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Abstract

Communication cost is one major bottleneck for the scalability for distributed
learning. One approach to reduce the communication cost is to compress the
gradient during communication. However, directly compressing the gradient decel-
erates the convergence speed, and the resulting algorithm may diverge for biased
compression. Recent work addressed this problem for stochastic gradient descent
by adding back the compression error from the previous step. This idea was further
extended to one class of variance reduced algorithms, where the variance of the
stochastic gradient is reduced by taking a moving average over all history gradients.
However, our analysis shows that just adding the previous step’s compression error,
as done in existing work, does not fully compensate the compression error. So, we
propose ErrorCompensatedX, which uses the compression error from the previous
two steps. We show that ErrorCompensatedX can achieve the same asymptotic
convergence rate with the training without compression. Moreover, we provide a
unified theoretical analysis framework for this class of variance reduced algorithms,
with or without error compensation.

1 Introduction

Data compression reduces the communication volume and alleviates the communication overhead
in distributed learning. E.g., Alistarh et al. (2017) compress the gradient being communicated
using quantization and find that reducing half of the communication size does not degrade the
convergence speed. However, the convergence speed would be slower if we further reduce the
communication size, and it requires the compression to be unbiased (Alistarh et al., 2017; Tang
et al., 2019). Alternatively, recent work (Stich et al., 2018a) shows that compression with error
compensation, which adds back the compression error to the next round of compression, using only
3% of the original communication volume does not degrade the convergence speed, and it works for
both biased and unbiased compression operators.

Despite the promising performance of error compensation on stochastic gradient descent (SGD),
SGD admits a slow convergence speed if the stochastic gradient has a large variance. Variance
reduction techniques, such as Momentum SGD (Zhang et al., 2015), ROOT-SGD (Li et al., 2020),
STORM (Cutkosky & Mehta, 2020), and IGT (Arnold et al., 2019), are developed, and they admit
increased convergence speeds either theoretically or empirically. We found that directly applying
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error compensation to those variance reduced algorithms is not optimal, and their convergence speeds
degrade. So a natural question arises: what is the best compression method for variance reduced
algorithms? In this paper, we answer this question and propose ErrorCompensatedX, a general
method for error compensation, and show that it admits faster convergence speeds than previous error
compensation methods. The contributions of this paper can be summarized as follows:

• We propose a novel error compensation algorithm for variance reduced algorithms and SGD.
Our algorithm admits a faster convergence rate compared to previous methods (Zheng et al.,
2019a; Stich et al., 2018b) by fully compensating all error history.

• We provide a general theoretical analysis framework to analyze error compensated algo-
rithms. More specifically, we decompose the convergence rate into the sum of two terms

1

T

T∑
t=1

‖∇f(xt)‖2 ≤Runcompressed +Rε,

whereRuncompressed depends only on the convergence rate of the original algorithm without
compression andRε is depends only on the magnitude of the compression error ε. It means
that we can easily attain the convergence rate for any compressed algorithm in the form
of (2). To the best of our knowledge, this is the first general result for error compensation.

2 Related Works

Variance Reduced Optimization. When the variance of the stochastic gradient is large, training
using SGD becomes unstable, and it usually renders a slow convergence speed. Many studies try to
reduce the variance of the stochastic gradient. For example, Momentum SGD (Zhang et al., 2015)
takes a moving average over all previous stochastic gradients. However, its expected momentum does
not equal to the full gradient. Recent studies take one step further by applying bias correction to the
momentum. One approach is to compute the gradient at xt and xt−1 using the same data sample
ξt (Huang et al., 2020; Yuan et al., 2020; Li et al., 2020), while another direction is to compute the
gradient at the extrapolated point of xt and xt−1 (Arnold et al., 2019; Cutkosky & Mehta, 2020).
When the number of data samples is finite, some approaches compute the full gradient once in a while
or memorize the latest stochastic gradient of each data sample and use its average to approximate the
full gradient; examples include SVRG (Johnson & Zhang, 2013), SAGA (Defazio et al., 2014), and
SARAH (Nguyen et al., 2017).

Communication Efficient Optimization. One major bottleneck of distributed learning is the
communication cost. Methods, such as data compression, decentralized training, local SGD, and
federated learning, were proposed to reduce the communication cost. Data compression is an
important approach that can be combined with other approaches, and it is critical for communication
networks with limited bandwidth. It was firstly proposed in Seide et al. (2014), where authors
proposed 1-bit SGD, which uses one bit to represent each element in the gradient but still achieves
almost the same convergence speed with the uncompressed one. In Stich et al. (2018b), authors
proposed a general algorithm for error compensated compression—MEM-SGD with theoretical
analysis. They found that MEM-SGD has the same asymptotic convergence rate with uncompressed
SGD, and more importantly, is robust to both biased and unbiased compression operators. This
method can be combined with decentralized training (Vogels et al., 2020), local SGD (Xie et al.,
2020), and accelerated algorithms (Gorbunov et al., 2020). Due to its promising efficiency, error
compensation has been applied into many related area (Zheng et al., 2019b; Phuong & Phong, 2020;
Yu et al., 2019; Shi et al., 2019; Ivkin et al., 2019; Sun et al., 2019; Basu et al., 2019; Vogels et al.,
2019) to reduce the communication cost.

Another direction to minimize the side-effect of compression is to compress the difference between
the current gradient and momentum. Previous work (Mishchenko et al., 2019; Liu et al., 2020) proved
that this strategy achieves linear convergence when the loss function is strongly convex. However,
the linear convergence requires either the full deterministic gradient, or using SVRG (Horváth et al.,
2019) to control the variance when for finite sum the loss function. Therefore how they perform with
general variance reduced stochastic algorithms is still an open problem.
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3 Algorithm Design

3.1 Background

The underlying problem we consider can be posed as the following distributed optimization problem:

min
x

f(x) =
1

n

n∑
i=1

Eξ(i)∼DiF
(
x; ξ(i)

)
︸ ︷︷ ︸

:=fi(x)

, (1)

where n is the number of workers, Di is the local data distribution for worker i (in other words, we
do not assume that all nodes can access the same data set), and F (x; ξ(i)) is the local loss function of
model x given data ξ(i) for worker i.

One widely used method for solving (1) is SGD, which updates the model using xt+1 = xt − γgt,
where xt is the model at the t-th iteration, γ is the learning rate and gt is the averaged stochastic
gradients. However, SGD suffers from the problem of large stochastic gradient variance, and many
variance reduced algorithms are developed. In our paper, we focus on the following variance reduced
algorithms: Momentum SGD, STROM, ROOT-SGD1, and IGT, because they all construct the
estimator using a moving average of previous stochastic gradients, which can be summarized as

vt =(1− αt)vt−1 + αtA (xt; ξt), xt+1 = xt − γvt, (2)

where vt is the gradient estimator, A (xt; ξt) is a variable that depends on the history models xs (for
all s ≤ t) and data sample ξt, and αt is a scalar. Notice that A (xt; ξt) and αt are designed differently
for different algorithms. We list the different choices of those parameters for each algorithm in
Table 1.

αt A (xt; ξt)
SGD 1 ∇F (xt; ξt)

Momentum SGD α ∇F (xt; ξt)
STORM α 1

αt
(∇F (xt; ξt)− (1− αt)∇F (xt−1; ξt))

ROOT-SGD 1/t 1
αt

(∇F (xt; ξt)− (1− αt)∇F (xt−1; ξt))

IGT α ∇F
(
xt + 1−αt

αt
(xt − xt−1); ξt

)
Table 1: Different choices of (αt,A (xt; ξt)) for each variance reduced algorithm.

Recent work suggests that instead of compressing the gradient directly (Alistarh et al., 2017), using
error compensation (Stich et al., 2018b) could potentially improve the convergence speed. The idea
of error compensation is quite straightforward: adding back the compression error from the previous
step to compensate the side-effect of compression. Denoting Cω[·]2 as the compressing operator, the
updating rule of this method follows

xt+1 = xt − γCω[gt + δt−1], δt = gt + δt−1 − Cω[gt + δt−1],

where δt is the compression error at the t-th step. Moreover, recent works (Chen et al., 2020; Wu
et al., 2018) find that adding a low-pass filter to the history compression error could be helpful
for stabilizing the training and further improving the training speed. Their updating rule can be
summarized as

et =(1− β)et−1 + βδt−1, xt+1 = xt − γCω[gt + et], δt = gt + et − Cω[gt + et],

where β is a hyper-parameter of the low-pass filter.

Notice that even error compensated compression has been proved to be very powerful for accelerating
the compressed training, it was only studied for SGD, which is a special case of (2) when αt = 1.
For the case where αt < 1, previous work (Zheng et al., 2019a; Zhao et al., 2019; Wang et al., 2020)
adapted the same idea from Stich et al. (2018b), which directly compresses the gradient estimator

1STORM (for non-convex loss function) and ROOT-SGD (strongly-convex loss function) use the same
updating rule except αt = 1/T

2
3 for STORM and αt = 1/T for ROOT-SGD.

2Here ω denotes the randomness of the compression operator.
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vt with the compression error from the previous step being compensated (we refer this method as
Single Compensation). However, we find that when αt is very small (O (1/T ) for ROOT-SGD and
O
(

1/T
2
3

)
for STORM, where T is the total training iterations), Single Compensation would be

much slower than the uncompressed one, as shown in Figure 1.

(a) (b)

Figure 1: Convergence speed comparison on linear regression for STORM and IGT with different
compression techniques. The x-axis is the training step number, and the y-axis is the norm of the
full gradient. The batch size equals 1, αt = 1/t, and we use 1-bit compression as described in Tang
et al. (2019). Single Compensation means only compensate the compression error from the last step,
and we can see that it admits a much slower convergence speed than the uncompressed one when
αt is very small. However, our proposed ErrorCompensatedX has a similar convergence rate as the
uncompressed one.

3.2 Proposed ErrorCompensatedX

In this section, we provide the intuition behind our proposed method ErrorCompensatedX. For
simplicity, we consider the general update in (2) with αt = α. Let v−1 = 0, then the uncompressed
algorithm has the update

xT = x0 − γ
T−1∑
t=0

t∑
s=0

α(1− α)t−sA (xs; ξs).

Note A (xs; ξs) is transferred from worker nodes to the server (here we aggregate the data from all
workers). If the compression is applied on A (xs; ξs), then we have the update

xT =x0 − γ
T−1∑
t=0

t∑
s=0

α(1− α)t−s(A (xs; ξs)− δs)

=x0 − γ
T−1∑
t=0

t∑
s=0

α(1− α)t−sA (xs; ξs) + γ

T−1∑
s=0

(1− (1− α)T−s)δs.

Note that the sequence {xs}Ts=0 is different from that of the uncompressed one. Here δs is the
compression error, and the compressed data A (xs; ξs)− δs is transferred to the server. With error
compensation and additional δ−1 = 0, we have

xT =x0 − γ
T−1∑
t=0

t∑
s=0

α(1− α)t−s(A (xs; ξs) + δs−1 − δs)

=x0 − γ
T−1∑
t=0

t∑
s=0

α(1− α)t−sA (xs; ξs) + γ

T−1∑
s=0

α(1− α)T−1−sδs.

Here δs is the compression error that occurs while compressing A (xs; ξs) + δs−1. When α = 1, the
last term disappears, and the standard SGD case has been analyzed in Tang et al. (2019); Stich et al.
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(2018a). In this paper, we focus on the case where the last term does not disappear, i.e., α ∈ (0, 1).
Given δ−1 = δ−2 = 0, when using ErrorCompensatedX, we have

xT =x0 − γ
T−1∑
t=0

t∑
s=0

α(1− α)t−s(A (xs; ξs) + (1− α)(δs−1 − δs−2) + δs−1 − δs)

=x0 − γ
T−1∑
t=0

t∑
s=0

α(1− α)t−sA (xs; ξs) + αγδT−1.

Notice that in the discussion above, we make an implicit assumption that there is only one worker in
the training. For the case of multiple workers, we adapt the same strategy proposed by Tang et al.
(2019), which uses a Parameter-Server communication prototype and applies error compensation for
both rounds of worker-server communication.

For changing αt, the updating rule of ErrorCompensatedX with a low-pass filter follows

et =(1− β)et−1 + β

(
αt−1

αt
(2− αt)δt−1 −

αt−2

αt
(1− αt)δt−2

)
, ∆t = A (xt; ξt) + et,

(3)
vt =(1− αt)vt−1 + αtCω[∆t], δt = ∆t − Cω[∆t], xt+1 = xt − γvt.

Here et is the compression error being passed after the low-pass filter and β is the hyper-parameter
of the low-pass filter. Our analysis indicates that for a general case with 0 < αt ≤ 1, using just the
compression error from the last step is not good enough, especially when αt is very small. In this
case, ErrorCompensatedX admits a much faster convergence speed than Single Compensation and
could achieve the same asymptotic speed with the uncompressed one. We assume a Parameter-Server
communication prototype for the parallel implementation of ErrorCompensatedX, and the detailed
algorithm description can be find in Algorithm 1.

Algorithm 1 ErrorCompensatedX for general A (x; ξ)

1: Input: Initialize x0, learning rate γ, loss-pass filter parameter β, initial error on workers
δ

(i)
−1 = δ

(i)
0 = 0, initial error on the server δ−1 = δ0 = 0, scheduler of {αt}Tt=−1, and number

of total iterations T . The initial gradient estimator v0 = ∇F
(
x0; ξ

(i)
0

)
with total batch-size B0,

initial compression error buffer e(i)
0 = 0 and e0 = 0.

2: for t = 1, 2, · · · , T − 1 do
3: On worker i:
4: Pass the worker compression error into the low-pass filter: e(i)

t = (1 − β)e
(i)
t−1 +

β
(
αt−1

αt
(2− αt)δ(i)

t−1 −
αt−2

αt
(1− αt)δ(i)

t−2

)
.

5: Compute the error-compensated local gradient estimator: ∆
(i)
t = A

(
xt; ξ

(i)
t

)
+ e

(i)
t .

6: Compress ∆
(i)
t intoCω

[
∆

(i)
t

]
and update the local worker error δ(i)

t ← ∆
(i)
t −Cω

[
∆

(i)
t

]
.

7: Send Cω
[
∆

(i)
t

]
to the parameter server.

8: On parameter server:
9: Pass the server compression error into the low-pass filter: et = (1 − β)et−1 +

β
(
αt−1

αt
(2− αt)δt−1 − αt−2

αt
(1− αt)δt−2

)
.

10: Average all gradient estimator received from workers: ∆t = 1
n

∑n
i=1 Cω

[
∆

(i)
t

]
+ et.

11: Compress ∆t into Cω [∆t] and update the server error δt = ∆t − Cω [∆t]
12: Send Cω [∆t] to workers
13: On worker i:
14: Update the gradient estimator vt = (1− αt)vt−1 + αtCω [∆t].
15: Update the model xt+1 = xt − γvt.
16: end for
17: Output: xT
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Throughout this paper and its supplementary document, we let f∗ = minx f(x) be the optimal
objective value. In addition, we let ‖ · ‖ denote the l2 norm of vectors, and . means “less than or
equal to up to a constant factor”.

4 Theoretical Analysis

In this section, we first summarize the general updating rule for each algorithm w/o error compen-
sation. Then we will present a general theorem that is essential for getting the convergence rate of
each algorithm. At last, we will see that by using ErrorCompensatedX, we could achieve the same
asymptotic convergence rate with training without communication compression using both biased
and unbiased compression.

All error compensation algorithms mentioned so far can be summarized into the formulation of

et =(1− β)et−1 + β (c1,tδt−1 − c2,tδt−2) , (4)
vt =(1− αt)vt−1 + αtA (xt; ξt)− η1,tδt + η2,tet, xt+1 = xt − γvt. (5)

Here (1 − αt)vt−1 + αtA (xt; ξt) originates from the original uncompressed algorithm. Other
terms that depends on the compression error δt indicates the influence of compression (see our
supplementary material for more details about the parameter setting for different compression
algorithms.)

4.1 Convergence Rate of General Algorithms

In this section, we decompose the convergence rate of ErrorCompensatedX into two parts:
Runcompressed(T ) that only depends on the original algorithm without compression, and Rε which
only depends on the way of error compensation.

Instead of investigating xt directly, we introduce an auxiliary sequence {x̂t}, which is defined as

ut = (1− αt)ut−1 + αtA (xt; ξt), x̂t = x̂t−1 − γut, (6)

and set x̂0 = x0, u0 = v0 for initialization. Below we are going to see that {x̂t} admits some nice
properties and is very helpful for the analysis of the convergence rate for {xt}.
For x̂t, there seems to be no compression error, but we still compute the gradient estimator using xt
instead x̂t directly. Therefore we also define

û0 = A (x0; ξ0) = A (x̂0; ξ0), ût = (1− αt)ût−1 + αtA (x̂t; ξt). (7)

In this case, in the view of {x̂t}, it basically updates the model following

ût = (1− αt)ût−1 + αtA (x̂t; ξt), x̂t = x̂t−1 − γût − γ(ut − ût)︸ ︷︷ ︸
compression bias

.

Therefore {x̂t} is essentially using the same uncompressed gradient estimator A (x̂t; ξt) for con-
structing the gradient estimator ût except that when it updates the model, it will use ût plus a
compression bias term γ(ut − ût).

Now we present the key theorem that concludes the convergence rate of any algorithm (for non-convex
loss function) that updates the model according to (4) and (5). Before we introduce the final theorem,
we first make some commonly used assumptions:

Assumption 1. We assume f∗ > −∞ and make the following assumptions:

1. Lipschitzian gradient: f(·) and F (·; ξ) are assumed to be with L-smooth, which means

‖∇F (x; ξ)−∇F (y; ξ)‖ ≤LF ‖x− y‖, ∀x,y, ξ,
‖∇fi(x)−∇fi(y)‖ ≤L‖x− y‖, ∀x,y, i;

2. Bounded variance: The variance of the stochastic gradient is bounded

Eξ(i)∼Di‖∇F (x; ξ(i))−∇f(x)‖2 ≤σ2, ∀x, i.
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Theorem 1. For algorithms that follow the updating rule (4) and (5), under Assumption 1, we have

1

T

T−1∑
t=0

E‖∇f(xt)‖2 ≤
16(f(x0)− f∗)

γT
+

8

T

T−1∑
t=0

At︸ ︷︷ ︸
Runcompressed(T )

+
64L2

A + 2L2

T

T−1∑
t=0

E‖xt − x̂t‖2︸ ︷︷ ︸
Rε

,

where At is defined as

At :=E‖∇f(x̂t)− ût‖2 − (1− 2Lγ)E‖ût‖2 −
E‖∇f(x̂t)‖2

4

with ût defined in (7), and LA is the Lipschitz constant of A (·; ξ), i.e.,

‖A (x; ξ)−A (y; ξ)‖ ≤LA ‖x− y‖, ∀x,y, ξ.

Here At, which depends only on the original uncompressed algorithm, indicates the bias of con-
structing the gradient estimator using uncompressed A (x̂t; ξt), hence 16(f(x0)−f∗)

γT + 8
T

∑T
t=0At is

usually the convergence rate of the original algorithm without compression.

In order to get a clear vision about the influence of the compression error under different error
compensation methods, in the theorem below we are going to give an upper bound of

∑T
t=0 E‖xt −

x̂t‖2 for different error compensation methods.
Assumption 2. The magnitude of the compression error are assumed to be bounded by a constant ε:

Eω
∥∥∥δ(i)

t

∥∥∥2

≤ ε2

2
, Eω

∥∥∥δ(i)
t

∥∥∥2

≤ ε2

2
,∀t, i.

Theorem 2. For algorithms that follow the updating rule (4) and (5), under Assumption 2, setting
β = 1, η1,t = η1, η2,t = η2, c1,t = c1, and c2,t = c2, we have

xt − x̂t =− η1

α

t∑
s=0

(
1− (1− α)t−s+1

)
δs +

η2c1
α

t−1∑
s=0

(
1− (1− α)t−s

)
δs

+
η2c2
α

t−2∑
s=0

(
1− (1− α)t−s−1

)
δs.

More specifically, we have

• No Compensation:
∑T
t=0 E‖xt − x̂t‖2 ≤

γ2T 2ε2

α2 ;

• Single Compensation:
∑T
t=0 E‖xt − x̂t‖2 ≤

γ2ε2

α2 ;

• ErrorCompensatedX:
∑T
t=0 E‖xt − x̂t‖2 ≤ γ2α2ε2.

4.2 Convergence Rate for Different Gradient Estimators

In this section, we apply Theorem 1 to get the specific convergence rate of ErrorCompensatedX for
Momentum SGD, STORM, and IGT.

4.2.1 SGD and Momentum SGD

Since SGD is a special case of Momentum SGD when setting α = 1, the following theorem includes
both SGD and Momentum SGD.
Theorem 3. Setting A (xt; ξt) = ∇F (xt; ξt), if Lγ ≤ α

12 , under Assumptions 1 and 2, we have

T−1∑
t=0

At ≤
17γLσ2T

3n
.

This leads us to the corollary below:
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Corollary 4. For ErrorCompensatedX, under Assumptions 1 and 2, setting αt = α ∈ (0, 1],

A (xt; ξt) = ∇F (xt; ξt) and γ = min
{

α
12L ,

√
n
Tσ2 ,

(
1
ε2T

)1/3}
, we have

1

T

T−1∑
t=0

E‖∇f(xt)‖2 .
σ√
nT

+
α2

(εT )
2
3

+
1

αT
.

The leading term admits the order of O
(

1/
√
nT
)

, which is the same as uncompressed training.

4.2.2 STOchastic Recursive Momentum (STORM)

Theorem 5. Setting A (xt; ξt) = 1
αt

(∇F (xt; ξt)− (1− αt)∇F (xt−1; ξt)), if γ ≤ 1
4L and α ≥

8(L2+L2
F )γ2

n , under Assumptions 1 and 2, we have
T−1∑
t=0

At ≤
2ασ2T

n
+

σ2

nαB0
.

This leads us to the corollary below:
Corollary 6. For ErrorCompensatedX, under Assumptions 1 and 2, setting γ =

min

{
1

4L ,
(
n2

σ2T

) 1
3

,
(
n
ε2T

) 1
7

}
, αt = 8L2γ2

n , B0 = σ
8
3 T

1
3

n
2
3

, and A (xt; ξt) =

1
αt

(∇F (xt; ξt)− (1− αt)∇F (xt−1; ξt)), we have

1

T

T−1∑
t=0

E‖∇f(xt)‖2 .
( σ

nT

) 2
3

+

(
ε2

nT 6

) 1
7

+
1

T
.

The leading term admits the order of O
(

1/(nT )
2
3

)
, which is the same as uncompressed training

(Yuan et al., 2020).

4.2.3 Implicit Gradient Transport (IGT)

For IGT, we need to make some extra assumptions (as listed below) for theoretical analysis.
Assumption 3. The Hessian∇2f(·) is ρ-Lipschitz continuous, i.e., for every x, y ∈ Rd,∥∥∇2f(x)−∇2f(y)

∥∥ ≤ ρ‖x− y‖, ∀x,y.
The magnitude of the stochastic gradient is upper bounded, i.e.,

E‖∇F (x; ξ)−∇F (y; ξ)‖2 ≤ ∆2, ∀x,y.

Now we are ready to present the result of IGT:

Theorem 7. Setting A (xt; ξt) = ∇F
(
xt + 1−αt

αt
(xt − xt−1); ξt

)
, if γ ≤ 1

2L , under Assump-
tions 1, 2 and 3, we have

T−1∑
t=0

At ≤
ασ2T

n
+

σ2

αnB0
+
ρ2γ4∆4T

α4
.

This leads us to the corollary below:
Corollary 8. For ErrorCompensatedX, under Assumptions 1, 2 and 3, by setting γ =

min

{
1

2L ,
(

n4

σ8T 5

) 1
9

,
(
n
ε2T

) 1
7

}
, α =

(
n5

σ8T 4

) 1
9

and B0 = 1, we have

1

T

T−1∑
t=0

E‖∇f(xt)‖2 .

(
σ8

n4T 4

) 1
9

+

(
ε2

nT 6

) 1
7

+
1

T
.

The leading term admits the order of O(1/(nT )
4
9 ), which is even worse than that of Momentum

SGD. A sharper rate of IGT for a general non-convex loss function is still an open problem.
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5 Numerical Experiments

In this section, we train ResNet-50 (He et al., 2016) on CIFAR10, which consists of 50000 training
images and 10000 testing images, each has 10 labels. We run the experiments on eight workers, each
having a 1080Ti GPU. The batch size on each worker is 16 and the total batch size is 128. For each
choice of A (xt; ξt), we evaluate four implementations: 1) Original algorithm without compression.
2) No compensation, which compresses the data directly without the previous information. 3) Single
compensation, which compresses the gradient estimator with compression error from the last step
added. 4) ErrorCompensatedX.

We use the 1-bit compression in Tang et al. (2019), which leads to an overall 96% of communication
volume reduction. We find that for both STORM and IGT, setting αt = 1

1+c0t
, where c0 is a constant

and t is the training step count, would make the training faster. We grid search the best learning
rate from {0.5, 0.1, 0.001} and c0 from {0.1, 0.05, 0.001}, and find that the best learning rate is 0.01
with c0 = 0.05 for both original STORM and IGT. So we use this configuration for the other three
implementations. For Momentum, usually we will not set αt to be too small, therefore we only set
αt = 0.1, and the best learning rate is 0.1 after the same grid search. We set β = 0.3 for the low-pass
filter in all cases.
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0 20 40 60 80 100
Epochs

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

IGT
IGT (Single Compensation)
IGT (ErrorCompensateX)

(c) Training loss (IGT)
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(d) Testing accuracy (Momentum
SGD)
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(f) Testing accuracy (IGT)

Figure 2: Epoch-wise convergence comparison on ResNet-50 for Momenum SGD (left column),
STORM (middle column), and IGT (right column) with different communication implementations.
We do not include the result of no compensation because it diverges after a few steps of training.

As illustrated in Figure 2, for both STORM and IGT, ErrorCompensatedX achieves almost the
same convergence speed with the original algorithm, while Single Compensation fails to achieve
this. We find that with increasing magnitude of c0, this gap of convergence speed would increase,
which further validate our claim that ErrorCompensatedX is more essential when αt gets small. For
Momentum SGD, all the three implementations (except compression without error compensation)
achieves similar convergence speed. This is because αt = 0.1 is comparably large.

6 Conclusion and Remarks

In this paper, we address an important problem for communication efficient distributed training: how
to fully compensate the compression error for variance reduced optimization algorithms. In our
paper, we consider a more general class of optimization algorithms (including SGD and Momentum
SGD), and we propose a novel method: ErrorCompensatedX, which utilize the compression error
from the last two steps, in order to fully compensate the history compression error while previous
method fails to do. From the theoretical perspective, we provide a unified theoretical analysis
framework that gives an intuitive evaluation for the side-effect of the compression, and shows that

9



ErrorCompensatedX admits the same asymptotic convergence rate with each of the original algorithm.
Numerical experiments are implemented to show ErrorCompensatedX’s convergence and its better
performance comparing to other implementations.
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R. Garnett (Eds.), Advances in Neural Information Processing Systems, volume 32 (pp. 11450–
11460).: Curran Associates, Inc.

Zheng, S., Huang, Z., & Kwok, J. (2019b). Communication-efficient distributed blockwise momentum
sgd with error-feedback. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox,
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Supplementary
In the supplementary, we first prove the updating rule of ErrorCompensatedX. Then we will present
the detailed proof for Theorem 1 followed by the detailed convergence rate result for each algorithm.

7 Updating rule of ErrorCompensatedX

The updating rule of Algorithm 1 admits the form

et =(1− β)et−1 + β

(
αt−1

αt
(2− αt)δt−1 +

αt−2

αt
(1− αt)δt−2

)
,

vt =(1− αt)vt−1 + αtbt(xt)− αtδt + αtet,

xt+1 =xt − γvt.
where

et :=
1

n

∑
i

e
(i)
t + et,

δt :=δt +
1

n

n∑
i=1

δ
(i)
t ,

bt(x) :=
1

n

∑
i

A
(
xt; ξ

(i)
t

)
.

Proof. From the algorithm description in Algorithm 1, we shall see that we are essentially using vt
as the gradient estimator of the full gradient. From the updating rule of vt, we have

vt =(1− αt)vt−1 + αtCω [∆t]

=(1− αt)vt−1 + αt (∆t − δt)

=(1− αt)vt−1 +
αt
n

∑
i

Cω

[
∆

(i)
t

]
+ αtet − αtδt

=(1− αt)vt−1 +
αt
n

∑
i

(
∆

(i)
t − δ

(i)
t

)
+ αtet − αtδt

=(1− αt)vt−1 +
αt
n

∑
i

(
A
(
xt; ξ

(i)
t

)
+ e

(i)
t − δ

(i)
t

)
+ αtet − αtδt

=(1− α)vt−1 + αtbt(xt) + αtet − αtδt.
Notice that in the deduction above we continuously using the fact that Cω[x] = x− δ. For et, we
have

et =
1

n

∑
i

e
(i)
t + et

=
1− β
n

∑
i

e
(i)
t−1 +

β

n

∑
i

(
αt−1

αt
(2− αt)δ(i)

t−1 +
αt−2

αt
(1− αt)δ(i)

t−2

)
+ (1− β)et−1 + β

(
αt−1

αt
(2− αt)δt−1 +

αt−2

αt
(1− αt)δt−2

)
=(1− β)et−1 + β

(
αt−1

αt
(2− αt)δt−1 +

αt−2

αt
(1− αt)δt−2

)
,

which completes the proof.

8 General Formulation of the Updating Rule

As mentioned in Section 4, all the error compensation mentioned so far admits the updating rule of
(4) and (5). Therefore in Table 2 we list the specific choice of parameters for each algorithm.
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η1,t η2,t c1,t c2,t
Without Compensation 1 0 0 0
Single Compensation 1 1 1 0
ErrorCompensatedX αt αt 2− αt 1− αt

Table 2: Different choices of η1,t, η2,t, c1,t, and c2,t for each algorithm.

9 Proof of Theorems

9.1 Proof of Theorem 1

Proof. In the view of {x̂t}, we have

Ef(x̂t+1)− Ef(x̂t)

≤E〈∇f(x̂t), x̂t+1 − x̂t〉+
L

2
E‖x̂t+1 − x̂t‖2

=− γE〈∇f(x̂t),ut〉+
Lγ2

2
E‖ut‖2

=− γE〈∇f(x̂t), ût + (ut − ût)〉+
Lγ2

2
E‖ût + (ut − ût)‖2

≤− γE〈∇f(x̂t), ût〉 − γE〈∇f(x̂t),ut − ût〉+ Lγ2E‖ût‖2 + Lγ2E‖ut − ût‖2

≤− γE〈∇f(x̂t), ût〉+
γ

4
E‖∇f(x̂t)‖2 + γE‖ut − ût‖2 + Lγ2E‖ût‖2 + Lγ2E‖ut − ût‖2

≤− γ

2

(
E‖∇f(x̂t)‖2 + E‖ût‖2 − E‖∇f(x̂t)− ût‖2

)
+
γ

4
E‖∇f(x̂t)‖2

+ γ‖ut − ût‖2 + Lγ2E‖ût‖2 + Lγ2E‖ut − ût‖2

≤− γ

8
E‖∇f(x̂t)‖2 −

γ

2

(
(1− 2Lγ)E‖ût‖2 − E‖∇f(x̂t)− ût‖2 +

E‖∇f(x̂t)‖2

4

)
+ (1 + Lγ)γE‖ut − ût‖2.

Summing up the inequality above from t = 0 to t = T , with rearrangement we get

1

T

T−1∑
t=0

E‖∇f(x̂t)‖2

≤8(f(x̂0)− f(x̂T ))

γT
− 4

T

T−1∑
t=0

(
(1− 2Lγ)E‖ût‖2 − E‖∇f(x̂t)− ût‖2 +

E‖∇f(x̂t)‖2

4

)

+
8 + 8Lγ

T

T−1∑
t=0

E‖ut − ût‖2

≤8(f(x0)− f∗)
γT

− 4

T

T−1∑
t=0

(
(1− 2Lγ)E‖ût‖2 − E‖∇f(x̂t)− ût‖2 +

E‖∇f(x̂t)‖2

4

)

+
8 + 8Lγ

T

T−1∑
t=0

E‖ut − ût‖2. (8)
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In order to upper bound E‖ut − ût‖2, we have

E‖ut − ût‖2

=E‖(1− α)(ut−1 − ût−1) + α(A (xt; ξt)−A (x̂t; ξt))‖2

≤ (1 + α)E‖(1− α)(ut−1 − ût−1)‖2 +

(
1 +

1

α

)
E‖α(A (xt; ξt)−A (x̂t; ξt))‖2

=
(
1− α2

)
(1− α)E‖ut−1 − ût−1‖2 +

(
α2 + α

)
E‖A (xt; ξt)−A (x̂t; ξt)‖2

≤ (1− α)E‖ut−1 − ût−1‖2 + 2αE‖A (xt; ξt)−A (x̂t; ξt)‖2

=(1− α)tE‖u0 − u0(y)‖2 + 2α

t∑
s=0

(1− α)t−sE‖A (xs; ξs)−A (x̂s; ξs)‖2

=2α

t∑
s=0

(1− α)t−sE‖A (xs; ξs)−A (x̂s; ξs)‖2 (u0 − u0(y) = 0)

≤2αL2
A

t∑
s=0

(1− α)t−sE‖xs − x̂s‖2.

Therefore we have

T−1∑
t=0

E‖ut − ût‖2 ≤2αL2
A

T−1∑
t=0

t∑
s=0

(1− α)t−sE‖xs − x̂s‖2

=2αL2
A

T−1∑
s=0

T−1∑
t=s

(1− α)t−sE‖xs − x̂s‖2

≤2L2
A

T−1∑
t=0

E‖xt − x̂t‖2. (9)

Combining (8) and (9) together we get

1

T

T∑
t=0

E‖∇f(x̂t)‖2

≤8(f(x0)− f∗)
γT

− 4

T

T∑
t=0

(
(1− 2Lγ)E‖ût‖2 − E‖∇f(x̂t)− ût‖2 +

E‖∇f(x̂t)‖2

4

)

+
16(1 + Lγ)L2

A

T

T∑
t=0

E‖xt − x̂t‖2.
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Hence ‖∇f(xt)‖2 can be upper bounded by using

1

T

T−1∑
t=0

E‖∇f(xt)‖2

≤ 1

T

T−1∑
t=0

E‖∇f(x̂t) + (∇f(xt)−∇f(x̂t))‖2

≤ 2

T

T−1∑
t=0

E‖∇f(x̂t)‖2 +
2

T

T−1∑
t=0

E‖∇f(xt)−∇f(x̂t)‖2

≤ 2

T

T−1∑
t=0

E‖∇f(x̂t)‖2 +
2L2

T

T−1∑
t=0

E‖xt − x̂t‖2

≤16(f(x0)− f∗)
γT

− 8

T

T−1∑
t=0

(
(1− 2Lγ)E‖ût‖2 − E‖∇f(x̂t)− ût‖2 +

E‖∇f(x̂t)‖2

4

)

+
32(1 + Lγ)L2

A + 2L2

T

T−1∑
t=0

E‖ut − ût‖2.

If Lγ ≤ 1, we have

1

T

T−1∑
t=0

E‖∇f(xt)‖2

≤16(f(x0)− f∗)
γT

− 8

T

T−1∑
t=0

(
(1− 2Lγ)E‖ût‖2 − E‖∇f(x̂t)− ût‖2 +

E‖∇f(x̂t)‖2

4

)

+
64L2

A + 2L2

T

T−1∑
t=0

E‖xt − x̂t‖2,

which completes the proof.

9.2 Proof of Theorem 3, 5 and 7

In this section, we are going to present the proof of theorems for different gradient estimators. We
start with the key lemma for Momentum SGD.
Lemma 9. For two nonnegative sequences {at} and {bt} that satisfy

at ≤ ρat−1 + bt,

where ρ ∈ (0, 1) is a constant, we have

T∑
t=0

at ≤
∑T
t=1 bt + a0

1− ρ
.

Proof. Since

at ≤ ρat−1 + bt,

adding the inequality above from t = 1 to t = T we get

T∑
t=1

at ≤ρ
T−1∑
t=0

at +

T∑
t=1

bt

≤ρ
T∑
t=0

at +

T∑
t=1

bt.
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Adding a0 to both side we get
T∑
t=0

at ≤ρ
T∑
t=0

at +

T∑
t=1

bt + a0

and the proof is complete by combining the sum of at and dividing both sides by 1− ρ.

Proof of Theorem 3. For Momentum SGD, denotemt = α
∑t
s=0(1−α)t−s∇f(xs), then we have

E‖∇f(xt)− ut‖2 − E‖ut‖2

=E‖∇f(xt)‖2 − 2E〈∇f(xt),ut〉
=E‖∇f(xt)‖2 − 2E〈∇f(xt),mt〉 − 2E〈∇f(xt),ut −mt〉
=− E‖mt‖2 + E‖∇f(xt)−mt‖2 − 2E〈∇f(xt),ut −mt〉. (10)

For E‖∇f(xt)−mt‖2 we have

E‖∇f(xt)−mt‖2

=E‖∇f(xt)− (1− α)mt−1 − αf(xt)‖2

=E‖(1− α)(∇f(xt−1)−mt−1 +∇f(xt)−∇f(xt−1))‖2

≤ (1 + α) (1− α)2E‖∇f(xt−1)−mt−1‖2 +

(
1 +

1

α

)
(1− α)2E‖∇f(xt)−∇f(xt−1))‖2

≤(1− α)E‖∇f(xt−1)−mt−1‖2 +
1

α
E‖∇f(xt)−∇f(xt−1))‖2

≤(1− α)E‖∇f(xt−1)−mt−1‖2 +
L2γ2

α
E‖ut‖2.

Therefore from Lemme 9,
T−1∑
t=0

E‖∇f(xt)−mt‖2 ≤
L2γ2

α2

T−1∑
t=0

E‖ut‖2. (11)

For E〈∇f(xt),ut −mt〉, we have

E 〈∇f(xt),ut −mt〉 =E 〈∇f(xt), (1− α)(ut−1 −mt−1) + α(gt −∇f(xt))〉
=E 〈∇f(xt), (1− α)(ut−1 −mt−1)〉
=(1− α)E 〈∇f(xt−1),ut−1 −mt−1〉

+ (1− α)E 〈∇f(xt)−∇f(xt−1),ut−1 −mt−1〉 , (12)

where gt = ∇F (xt; ξt).

Notice that for∇f(xt)−∇f(xt−1), we have

E ‖∇f(xt)−∇f(xt−1)‖2

≤L2γ2E‖ut−1 −mt−1 +mt−1‖2

≤2L2γ2E‖mt−1‖2 + 2L2γ2E‖ut−1 −mt−1‖2. (13)

Combining (12) and (13) together we get

E 〈∇f(xt),ut −mt〉

≤(1− α)E 〈∇f(xt−1),ut−1 −mt−1〉+ (1− α)E
(

1

2γL
‖∇f(xt)−∇f(xt−1)‖2 +

γL

2
E ‖ut−1 −mt−1‖2

)
≤(1− α)E 〈∇f(xt−1),ut−1 −mt−1〉+ (1− α)E

(
γLE‖mt−1‖2 +

3γL

2
E ‖ut−1 −mt−1‖2

)
,

Denote ct := γLE‖mt−1‖2 + 3γL
2 E ‖ut−1 −mt−1‖2, then we get

E 〈∇f(xt),ut − Eut〉 = (1− α)tE 〈∇f(x0),u0 −m0〉+

t∑
s=1

(1− α)t−scs.

17



Since EA (x0; ξ0) = E∇F (x0; ξ0) = ∇F (x0), which means E 〈∇f(x0),u0 −m0〉 = 0. So the
equation above becomes

E 〈∇f(xt),ut −mt〉 =

t∑
s=1

(1− α)t−scs,

and
T−1∑
t=0

E 〈∇f(xt),ut − Eut〉 ≤
∑T−1
t=0 |ct|

1− (1− α)

=
γL

α

T−1∑
t=0

E‖mt‖2 +
3γL

2α

T−1∑
t=0

E‖ut −mt‖2. (14)

Combing (14), (11) and (10), we get

T−1∑
t=0

(
E‖∇f(xt)− ut‖2 − (1− 2Lγ)E‖ut‖2

)
≤−

T−1∑
t=0

E‖mt‖2 +

(
L2γ2

α2
+ 2Lγ

) T−1∑
t=0

E‖ut‖2 +
2γL

α

T−1∑
t=0

E‖mt‖2 +
3γL

α

T−1∑
t=0

E‖ut −mt‖2

=−
(

1− 2L2γ2

α2
− 4Lγ − 2γL

α

) T−1∑
t=0

E‖mt‖2 +

(
2L2γ2

α2
+

3γL

α
+ 4Lγ

) T−1∑
t=0

E‖ut −mt‖2,

(15)

For E ‖ut −mt‖2, we have

E‖ut −mt‖2 =E‖(1− α)(ut−1 −mt−1) + α(gt −∇f(xt))‖2

=E1:t−1Et‖(1− α)(ut−1 −mt−1) + α(gt −∇f(xt))‖2

=E1:t−1Et‖(1− α)(ut−1 −mt−1)‖2 + E1:t−1Et‖α(gt −∇f(xt))‖2

≤(1− α)2E‖ut−1 −mt−1‖2 + α2σ2

≤(1− α)E‖ut−1 −mt−1‖2 + α2σ2

=(1− α)tE‖u0 −m0‖2 + α2
t∑

s=1

(1− α)t−sσ2.

Therefore we have

E‖ut −mt‖2 ≤ ασ2.

So (15) becomes

T−1∑
t=0

(
E‖∇f(xt)− ut‖2 − (1− 2Lγ)E‖ut‖2

)
≤−

(
1− 2L2γ2

α2
− 4γL

α
− 2Lγ

) T−1∑
t=0

E‖mt‖2 +

(
2L2γ2

α2
+

3γL

2α
+ 4Lγ

) T−1∑
t=0

ασ2

Therefore, for Momentum SGD
T−1∑
t=0

At =

T−1∑
t=0

E‖∇f(xt)− ut‖2 − (1− 2Lγ)E‖ut‖2 −
1

4
E‖∇f(xt)‖2

≤−
(

1− 2L2γ2

α2
− 4γL

α
− 2Lγ

) T−1∑
t=0

E‖mt‖2 +

(
2Lγ

α
+

3

2
+ 4α

)
γLTσ2.
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So if γL ≤ α
12 and γL ≤ 1

4 , we have
T−1∑
t=0

At ≤
17γLσ2T

3

Proof of Theorem 5. For STROM, the most important part is to upper bound
∑T−1
t=0 E‖ut −

∇f(xt)‖2. Therefore we first focus on this term.

Denoting et := ut −∇f(xt) and gt(x) := 1
n

∑
i∇F (x; ξ

(i)
t ), we get

E‖et‖2

=E‖(1− α)et−1 + (gt(xt)−∇f(xt))− (1− α)(gt(xt−1)−∇f(xt−1))‖2

=E‖(1− α)et−1‖2 + E‖(gt(xt)−∇f(xt))− (1− α)(gt(xt−1)−∇f(xt−1))‖2

=(1− α)2E‖et−1‖2 + E ‖α(gt(xt)−∇f(xt)) + (1− α) (gt(xt)− gt(xt−1) +∇f(xt−1)−∇f(xt))‖2

≤(1− α)2E‖et−1‖2 + 2α2E ‖gt(xt)−∇f(xt)‖2 + 2(1− α)2E ‖gt(xt)− gt(xt−1) +∇f(xt−1)−∇f(xt)‖2

=(1− α)2E‖et−1‖2 + 2α2E ‖gt(xt)−∇f(xt)‖2

+
2(1− α)2

n2
E

∥∥∥∥∥
n∑
i=1

(
∇F (xt; ξ

(i)
t )−∇fi(xt)−∇F (xt−1; ξ

(i)
t ) +∇fi(xt−1)

)∥∥∥∥∥
2

=(1− α)2E‖et−1‖2 + 2α2E ‖gt(xt)−∇f(xt)‖2

+
2(1− α)2

n2

n∑
i=1

E
∥∥∥∇F (xt; ξ

(i)
t )−∇fi(xt)−∇F (xt−1; ξ

(i)
t ) +∇fi(xt−1)

∥∥∥2

≤(1− α)2E‖et−1‖2 + 2α2E ‖gt(xt)−∇f(xt)‖2

+
4(1− α)2

n2

n∑
i=1

E
∥∥∥∇F (xt; ξ

(i)
t )−∇F (xt−1; ξ

(i)
t )
∥∥∥2

+
4(1− α)2

n2

n∑
i=1

E ‖∇fi(xt)−∇fi(xt−1)‖2

≤(1− α)2E‖et−1‖2 +
2α2σ2

n
+

4(1− α)2(L2 + L2
F )

n
E‖xt − xt−1‖2

≤(1− α)2E‖et−1‖2 +
2α2σ2

n
+

4(1− α)2(L2 + L2
F )γ2

n
E‖ut−1‖2. (16)

Using Lemma 9, we get

T−1∑
t=0

E‖et‖2 ≤

∑T−1
t=0

(
2α2σ2

n +
4(1−α)2(L2+L2

F )γ2

n E‖ut−1‖2
)

+ E‖u0 −∇f(x0)‖2

1− (1− α)2

≤ 1

α

(
2α2σ2T

n
+

4(1− α)2(L2 + L2
F )γ2

n

T−1∑
t=0

E‖ut−1‖2
)

+
E‖u0 −∇f(x0)‖2

α

=
2ασ2T

n
+

4(1− α)2(L2 + L2
F )γ2

αn

T−1∑
t=0

E‖ut−1‖2 +
E‖u0 −∇f(x0)‖2

α
. (17)

SinceAt = E‖∇f(x̂t)−ût‖2−(1−2Lγ)E‖ût‖2− E‖∇f(x̂t)‖2
4 , therefore if 4(1−α)2(L2+L2

F )γ2

αn ≤ 1
2

and 1− 2Lγ ≥ 1
2 , then we have

T−1∑
t=0

At ≤
2ασ2T

n
+

E‖u0 −∇f(x0)‖2

α

≤2ασ2T

n
+

σ2

nαB0
.
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Proof of Theorem 7. Here we introduce an auxiliary variable that is defined as
Z(x,y) := ∇f(x)−∇f(y)− 〈∇2f(y),x− y〉.

Then from the bounded Hessian in Assumption 3, we have
‖Z(x,y)‖ ≤ ρ‖x− y‖2.

Moreover, since ut is a weighted average over all history stochastic gradients, under the bounded
stochastic gradient of Assumption 3, we have

E‖xt − xt−1‖2 ≤ γ2∆2.

Denote et := vt −∇f(xt), we get
E‖et‖2

=E
∥∥∥∥(1− α)et−1 + α∇F

(
xt +

1− α
α

(xt − xt−1); ξ
(i)
t

)
−∇f(xt) + (1− α)∇f(xt−1)

∥∥∥∥2

=E
∥∥∥∥(1− α)et−1 + α∇f

(
xt +

1− α
α

(xt − xt−1)

)
−∇f(xt) + (1− α)∇f(xt−1)

∥∥∥∥2

+ E
∥∥∥∥α∇F (xt +

1− α
α

(xt − xt−1); ξ
(i)
t

)
− α∇f

(
xt +

1− α
α

(xt − xt−1)

)∥∥∥∥2

≤E
∥∥∥∥(1− α)et−1 + α∇f

(
xt +

1− α
α

(xt − xt−1)

)
−∇f(xt) + (1− α)∇f(xt−1)

∥∥∥∥2

+
α2σ2

n

=E
∥∥∥∥(1− α)et−1 + (1− α)Z(xt−1,xt) + αZ

(
xt +

1− α
α

(xt − xt−1),xt

)∥∥∥∥2

+
α2σ2

n

≤ (1 + α)E ‖(1− α)et−1‖2 +

(
1 +

1

α

)
E
∥∥∥∥(1− α)Z(xt−1,xt) + αZ

(
xt +

1− α
α

(xt − xt−1),xt

)∥∥∥∥2

+
α2σ2

n
(applying (x+ y)2 ≤ (1 + α)x2 + (1 +

1

α
)y2)

≤ (1− α)E ‖et−1‖2 +
(α+ 1)

α2
E ‖(1− α)Z(xt−1,xt)‖2

+
(α+ 1)

α(1− α)
E
∥∥∥∥αZ (xt +

1− α
α

(xt − xt−1),xt

)∥∥∥∥2

+
α2σ2

n

≤ (1− α)E ‖et−1‖2 +
(1− α2)(1− α)ρ2

α3
E ‖xt−1 − xt‖4 +

α2σ2

n

≤ (1− α)E ‖et−1‖2 +
(1− α)ρ2

α3
E ‖xt−1 − xt‖4 +

α2σ2

n
. (18)

In this case, we also have Eξt−1
‖xt − xt−1‖2 ≤ γ2∆2, and (18) becomes

E‖et‖2 ≤ (1− α)E ‖et−1‖2 +
(1− α)ρ2γ4∆4

α3
+
α2σ2

n
. (19)

Using Lemma 9 and (19), we get

T∑
t=0

E‖∇f(xt)− vt‖2 ≤

∑T
t=1

(
α2σ2

n + ρ2γ4∆4

α3

)
+ E‖e0‖2

1− (1− α)
≤ ασ2T

n
+

σ2

αnB0
+
ρ2γ4∆4T

α4
.

The lemma is proved.

10 Proof of Corollary

10.1 Proof of Corollary 4

Proof. Combining Theorem 1 and 3 together, we shall get

1

T

T∑
t=0

E‖∇f(xt)‖2 ≤
16(f(x0)− f∗)

γT
+

136γLσ2

3n
+ (64L2

A + 2L2)γ2α2Tε2.
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Since LA = L, after setting γ = min
{

α
12L ,

√
n√
Tσ
,
(

1
ε2T

) 1
3

}
, it can be easily verified that we have

1

T

T∑
t=0

E‖∇f(xt)‖2 ≤ O
(

σ√
nT

+
α2

(εT )
2
3

+
1

αT

)
,

where we treat f(x0)− f∗ and L as constants.

10.2 Proof of Corollary 6

Proof. Combining Theorem 1 and 5 together, and setting α = 8L2γ2

n we shall get

1

T

T∑
t=0

E‖∇f(xt)‖2 ≤
16(f(x0)− f∗)

γT
+

128L2γ2σ2

n2
+

σ2

L2γ2B0T
+

64(64L2
A + 2L2)L4γ6ε2

n
.

Since LA = 2L, after setting γ = min

{
1

4L ,
(
n2

σ2T

) 1
3

,
(
n
ε2T

) 1
7

}
and B0 = σ

8
3 T

1
3

n
2
3

, then it can be

easily verified that we have

1

T

T∑
t=0

E‖∇f(xt)‖2 ≤ O

(( σ

nT

) 2
3

+

(
ε2

nT 6

) 1
7

+
1

T

)
,

where we treat f(x0)− f∗, L as constants.

10.3 Proof of Corollary 8

Proof. Combining Theorem 1 and 7 together, we shall get

1

T

T∑
t=0

E‖∇f(xt)‖2 ≤
16(f(x0)− f∗)

γT
+

8ασ2

n
+

8σ2

αnB0T
+

8ρ2γ4∆4

α4
+

8(64L2
A + 2L2)L2γ6ε2

n
.

Since LA = 2L, after setting γ = min

{
1

2L ,
(

n4

σ8T 5

) 1
9

,
(
n
ε2T

) 1
7

}
, α =

(
n5

σ8T 4

) 1
9

and B0 = 1, then

it can be easily verified that we have

1

T

T∑
t=0

E‖∇f(xt)‖2 ≤ O

((
σ8

n4T 4

) 1
9

+

(
ε2

nT 6

) 1
7

+
1

T

)
,

where we treat f(x0)− f∗, L and ρ as constants.
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