN training but augmented with �. However, in adversarial training, the
inner maximization has no guarantee to find a � which can lead to worst model performance. In
contrast, certified robust training methods compute a certified upper bound for the inner maximization,
so that the upper bound provably covers the worst-case perturbation.

In terms of certified robustness works, Raghunathan et al. (2018a) used semidefinite relaxations for
small two-layer models, and Wong & Kolter (2018); Mirman et al. (2018); Dvijotham et al. (2018);
Wang et al. (2018a) used linear relaxations but are still too computationally expensive for large
models. On the other hand, Mirman et al. (2018) first used interval bounds to train a certifiably
robust network, and Gowal et al. (2018) made it more effective. This approach is often referred to
as interval bound propagation (IBP). CROWN-IBP (Zhang et al., 2020) further combined IBP with
tighter linear relaxation bounds by CROWN (Zhang et al., 2018) during warmup, and it is generalized
and accelerated in Xu et al. (2020). Additionally, Balunovic & Vechev (2020) combined certified
training with adversarial training; Xiao et al. (2019) added a ReLU stability regularizer to empirical
adversarial training, to reduce unstable neurons for faster and tighter verification when tested with
mixed integer programming (MIP), but their objective is distinct from ours and this method was
shown not to improve certified training (Lee et al., 2021). In concurrent works, Lyu et al. (2021)
proposed a parameterized ramp function as an alternative activation function, and used a tighter
linear bound propagation algorithm for verification; Zhang et al. (2021) proposed to use a different
architecture with “`1-distance neurons” instead of traditional linear or convolutional layers. Yet they
still need long training schedules.

Moreover, while our scope in this paper is deterministic certified robustness, there are also random-
ization based works for probabilistic certified defense (Cohen et al., 2019; Li et al., 2019; Lecuyer
et al., 2019; Salman et al., 2019). But randomized smoothing requires costly sampling at test time,
and it is usually for `2 perturbations and has fundamental limitations for `1 ones (Yang et al., 2020;
Blum et al., 2020; Kumar et al., 2020).

2.2 Weight Initialization of Neural Networks

Many prior works have studied the weight initialization for standard DNN training. Xavier or
Glorot initialization (Glorot & Bengio, 2010), adopted by popular deep learning libraries such as
PyTorch (Paszke et al., 2019) and Tensorflow (Abadi et al., 2016) as the default initialization, aim
to stabilize the magnitude of forward propagation and gradient backpropagation signals measured
with variance. It uses a uniform distribution or normal distribution to independently initialize each
element in the weight matrix with a derived variance for the distribution. He et al. (2015a) derived
an initialization that more accurately stabilizes the variance in ReLU networks. Saxe et al. (2013)
proposed an orthogonal initialization which may lead to better learning dynamics. Some other
works also derived initializations for specific DNN structures (Taki, 2017; Huang et al., 2020), and
Bhattacharya (2020); Zhu et al. (2021) proposed to automatically learning initializations. However,
these initializations were designed for standard DNN training, while they can generally lead to
exploded certified bounds for IBP training as we will show in this paper.

2.3 Batch Normalization for DNN Training

Batch normalization (BN) (Ioffe & Szegedy, 2015) is originally proposed to improve DNN training
by reducing interval covariate shift. More recently, Santurkar et al. (2018) instead suggests that BN
actually improves DNN training by smoothing the loss landscape without the necessity of reducing
internal covariate shift, and BN can accelerate DNN training (Van Laarhoven, 2017). In this paper,
we identify the extra benefit of using BN in IBP training.

3 Methodology

3.1 Notations and Definitions

We focus on improving IBP training, and we consider a commonly adopted `1 perturbation setting
in adversarial robustness on a K-way classification task. For a DNN f✓(x) with clean input x, there
can be some perturbation � satisfying k�k1  ✏, and the actual perturbed input to the model is x+ �.
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In robustness verification for achieving certified robustness, we verify whether
[f✓(x+ �)]y � [f✓(x+ �)]i > 0, 8i, � s.t. i 6= y, k�k1  ✏, (2)

holds true, where [f✓(x+�)]i is the logits score for class i and y is the ground-truth. This is equivalent
to verifying whether the DNN provably makes correct prediction for all input x+ � (k�k1  ✏). For
network f✓, we assume that there are m hidden affine layers (either convolutional or fully-connected
layers) with ReLU activation. We use hi to denote the pre-activation output value of the i-th layer,
and hi,j denotes the j-th neuron in the i-th layer. We also use zi = ReLU(hi) to denote the
post-activation value. For a convolutional or fully-connected layer, we use Wi and bi to denote
its parameters, where Wi 2 Rri⇥ni ,b 2 Rri , and ri and ni are called the “fan-out” and “fan-in”
number of the layer respectively (He et al., 2015b). This is straightforward for a fully-connected
layer, and for a convolutional layer with kernel size k, cin input channels and cout output channels, we
can still view the convolution as an affine transformation with ni = k

2
cin and ri = cout. In particular,

we use h0 = x+ � to denote the input layer perturbed by � (z0 is not applicable).

For IBP (Mirman et al., 2018; Gowal et al., 2018), it computes and propagates lower and upper bound
intervals layer by layer until the last layer or the verification objective. For pre-activation hi, its
interval bounds can be denoted as [hi,hi], where hi  hi  hi (8k�k1  ✏). Similarly, there are
also post-activation interval bounds [zi, zi]. Finally Eq. (2) can be verified by checking the lower
bound of [f✓(x+ �)]y � [f✓(x+ �)]i.

3.2 Issues in Existing Certified Robust Training

In this section, we analyze the issues in existing IBP training. In particular, we identify two issues,
including exploded bounds at initialization, and also the imbalance between ReLU activation states.

3.2.1 Exploded Bounds at Initialization

For simplicity, we assume the network has a feedforward architecture in this analysis, but the analysis
can also be easily extended to other architectures. For affine layer hi = Wizi�1 +bi, the IBP bound
computation is as follows:

hi = Wi,+zi�1 +Wi,�zi�1 + bi, hi = Wi,+zi�1 +Wi,�zi�1 + bi, (3)
where Wi,+ stands for retaining positive elements in Wi only while setting other elements to
zero, and vice versa for Wi,�. hi can be viewed as a function with the post-activation value
of the previous layer zi as input, denoted as hi(zi). In Eq. (3), the IBP bounds guarantee that
hi  hi(zi)  hi (8zi  zi  zi) for element-wise “”.

We then check the tightness of the interval bounds:
�i = hi � hi = |Wi|(zi�1 � zi�1) = |Wi|�i�1, (4)

where �i denotes the gap between the upper and lower bounds, which can reflect the tightness
of the bounds, and |Wi| stands for taking the absolute value element-wise. At initialization, we
assume that each Wi independently follows a distribution with zero mean and variance �

2
i , and the

distribution is symmetric about 0. For a vector or matrix with independent elements following the
same distribution, we use E(·) to denote the expectation of this distribution. We can view each element
in vector �i as a random variable that follows the same distribution, and we denote its expectation
as E(�i), to measure the expected tightness at layer i. As Wi and �i�1 are independent, we have
E(�i) = niE(|Wi|)E(�i�1). Detailed in Appendix D.1, we further have E(�i) = E(ReLU(hi)�
ReLU(hi)) =

1
2E(�i), and

E(�i) =
ni

2
E(|Wi|)E(�i�1). (5)

Empirically, we can estimate E(�i) given a batch of concrete data, by taking the mean, and we use
Ê(�i) to denote the result of the empirical estimation.

We define a metric to characterize to what extent the certified bounds become looser, after propagating
bounds from layer i� 1 to layer i:
Definition 1. We define the difference gain when bounds are propagated from layer i� 1 to layer i:

E(�i)/E(�i�1) =
ni

2
E(|Wi|). (6)

Bounds are considered to be stable if the difference gain E(�i)/E(�i�1) is close to 1.
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Figure 1: We show that certified bounds explode
at initialization, in a simple untrained CNN (the
classification layer is omitted) using Xavier ini-
tialization. We plot log Ê(�i) for each layer i.

Figure 2: Ratios of active and unstable ReLU
neurons for CNN-7 on CIFAR-10 with different
settings. The vanilla ones are not regularized,
and “vanilla (w/o BN)” does not use BN either.

A large difference gain indicates exploded bounds, but it cannot be much smaller than 1 either to
avoid signal vanishing in the model. We find that weight initialization in prior works have large
difference gain values especially for layers with larger ni. For example, for the widely used Xavier
initialization (Glorot & Bengio, 2010), the difference gain is 1

4

p
ni, and it can be as large as 45.25

when ni = 32768 for a fully-connected layer in experiments. This indicates that certified bounds
explode at initialization. We illustrate the bound explosion in Figure 1, and in Appendix A, we list the
difference gain of each existing initialization method in Table 5. As a result, long warmup schedules
are important in previous works, to gradually tighten certified bounds and ease training, but this is
inefficient.

3.2.2 Imbalanced ReLU Activation States

We show another issue in existing certified training, where the models have a bias towards inactive

ReLU neurons. Here “inactive ReLU neurons” are defined as neurons with non-positive pre-activation
upper bounds (hi,j 0), i.e., they are always inactive regardless of input perturbations. Similarly,
active ReLU neurons have non-negative pre-activation lower bounds (hi,j � 0). There are also
unstable ReLU neurons with uncertain activation states given different input perturbations (hi,j0
hi,j). In IBP training, inactive neurons have tighter bounds than active and unstable ones as shown in
Figure 5 in Appendix B, and thus the optimization tends to push the neurons to be inactive. We show
this imbalance ReLU status in Figure 2 (vanilla w/o BN), and it is more severe when the warmup
is shorter as shown in Appendix B.7. Too many inactive neurons indicates that many neurons are
essentially unused or dead, which will harm the model’s capacity and block gradients as discussed by
Lu et al. (2019) on standard training.

3.3 The Proposed Method

To address the aforementioned issues, we propose our method in three parts: 1) We derive a new
weight initialization for IBP training to stabilize the tightness of bounds at initialization; 2) We
propose to fully add BN to mitigate the ReLU imbalance and stabilize the variance of bounds,
while models in prior works did not have BN for some or all the layers. 3) We further propose
regularizations to explicitly stabilize the tightness and the balance of ReLU states during warmup.

3.3.1 IBP initialization

We propose a new IBP initialization for IBP training. Specifically, we independently initialize
each element in Wi following a normal distribution N (0,�2

i ), and we aim to choose a value for
�i such that the difference gain defined in Eq. (6) is exactly 1. When elements in Wi follow the
normal distribution, we have E(|Wi|) =

p
2/⇡�i, and thereby we take �i =

p
2⇡
ni

, which makes the
difference gain ni

2 E(|Wi|) exactly 1. This initialization can further be calibrated for non-feedforward
networks such as ResNet as we discuss in Appendix A.3.
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3.3.2 Batch Normalization

Batch normalization (BN) (Ioffe & Szegedy, 2015) normalizes the input of each layer to a distribution
with stable mean and variance. It can improve the optimization for DNN as shown in prior works
for standard DNN training (Ioffe & Szegedy, 2015; Van Laarhoven, 2017; Santurkar et al., 2018).
In addition, for IBP training, BN can normalize the variance of bounds, and it can also improve the
balance of ReLU activation states by shifting the center of upper and lower bounds to zero (before
the additional linear transformation which comes after the normalization). In prior certified training
works (Gowal et al., 2018; Zhang et al., 2020; Xu et al., 2020), they only used BN for some layers
in some models but not all layers, and they did not identify the benefit of BN in certified training.
We empirically demonstrate that fully adding BN to each affine layer can significantly mitigate the
imbalance ReLU issue and improve IBP training. We follow the BN implementation by Wong et al.
(2018); Xu et al. (2020) for certified training, where the shifting and scaling parameters are computed
from unperturbed data.

Note that our previous analysis on IBP initialization considers a network without BN. BN which
rescales the output of each layer can still affect the tightness of IBP bounds, and the effect of IBP
initialization may be weakened. This is a limitation of the proposed initialization which could possibly
be improved by considering the effect of BN in future work. Nevertheless, in Appendix A.4, we
empirically show that BN still does not cancel out the effect of IBP initialization.

3.3.3 Warmup Regularization

To further address the aforementioned two issues in Sec. 3.2, and to explicitly stabilize the tightness
of certified bounds and balance ReLU neuron states, we add two regularizers in the warmup stage of
IBP training, The regularizers are principled and motivated by the two issues we discover.

Bound tightness regularizer Similar to the goal of stabilizing certified bounds at initialization,
we also expect to keep the mean value of �i in the current batch, Ê(�i), stable along the warmup.
Note that Ê(�i) is empirically computed from a concrete batch and different from the expectation
E(�i) at initialization In the initialization, we aim to make E(�i) ⇡ E(�i�1). Here, we relax the
goal to making ⌧ Ê(�i)  Ê(�0) with a configurable tolerance value ⌧ (0<⌧1), to balance the
regularization power and the model capacity. We add the following regularization term:

Ltightness =
1

⌧m

mX

i=1

ReLU(⌧ � Ê(�0)

Ê(�i)
), (7)

where the training is penalized only when ⌧ Ê(�i) > Ê(�0) due to the clipping effect by ReLU(·).

ReLU activation states balancing regularizer To balance ReLU activation states, we expect to
balance the impact of active ReLU neurons and inactive neurons respectively. Here, we consider the
center of the interval bound, ci = (hi + hi)/2, and we model the impact as the contribution of each
type of neurons to the mean and variance of the whole layer, i.e., Ê(ci) and Var(ci) respectively.
Note that in the beginning almost all neurons are unstable, and gradually most neurons become either
active or inactive. Therefore, we add this regularizer only when there is at least one active neuron and
one inactive neuron, which generally holds true unless at the training start. We use ↵i to denote the
ratio between the contribution of the active neurons and inactive neurons respectively to Ê(ci), and
similarly we use �i to denote the ratio of contribution to Var(ci). They are computed as:

↵i =

P
j I(hi,j > 0)ci,j

�
P

j I(hi,j < 0)ci,j
, �i =

P
j I(hi,j > 0)(ci,j � Ê(ci))2

P
j I(hi,j < 0)(ci,j � Ê(ci))2

,

and in general ↵i,�i > 0. We regard that the activation states are roughly balanced if ↵i and �i are
close to 1. With the same aforementioned tolerance ⌧ , we expect to make ⌧ ↵i,�i1/⌧ , which
is equivalent to making min(↵i, 1/↵i) � ⌧, min(�i, 1/�i) � ⌧ . Thereby we design the following
regularization term:

Lrelu =
1

⌧m

mX

i=1

✓
ReLU(⌧ �min(↵i,

1

↵i
)) + ReLU(⌧ �min(�i,

1

�i
))

◆
. (8)
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3.4 Training Objectives

Certified robust training solves the robust optimization problem as Eq. (1), and when the inner
maximization is verifiably solved, the base training objective without regularization is:

Lrob = L(f✓,x, y, ✏), where L(f✓,x, y, ✏) � max
k�k1✏

L(f✓(x+ �), y), (9)

such that L(f✓,x, y, ✏) is an upper bound of L(f✓(x+ �), y) given by a robustness verifier, e.g., IBP.
In our proposed method, we first initialize the parameters with our IBP initialization, and then we
perform a short warmup with gradually increasing ✏ (0  ✏  ✏target), where ✏target stands for the target
perturbation radius that is usually equal to or slightly larger than the maximum perturbation radius
used for test. Our training objective L combines the ordinary objective Eq. (9) and the proposed
regularizers:

L = Lrob + �(Ltightness + Lrelu), (10)
where � is for balancing the regularizers and the original Lrob loss. For simplicity and efficiency,
we use IBP to compute the bounds in Lrob and the regularizers. During warmup, we also gradually
decrease � from �0 to 0 as ✏ grows, where � = �0(1�✏/✏target). After warmup, we only use L = Lrob
for final training with ✏target. Note that in the regularizers, the value of each ReLU(·) term has the
same range [0, ⌧ ], and thus in Eq. (10) we directly sum up them without weighing them for simplicity.
In test, we still only use pure IBP bounds without any other tighter method.

4 Experiments

In the experiments, we demonstrate the effectiveness of our proposed method for training certifiably
robust neural networks more efficiently while achieving better or comparable verified errors.

4.1 Settings

We adopt three datasets, MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky et al., 2009) and
TinyImageNet (Le & Yang, 2015). Following Xu et al. (2020), we consider three model architectures:
a 7-layer feedforward convolutional network (CNN-7), Wide-ResNet (Zagoruyko & Komodakis,
2016) and ResNeXt (Xie et al., 2017). According our discussion in Sec. 3.3.2, we also modify the
models to fully add a BN after every convolutional or fully-connected layer. For target perturbation
radii, we mainly use ✏target = 0.4 for MNIST, ✏target = 8/255 for CIFAR-10, and ✏target = 1/255
for TinyImageNet, following prior works, and we provide results on other perturbation radii in
Appendix B.3. We provide more implementation details in Appendix C. We mainly compare with
the following SOTA baselines on all the settings (note that in our main results, we also make these
baselines use models with full BNs unless otherwise indicated):

• Vanilla IBP (Gowal et al., 2018) with existing initialization and no warmup regularizer. We use the
default Xavier initialization in PyTorch, and we find that orthogonal initialization originally used
by Gowal et al. (2018) does not improve the performance here.

• CROWN-IBP (Zhang et al., 2020) with linear relaxation bounds by CROWN (Zhang et al., 2018)
during warmup. We use the generalized and accelerated version with loss fusion by Xu et al. (2020),
while the original version is O(K) (the number of classes) more costly. During the warmup, it
combines bounds by IBP and linear relaxation with weight ✏/✏target and (1� ✏/✏target) respectively.

4.2 Certified Robust Training with Short Warmup

We conduct certified robust training using relatively short warmup schedules to demonstrate the
effectiveness of our proposed techniques for fast training. We show the results in Table 1 for MNIST,
CIFAR-10 and Table 2 for TinyImageNet. Compared to Vanilla IBP and CROWN-IBP, our improved
IBP training consistently achieves lower standard errors and verified errors under same schedules
respectively, where BN is added to the models for all these three training methods. We find that
CROWN-IBP with loss fusion (Xu et al., 2020) tends to require a larger number of epochs to obtain
good results and it sometimes underperform Vanilla IBP under short schedules, but disabling loss
fusion can make it much more costly and unscalable. In terms of the best results, we achieve
verified error 10.82% on MNIST ✏target = 0.4, 65.03% on CIFAR-10 ✏target = 8/255, and 82.36% on
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Table 1: Standard and verified error rates (%) of models trained with different methods respectively
on MNIST (✏target=0.4) and CIFAR-10 (✏target=8/255). Schedule is represented as the total number
of epochs and the number of epochs in each of the three phases with ✏ = 0, increasing ✏ 2 (0, ✏target)
and final ✏ = ✏target respectively. We report the mean and standard deviation of the results on 5 repeats
for CNN-7 and 3 repeats for Wide-ResNet and ResNeXt respectively. All models include BN after
every layer (see Sec. 3.3.2). We also report the best run in “Ours (best)” since main results in prior
works did not have repeats. Literature results with the “†” mark are concurrent works.

Dataset Schedule Method CNN-7 (with full BN) Wide-ResNet (with full BN) ResNeXt (with full BN)
(epochs) Standard Verified Standard Verified Standard Verified

MNIST

70 (0+20+50)

Vanilla IBP 2.59 ± 0.06 12.03 ± 0.09 3.18 ± 0.05 12.93 ± 0.17 4.09 ± 0.46 15.36 ± 0.94
CROWN-IBP a 2.75 ± 0.12 12.04 ± 0.22 3.39 ± 0.05 13.10 ± 0.15 4.22 ± 0.53 15.24 ± 0.78

Ours 2.33 ± 0.08 11.03 ± 0.13 2.77 ± 0.02 11.76 ± 0.07 3.22 ± 0.08 13.43 ± 0.17
Ours (best) 2.20 10.82 2.75 11.69 3.17 13.20

Literature results Warmup Total (epochs) Standard Verified
Gowal et al. (2018) (2K+10K) steps 100 1.66 15.01 b

Zhang et al. (2020) (9 + 51) epochs 200 2.17 12.06
†IBP+ParamRamp (Lyu et al., 2021) e (9 + 51) epochs 200 2.16 10.88

†CROWN-IBP+ParamRamp (Lyu et al., 2021) e (9 + 51) epochs 200 2.36 10.61

CIFAR-10

70 (1+20+49)
Vanilla IBP 58.72 ± 0.27 69.88 ± 0.10 58.85 ± 0.22 69.77 ± 0.32 60.10 ± 0.27 71.19 ± 0.21

CROWN-IBP a 63.19 ± 0.36 71.29 ± 0.19 62.76 ± 0.23 71.82 ± 0.30 64.75 ± 0.50 72.50 ± 0.20
Ours 56.64 ± 0.48 68.81 ± 0.24 56.74 ± 0.40 68.71 ± 0.29 59.33 ± 0.86 70.62 ± 0.59

160 (1+80+79)

Vanilla IBP 53.80 ± 0.71 67.01 ± 0.29 54.31 ± 0.46 67.45 ± 0.21 55.23 ± 0.12 68.28 ± 0.15
CROWN-IBP a 58.76 ± 0.76 69.67 ± 0.38 60.39 ± 0.33 70.07 ± 0.42 61.08 ± 0.35 71.26 ± 0.11

Ours 51.72 ± 0.40 65.58 ± 0.32 51.95 ± 0.27 65.91 ± 0.14 53.68 ± 0.33 66.91 ± 0.40
Ours (best) 51.06 65.03 51.63 65.72 53.38 66.41

Literature results Warmup Total (epochs) Standard Verified
Gowal et al. (2018) (5K+50K) steps 3,200 50.51 68.44 c

Zhang et al. (2020) (320 + 1600) epochs 3,200 54.02 66.94
Balunovic & Vechev (2020) N/A d 800 48.3 72.5

Xu et al. (2020) (100 + 800) epochs 2,000 53.71 66.62
†IBP+ParamRamp (Lyu et al., 2021) e (320 + 1600) epochs 3,200 55.28 67.09

†CROWN-IBP+ParamRamp (Lyu et al., 2021) e (320 + 1600) epochs 3,200 51.94 65.08
†`1-dist net (other architecture) (Zhang et al., 2021) f N/A f 800 48.32 64.90

a CROWN-IBP here follows Xu et al. (2020) with loss fusion for efficiency, but we found it does not perform well
with a short training schedule under our settings and usually requires a longer schedule to achieve good results.

b Some test results in Gowal et al. (2018) are obtained with costly mixed integer programming (MIP) and linear
programming (LP); we take IBP verified errors for fair comparison following Zhang et al. (2020).

c Additional PGD adversarial training was involved for this result, according to Zhang et al. (2020).
d Balunovic & Vechev (2020) used a different training scheme and train the network layer by layer.
e Lyu et al. (2021) use IBP-based and CROWN-IBP-based training respectively with their parameterized activation,

and they use a tighter linear bound propagation method for testing instead of IBP.
f Zhang et al. (2021) use a very different model architecture with `1 distance neurons rather than traditional DNNs,

but still need a long schedule on both ✏ and `p norm where p is gradually increased until 1.

Table 2: Standard and verified error rates (%) on TinyImageNet (✏t = 1/255). The best result in
literature (Xu et al., 2020) has a standard error of 72.18% and verified error of 84.14% using 800
epochs. We achieve 82.36% verified error using only 80 epochs.

Model (with full BN) Schedule Vanilla IBP CROWN-IBP Ours
(epochs) Standard Verified Standard Verified Standard Verified

CNN-7 80 (1+10+69) 75.50 82.92 76.00 82.81 75.20 82.45
80 (1+20+59) 74.68 82.84 76.27 83.35 74.29 82.36

Wide-ResNet a 80 (1+10+69) 75.89 83.00 75.85 83.65 74.90 82.49
80 (1+20+59) 75.65 83.17 75.95 83.08 74.59 82.75

ResNeXt 80(1+10+69) 82.39 87.15 85.47 89.11 80.20 85.77
80 (1+20+59) 81.72 87.10 80.81 86.43 78.91 85.78

a The Wide-ResNet model used here is 5 times smaller than the one used in Xu et al. (2020) to save training
time. Additionally, we include BN after every layer in all models (see Section 3.3.2).

TinyImageNet ✏target = 1/255, which makes a notable improvement over literature SOTA (Gowal
et al., 2018; Xu et al., 2020) that used long training schedules. Compared to concurrent works (Lyu
et al., 2021; Zhang et al., 2021) which use different improvement techniques, we have comparable
verified errors, but they still need long training schedules. For reference, we tried Zhang et al. (2021)
which used a different architecture with “`1 distance neurons” rather than convolution-based DNNs.
On CIFAR-10 using 160 total epochs by reducing their training schedule proportionally, their verified
error is 68.44% which is much higher than ours. Overall, the results demonstrate that our improved
IBP training is effective for more efficient certified robust training with a shorter warmup.
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4.3 Comparison on Training Cost

Table 3: Comparison of estimated time cost (seconds), for CNN-7 on CIFAR-10. We report the total
time, and also the per-epoch time during three training phases of ✏ schedule for methods with a short
warmup. Literature results with the “†” mark are considered as concurrent.

Method Epochs Epoch time in each phase (s) Total time (s)
0 (0, ✏target) ✏target

Literature Results

IBP (Gowal et al., 2018) 3200
-

40496⇥ 4 a

CROWN-IBP (w/o loss fusion) (Zhang et al., 2020) 3200 91288⇥ 4 a

CROWN-IBP (Xu et al., 2020) 2000 52362⇥ 4 a

†IBP+ParamRamp (Lyu et al., 2021) 3200 - 40496⇥ 4⇥ 1.09 b

†CROWN-IBP+ParamRamp (Lyu et al., 2021) 3200 91288⇥ 4⇥ 1.51 b

Short Warmup
Vanilla IBP 160 30.0 54.8 54.8 8747.9

CROWN-IBP 160 30.0 78.5 54.8 10641.3
Ours 160 64.0 64.0 54.8 9512.3

a 4 GPUs were used and their models are slightly different (we add BN after every layer).
b The factors 1.09 and 1.51 are the overhead of their method reported by (Lyu et al., 2021) when combining
with IBP or CROWN-IBP.

We compare the training cost using a single NVIDIA RTX 2080 Ti GPU. For methods using short
warmup, we measure the per-epoch time cost during three different phases, namely ✏=0, 0<✏<✏target,
and ✏ = ✏target, and we then estimate the total training time according to the schedule. We use gradient
accumulation wherever needed to fit the training into the memory of a single GPU. We also compare
with total time cost with literature methods using long schedules. We show the results of CNN-7 for
CIFAR-10 in Table 3, and other settings in Appendix B.1. For ✏ = 0, Vanilla IBP and CROWN-IBP
use regular training while we compute IBP bounds for regularization and have a small overhead, but
this phase is extremely short (no more than 1 epoch here). For 0<✏<✏target, our method has a small
overhead on regularizers compared to Vanilla IBP, while CROWN-IBP using linear relaxation can be
more costly. For ✏ = ✏target, all the three methods use the same pure IBP.

For total time on CIFAR-10 with the same 160-epoch schedule, we only have a small overhead
of around 9%⇠ 13% compared to Vanilla IBP and the cost is still around 12%⇠ 23% lower than
CROWN-IBP, while we achieve lower verified errors than the baselines under such short warmup
schedules (see Table 1). And importantly, compared to literature using long training schedules, we
significantly reduce the number of training epochs and the total training time (e.g., Xu et al. (2020) is
around 20⇥ more costly than ours in total).

4.4 Ablation Study and Discussions

In this section, we empirically verify whether each part of our modification contributes to the
improvement and whether they behave as we expect. We conduct an ablation study and also plot the
curve of the regularization terms to reflect the bound tightness and ReLU balance during training.

We use CIFAR-10 with the currently best CNN-7 model under the “1 + 20” and “1 + 80” warmup
schedules as used in Table 1. We report the results in Table 4. The first three rows show that fully
adding BN improves the training when vanilla IBP is used, and it is important to add BN for the
fully-connected layer, which was missed in prior works. Based on the improved model structure,
adding both IBP initialization and warmup regularization further improves the performance, and
removing either of these parts leads to a degraded performance.

We notice that adding IBP initialization without warmup regularization may not improve the verified
error. A factor is that IBP initialization can reduce the variance of the outputs (see Appendix D.2),
and it may harm the training during the early warmup, when ✏ is small and certified training is close
to standard training. Also, the effect of initialization can be weakened when ✏ is much smaller than
✏target. But the warmup regularization can continue to tighten the bounds, and the IBP initialization
can benefit the optimization for the tightness regularizer. Nevertheless, IBP initialization is more
beneficial for deep models where the exploded bound issue is more severe (see Appendix B.8).

It is also important to fully add BN to make the warmup regularization work well. BN can normalize
the variance of the layers, so the tightness regularizer can more effectively tighten certified bounds
w.r.t. the stable variance; otherwise the the training may trivially optimize tightness regularizer by
making the magnitude of the network output small.
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Table 4: Standard error and verified error rates (%) in the ablation study with CNN-7 on CIFAR-10.
“BN-Conv” stands for BN after each convolutions, and “BN-FC” stands for BN after the hidden
fully-connected layer. “X” means that the component is enabled, and “⇥” means that the component
is disabled. We repeat each setting for 5 times and report the mean and standard deviation.

BN-Conv BN-FC IBP Initialization Ltightness Lrelu 70 (1+20+49) epochs 160 (1+80+79) epochs
Standard Verified Standard Verified

⇥ ⇥ ⇥ ⇥ ⇥ 59.33±0.70 70.18±0.18 57.08±0.29 69.43±0.28
X ⇥ ⇥ ⇥ ⇥ 61.95±0.80 71.12±0.42 57.21±0.65 69.21±0.30
X X ⇥ ⇥ ⇥ 58.72±0.27 69.88±0.10 53.80±0.71 67.01±0.29
X X X ⇥ ⇥ 58.93±0.29 69.60±0.35 54.59±0.64 67.63±0.34
X X X X ⇥ 56.76±0.38 68.96±0.49 53.08±0.26 66.74±0.20
X X X ⇥ X 58.49±0.42 69.38±0.23 53.29±0.76 66.46±0.44
X X ⇥ X X 58.79±0.40 69.29±0.28 52.45±0.34 66.34±0.38
X X X X X 56.64±0.48 68.81±0.24 51.72±0.40 65.58±0.32

Figure 3: Ltightness during warmup. Ltightness is
optimized only for “regularizers only” and “ini-
tialization & regularizers” setting, and BN is
fully added to every layer except for “Vanilla
IBP (w/o BN)”.

Figure 4: Lrelu during warmup, under same set-
ting as in Figure 3.

Finally, we also plot the training curves of the regularizers to confirm if the regularizers are effectively
optimized, so that the bound tightness and ReLU balance are indeed improved. Note that for the
settings without regularizers, we only plot but not optimize the regularizers. In Figure 3, we plot
Ltightness. By using the regularization in training, Ltightness descends faster, and further adding the IBP
initialization leads to even faster descent during the early epochs. In Figure 4, we show that the Lrelu
is indeed under control when we optimize it, while Lrelu could gradually grow larger when the it is
not added in training. Notably, when BN is removed and the regularization term is not optimized
(Vanilla IBP (w/o BN)), Lrelu becomes extremely large in later epochs, and Ltightness is also large in
the end, which suggests that the training is hampered.

5 Conclusion

In this paper, we identify two issues in existing certified robust training methods regarding exploded
bounds and imbalanced ReLU neuron states. To address these issues based on IBP training, we
propose an IBP initialization and warmup regularization, and we also identify the benefit of fully
adding BN. With our improvements, we demonstrate that we are able to achieve better verified
errors using much shorter warmup and training schedules compared to literatures under the same
convolution-based network architecture, for fast certified robust training.

10



Funding Disclosure

This work is supported in part by NSF under IIS-1901527, IIS-2008173, IIS-2048280 and by Army
Research Laboratory under agreement number W911NF-20-2-0158.

Additional revenues related to this work: Zhouxing Shi and Yihan Wang were interns at JD AI
Research when this work was partly done; Cho-Jui Hsieh has part-time employment at Amazon.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng,
X. Tensorflow: Large-scale machine learning on heterogeneous distributed systems, 2016.

Arpit, D., Campos, V., and Bengio, Y. How to initialize your network? robust initialization for
weightnorm &amp; resnets. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,
Fox, E., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
e520f70ac3930490458892665cda6620-Paper.pdf.

Balunovic, M. and Vechev, M. Adversarial training and provable defenses: Bridging the gap. In
International Conference on Learning Representations, 2020.

Bhattacharya, A. Learnable weight initialization in neural networks. 2020.

Blum, A., Dick, T., Manoj, N., and Zhang, H. Random smoothing might be unable to certify `1
robustness for high-dimensional images. Journal of Machine Learning Research, 21:1–21, 2020.

Bunel, R., Turkaslan, I., Torr, P. H. S., Kohli, P., and Kumar, M. P. Piecewise linear neural network
verification: A comparative study. CoRR, abs/1711.00455, 2017. URL http://arxiv.org/abs/
1711.00455.

Carlini, N. and Wagner, D. Adversarial examples are not easily detected: Bypassing ten detection
methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp.
3–14. ACM, 2017.

Chen, H., Zhang, H., Chen, P.-Y., Yi, J., and Hsieh, C.-J. Attacking visual language grounding with
adversarial examples: A case study on neural image captioning. arXiv preprint arXiv:1712.02051,
2017.

Choi, J.-H., Zhang, H., Kim, J.-H., Hsieh, C.-J., and Lee, J.-S. Evaluating robustness of deep
image super-resolution against adversarial attacks. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 303–311, 2019.

Cohen, J. M., Rosenfeld, E., and Kolter, J. Z. Certified adversarial robustness via randomized
smoothing. In ICML, 2019.

Dvijotham, K., Gowal, S., Stanforth, R., Arandjelovic, R., O’Donoghue, B., Uesato, J., and Kohli, P.
Training verified learners with learned verifiers. arXiv preprint arXiv:1805.10265, 2018.

Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Teh, Y. W. and Titterington, M. (eds.), Proceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pp.
249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. JMLR Workshop and Conference
Proceedings. URL http://proceedings.mlr.press/v9/glorot10a.html.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial examples. In
ICLR, 2015.

11



Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Mann, T., and Kohli, P. On the
effectiveness of interval bound propagation for training verifiably robust models. arXiv preprint

arXiv:1810.12715, 2018.

Hanin, B. and Rolnick, D. How to start training: The effect of initialization and architec-
ture. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), December 2015a.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), December 2015b.

Huang, X. S., Perez, F., Ba, J., and Volkovs, M. Improving transformer optimization through better
initialization. In III, H. D. and Singh, A. (eds.), Proceedings of the 37th International Conference

on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 4475–4483.
PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/huang20f.html.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. PMLR,
2015.
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