
Supplementary Material to Deep Contextual Video
Compression

Jiahao Li, Bin Li, Yan Lu
Microsoft Research Asia

{li.jiahao, libin, yanlu}@microsoft.com

This document provides the supplementary material to our proposed deep contextual video com-
pression (DCVC), including detailed network structures, training strategies, as well as additional
experimental results to demonstrate the effectiveness of the proposed DCVC.

1 Network Architecture
5x

5 
C

o
nv

, ↓
2

3x
3 

R
es

B
lo

ck

G
D

N

5x
5 

C
o

nv
, ↓

2

3x
3 

R
es

B
lo

ck

G
D

N

5x
5 

C
o

nv
, ↓

2

G
D

N

5x
5 

C
o

nv
, ↓

2

3x
3 

C
o

nv
, ↑

2

3x
3 

R
es

B
lo

ck

IG
D

N

3x
3 

C
o

nv
, ↑

2

3x
3 

R
es

B
lo

ck

IG
D

N

3x
3 

C
o

nv
, ↑

2

IG
D

N

3x
3 

C
o

nv
, ↑

2

3x
3 

R
es

B
lo

ck

3x
3 

R
es

B
lo

ck

3x
3 

C
o

nv

3x
3 

C
o

nv

Input frame 𝑥𝑡

Context ҧ𝑥𝑡

Decoded frame ො𝑥𝑡

3

64

643

96

96

64

64

𝑦𝑡

ො𝑦𝑡

64

Contextual encoder

Contextual decoder

Figure 1: Network structure of contextual encoder and decoder. The above part is the encoder and
the below part is the decoder. For simplification, the entropy model is omitted. GDN is generalized
divisive normalization [1] and IGDN is the inverse GDN. ResBlock represents plain residual block.
The numbers represent channel dimensions.

Feature extraction net

3
x3

 C
o

n
v

3
x3

 R
e

sB
lo

ck

3 64 64

Context refinement net

3
x3

 C
o

n
v

3
x3

 R
e

sB
lo

ck

64 64 64
WarpDecoded frame ො𝑥𝑡−1 Context ҧ𝑥𝑡

�ු�𝑡−1 ሷ𝑥𝑡

Motion vector ෝ𝑚𝑡

Figure 2: Network structure of feature extraction network and context refinement network.

Contextual encoder and decoder The structures of our contextual encoder and decoder are illus-
trated in Fig. 1. For the contextual encoder, the input is the concatenation of the current frame xt
and context x̄t. The contextual encoder encodes the concatenated data into 16x down-sampled latent
codes with dimension 96. For the contextual decoder, we first up-sample the latent codes into the
feature with original resolution. Then the up-sampled feature concatenated with context x̄t is used to
generate the final reconstruction frame x̂t.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



5x
5 

Co
nv

, ↓
2

G
D

N

5x
5 

Co
nv

, ↓
2

G
D

N

5x
5 

Co
nv

, ↓
2

G
D

N

5x
5 

Co
nv

, ↓
2

Context ҧ𝑥𝑡
64 9664

Temporal prior
64

Figure 3: Network structure of temporal prior encoder network, same with the commonly used
encoder in image compression [2] except the channel dimensions.

Table 1: The training loss used in progressive training

Step Loss Calculation
1 Lme λ ·D(xt, x̃t) +R(ĝt) +R(ŝt)

2 Lreconstruction λ ·D(xt, x̂t)

3 Lcontextual_coding λ ·D(xt, x̂t) +R(ŷt) +R(ẑt)

4 Lall λ ·D(xt, x̂t) +R(ŷt) +R(ẑt) +R(ĝt) +R(ŝt)

Feature extraction and context refinement Fig. 2 shows the structures of our feature extraction
network and context refinement network. Both of them contains a convolution layer and a residual
block. Consider the complexity, we do not use deeper network at present.

Motion vector generation The motion vector (MV) generation part contains the motion estimation,
MV encoder, and decoder. For motion estimation, we use optical flow estimation network [3] to
generate MV, like DVCPro [4]. The network structures of MV encoder and decoder (decoder also
contains a MV refine network) are same with those in DVCPro [4].

Entropy model In the entropy model for compressing the quantized latent codes ŷt, the temporal
prior encoder network is borrowed from the encoder in image compression [2] and consists of plain
convolution layers (stride is set as 2 for down-sampling) and GDN [1], as shown in Fig. 3. The hyper
prior encoder/decoder, auto regressive network, and prior fusion network follow the entropy model in
image compression [2]. In addition, the MV latent codes also have corresponding entropy model,
where we only use auto regressive model and hyper prior model. There is no temporal prior encoder
in the the entropy model for MV latent codes.

2 Progressive training

The training loss consists of two metrics, i.e. the distortion D and the bitrate cost R. In our method,
the bitstream contains four parts, namely ŷt, ĝt, ẑt, and ŝt. ŷt and ĝt are the quantized latent codes of
the current frame and MV, respectively. ẑt and ŝt are their corresponding hyper priors. Thus, the total
rate-distortion loss Lall should contain the bitrate costs of these four parts. The calculation manner
of Lall is shown in Table 1.

While we already use the pre-trained optical flow estimation network [3] as the initialization of motion
estimation, the training may be still unstable if we directly use Lall at the initial stage. Sometimes,
the MV bitrate cost is very small but the total rate-distortion loss is large. This is because that the
model thinks directly learning to generate context without MEMC is easier. Inspired by the existing
work [5] where the progressive training strategy is used, we customize a progressive training strategy
for our framework. The training is divided into four steps and the training loss for each step is shown
in Table 1:

Step 1. Warm up the MV generation part including motion estimation, MV encoder and decoder.
The training loss is Lme. In Table 1, x̃t is the warped frame in pixel domain, namely using m̂t to do
warping operation on x̂t−1.

Step 2. Train other modules except the MV generation part. At this step, the parameters of MV
generation part are frozen. The training loss is Lreconstruction. It means that we only pursue high
reconstruction quality. This step is helpful for model to generate context which can better reconstruct
the high frequency contents.

2



Step 3. Based on previous step, the bit cost is considered, and the training loss becomes
Lcontextual_coding. This step can be regarded as whole framework training with only freezing
the MV generation part.

Step 4. Reopen the MV generation part and perform the end-to-end training of whole framework
according to Lall.

The proposed progressive training strategy can stabilize the model training. For the training time,
currently we need about one week on single Tesla V100 GPU. We will develop more advanced
training technology to shorten the training time in the future. In addition, it is noted that we also
apply the progressive strategy for DVCPro (it does not have released models and we retrain it). For
DVC, we just use the released models [6].

3 Details of experimental settings

Dataset The training dataset comes from Vimeo-90k septuplet dataset [7] (MIT License1). The
testing data includes MCL-JCV dataset [8] (copyright can be found from this link 2), UVG dataset[9]
(BY-NC license3), and HEVC standard test videos (more details can be found in [10]). These datasets
are commonly-used for video compression research and can be downloaded from Internet. The
consents of these datasets are public. In addition, we have manually checked that these datasets do
not contain personally identifiable information or offensive content.

Intra frame coding The intra frame coding in our framework directly uses the existing deep image
compression models, where the model parameters are provided by CompressAI [11] (Apache License
2.0 4). We use cheng2020-anchor [12] for MSE target and use hyperprior [13] for MS-SSIM target,
as they are the best models provided by CompressAI.

In DCVC, we train 4 models with different λ s {MSE: 256, 512, 1024, 2048; MS-SSIM: 8, 16, 32,
64}. The models with quality index 3, 4, 5, 6 (trained with 4 different λ s) in CompressAI are used for
the corresponding intra frame coding. For example, the model with quality index 6 in CompressAI is
used for our DCVC model with λ 2048 (for MSE target) or 64 (for MS-SSIM target).

FFMPEG settings We test the x264 and x265 encoders from FFMPEG[14]. The settings of these
two encoders are same with [4] except two options. One is that we use the veryslow preset rather than
veryfast preset. Veryslow preset can achieve higher compression ratio than veryfast preset. Another
is that we use the constant quantization parameter setting rather than constant rate factor setting,
where constant quantization parameter setting can avoid the influence of rate control. The detailed
configurations of x264 and x265 are

• x264: ffmpeg -pix fmt yuv420p -s WxH -r FR -i Video.yuv -vframes N -c:v libx264 -preset
veryslow -tune zerolatency -qp QP -g GOP -bf 2 -b strategy 0 -sc threshold 0 output.mkv

• x265: ffmpeg -pix fmt yuv420p -s WxH -r FR -i Video.yuv -vframes N -c:v libx265 -preset
veryslow -tune zerolatency -x265-params ”qp=QP:keyint=GOP” output.mkv

W, H, FR, N, QP and GOP represent the width, height, frame rate, the number of encoded frames,
quantization parameter, and group of pictures, respectively.

GOP size and tested frame number We follow [4] and set the GOP size as 10 for HEVC test videos
and 12 for non-HEVC test videos, respectively. The tested frame number of HEVC videos is 100 (10
GOPs), same with [4]. As there is no description about the tested frame number for non-HEVC test
videos in [4], we test 120 frames for MCL-JCV and UVG datasets, which has 10 GOPs, same with
HEVC test videos.

4 Test on larger GOP size

In the paper, we follow [4] and set the GOP size as 10 for HEVC test videos and 12 for non-HEVC test
video, denoted as default GOP setting. Actually, this GOP setting is relatively small when compared

1https://github.com/anchen1011/toflow/blob/master/LICENSE
2http://mcl.usc.edu/mcl-jcv-dataset/
3https://creativecommons.org/licenses/by-nc/3.0/deed.en_US
4https://github.com/InterDigitalInc/CompressAI/blob/master/LICENSE

3



HEVC 
Class B

HEVC 
Class C

HEVC 
Class D

HEVC 
Class E

UVGMCL-JCV

14.7%

17.3%
16.2%

10.5% 10.4%

24.6%

20.6%

25.0%
24.0%

14.2%
15.5%

31.3%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Our DCVC (default GOP) vs. DVCPro (default GOP)
Our DCVC (3x default GOP) vs. DVCPro (3x default GOP)

Figure 4: Bitrate saving under different GOP settings. Default GOP setting is {HEVC test videos:
10, non-HEVC test videos: 12}, same with [4]. 3x default GOP setting is {HEVC test videos: 30,
non-HEVC test videos: 36}. The tested frame number under two GOP settings is {HEVC test videos:
30, non-HEVC test videos: 36}. We can find that the bitrate saving of our DCVC is larger under
larger GOP size.

31.8
30.6

34.1

26.6

33.9

25.2

0

50000

100000

150000

200000

250000

300000

350000

400000

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

Frame number

P
SN

R
(d

B
)

B
it

 C
o

st

PNSR of our DCVC

Bit cost of our DCVC

PNSR of DVCPro

Bit cost of DVCPro

Figure 5: Example of PSNR and bit cost comparison between our DCVC and DVCPro. The tested
video is BasketballDrive from HEVC Class B dataset. The GOP size is 30, and tested frame number
is 60. From this example, we can find that our DCVC can efficiently alleviate the error-propagation
problem. DCVC can use fewer bits while achieving much better reconstruction quality.

that in practical scenarios. For this reason, we conduct the experiments under larger GOP size. The
bitrate saving comparison is shown in Fig. 4. In this comparison, we increase the GOP size to 3 times
of default GOP setting, i.e. 30 for HEVC test videos and 36 for non-HEVC test videos. From this
comparison, we can find that, when compared with DVCPro, the improvement of our DCVC is much
larger under 3x default GOP size. It shows that our conditional coding-based framework can better
deal with the error-propagation problem. Under large GOP size, residue coding still assumes that
the inter frame prediction is always most efficient even when the quality of reference frame is bad,
then suffers from the large prediction error. By contrast, our conditional coding does not need to
pursue the strict equality between prediction frame and the current frame, and enables the adaptability
between learning temporal correlation and learning spatial correlation. Thus, the advantage of our
DCVC will be more obvious when the GOP size increases. In addition, the bitrate saving increase is
larger for high resolution videos. For example, for the 240P dataset HEVC Class D, the bitrate saving
is changed from 10.4% to 15.5%. By contrast, for the 1080P dataset HEVC Class B, the bitrate
saving is changed from 16.2% to 24.0%. It is because that the context in feature domain is helpful for
reconstructing the high frequency contents, then the reconstruction quality can be improved and it is
conducive to alleviating error-propagation problem.

4



HEVC 
Class B

HEVC 
Class C

HEVC 
Class D

HEVC 
Class E

UVG
0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%
16-Dim 64-Dim 256-Dim

MCL-JCV

Figure 6: Bitrate saving when using different channel dimensions for context. The anchor is 3-Dim
(dimension is 3) model.

HEVC Class B

Figure 7: Performance comparison when MEMC is disabled. DCVC (context in pixel domain) refers
the model using temporal prior and concatenating RGB prediction.

An example of PSNR and bit cost comparison between our DCVC and DVCPro is shown in Fig.
5. In the example, the PSNR of DVCPro decreases from 34.1 dB to 26.6 dB in the first GOP. By
contrast, our DCVC only decreases to 31.8 dB.

5 Ablation study

Channel dimension of context In DCVC, the channel dimension of context is set as 64 in the
implementation. We also conduct the experiment when different dimensions are used. The cases (3,
16, 256-Dim) are also tested. The corresponding bitrate saving comparison is shown in Fig. 6, where
the anchor is the 3-Dim model. From this figure, we can observe that the 16-Dim model can improve
the performance in some degree, and the 64-Dim model can further boost the performance in a larger
degree for most datasets. However, the improvement brought by 256-Dim model is relatively small.
The HEVC Class E even has performance loss. The reason may be that the model training is not
stable if there is no extra supervision for training the context with so high dimensions and in original
resolution. For this reason, we adopt the 64-Dim model at present.

Motion estimation and motion compensation (MEMC) In our DCVC, we use MEMC to guide
the model where to extract context. Actually we are also very interested in the case without MEMC.

5



Original DVCPro Our DCVC

0.012/38.9 0.011/43.0

0.032/25.6 0.031/33.7

0.020/34.0 0.019/36.2

0.050/26.2 0.047/28.6

BPP/PSNR

BPP/PSNR

BPP/PSNR

BPP/PSNR

Figure 8: Examples of visual comparison. The first column shows the original full frames. The
second column shows the cropped patch in original frame. The contents in third and fourth columns
are reconstructed by DVCPro and our DCVC, respectively.

For these reason, we test the DCVC and DVCPro where the MEMC is removed (directly use the
previous decoded frame as the predicted frame in DVCPro and the condition in DCVC). They are
denoted as DVCPro (w/o MEMC) and DCVC (w/o MEMC), respectively. As DCVC (w/o MEMC)
uses the previous decoded frame as condition, we use the model DCVC (context in pixel domain,
i.e. temporal prior + concatenating RGB prediction) for fair comparison. Fig. 7 shows the results.
From this figure, we can find that the performance has a large drop for both of DVCPro and DCVC if
MEMC is removed. However, DCVC (w/o MEMC) is still better than DVCPro (w/o MEMC), and
the performance gap is even larger. The DCVC (context in pixel domain) has 12.7% improvement
over DVCPro. By contrast, DCVC (w/o MEMC) can achieve 22.1% bitrate saving compared with
DVCPro (w/o MEMC). These results show that the MEMC is helpful for both frame residue coding
and conditional coding-based frameworks. When MEMC is disable, the improvement of conditional
coding can be larger.

While we currently use MEMC to learn the context, there still exists great potential in designing a
better learning manner. In the future, we will continue the investigation. For example, transformer
[15] can be used to explore the global correlations and generate the context with larger receptive field.

6 Visual comparison

We also conduct the visual comparison between the previous SOTA DVCPro and our DCVC. Several
examples are shown in Fig. 8. From these examples, we can find that our DCVC can achieve much
higher reconstruction quality without increasing the bitrate cost. For instance, in the example shown
in the second row in Fig. 8, we can find that the image reconstructed by DVCPro has obvious color
distortion and unexpected textures. By contrast, our DCVC can achieve much better results. In

6



the example shown in the fourth row, our DCVC also produces much clearer stripe texture in the
basketball clothes.

References
[1] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image compression,” arXiv preprint

arXiv:1611.01704, 2017.

[2] D. Minnen, J. Ballé, and G. Toderici, “Joint autoregressive and hierarchical priors for learned image
compression,” arXiv preprint arXiv:1809.02736, 2018.

[3] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial pyramid network,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 4161–4170, 2017.

[4] G. Lu, X. Zhang, W. Ouyang, L. Chen, Z. Gao, and D. Xu, “An end-to-end learning framework for video
compression,” IEEE transactions on pattern analysis and machine intelligence, 2020.

[5] J. Lin, D. Liu, H. Li, and F. Wu, “M-LVC: multiple frames prediction for learned video compression,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

[6] “PyTorchVideoCompression.” https://github.com/ZhihaoHu/PyTorchVideoCompression. On-
line; accessed 12 April 2021.

[7] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video enhancement with task-oriented flow,”
International Journal of Computer Vision (IJCV), vol. 127, no. 8, pp. 1106–1125, 2019.

[8] H. Wang, W. Gan, S. Hu, J. Y. Lin, L. Jin, L. Song, P. Wang, I. Katsavounidis, A. Aaron, and C.-C. J.
Kuo, “MCL-JCV: a JND-based H. 264/AVC video quality assessment dataset,” in 2016 IEEE International
Conference on Image Processing (ICIP), pp. 1509–1513, IEEE, 2016.

[9] “Ultra video group test sequences.” http://ultravideo.cs.tut.fi. Online; accessed 12 April 2021.

[10] F. Bossen et al., “Common test conditions and software reference configurations,” in JCTVC-L1100,
vol. 12, 2013.

[11] J. Bégaint, F. Racapé, S. Feltman, and A. Pushparaja, “CompressAI: a PyTorch library and evaluation
platform for end-to-end compression research,” arXiv preprint arXiv:2011.03029, 2020.

[12] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned image compression with discretized gaussian
mixture likelihoods and attention modules,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7939–7948, 2020.

[13] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image compression with a scale
hyperprior,” 6th International Conference on Learning Representations, ICLR, 2018.

[14] “Ffmpeg.” https://www.ffmpeg.org/. Online; accessed 12 April 2021.

[15] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, “Transformers in vision: A survey,”
arXiv preprint arXiv:2101.01169, 2021.

7

https://github.com/ZhihaoHu/PyTorchVideoCompression
http://ultravideo.cs.tut.fi
https://www.ffmpeg.org/

	Network Architecture
	Progressive training
	Details of experimental settings
	Test on larger GOP size
	Ablation study
	Visual comparison

