
Supplementary Material

BooVAE: Boosting Approach for Continual Learning of VAE

Appendix Organization

• Section (A) contains technical details of BooVAE algorithm. In A.1 we provide skipped
details related to the algorithm derivation: ELBO decomposition, approximated optimal
prior, properties of the optimization problem and functional gradient of the objective. Next,
we provide derivations for trainable flow-based prior (A.2). Finally, we discuss step-back
for selection of the number of components for each task (A.3).

• Section (B) contains broader details and results for experiments in continual framework.

– In Sections (B.1) - (B.3) we provide more detailed overview of models performance. In
Section (B.1) we report NLL and diversity metric after each additional task is trained.
We discuss how the performance changes on the whole test dataset as we keep training
in continual learning setting. Moreover, we report and discuss these metrics for each
task separately in Section (B.2). Finally, we visually study the samples from the model
on each step in Section (B.3).

– In Section (B.4) we provide additional comparison with random coresets, showing that
BooVAE requires much less components to get comparable results in term of NLL and
diversity metrics.

– The implementation details for experiments are in Sec. (B.5), including architecture
of neural networks and optimization details. The source code is available at https:
//github.com/AKuzina/BooVAE.

A Details of the BooVAE algorithm derivations

A.1 Derivations for the optimal prior in continual framework

ELBO decomposition derivation We begin with derivations of the used decomposition in Eq.(3).
We start form the ELBO definition (1) and conclude with the desirable result with several re-
arrangements.

L(✓,�,�),E pe(x)
q�(z|x)

log
p✓(x|z)⇡(z)

q�(z|x)
=E pe(x)

q�(z|x)
log p✓(x|z)+E pe(x)

q�(z|x)
log

⇡(z)

q�(z|x)

q̂(z)

q̂(z)
=

=E pe(x)
q�(z|x)

log p✓(x|z)�
⇣
Epe(x)KL[q�(z|x)|q̂(z)]+E pe(x)

q�(z|x)
log

q̂(z)

⇡(z)
| {z }

1�

⌘
.

(18)
This decomposition holds for any choice of the density q̂(z) (under mild conditions). We make the
specific choice q̂(z)=Epe(x)q�(z|x) and proceed with the term 1�, with celebrated Fubini’s theorem:

1�=

Z
dxdz pe(x)q�(z|x) log

q̂(z)

⇡(z)
=

Z
dz log

q̂(z)

⇡(z)

Z
dx pe(x)q�(z|x)

| {z }
=Epe(x)q�(z|x)

=

=

Z
dz q̂(z) log

q̂(z)

⇡(z)
=KL[q̂(z)|⇡(z)].

(19)

We substitute (19) in (18) and obtain the decomposition (3):

E pe(x)
q�(z|x)

log
p✓(x|z)⇡(z)

q�(z|x)
= Epe(x)[Eq�(z|x) log p✓(x|z)�(KL[q�(z|x)|q̂(z)]+KL[q̂(z)|⇡(z)])].

(20)

14

https://github.com/AKuzina/BooVAE
https://github.com/AKuzina/BooVAE


Next we proceed to the case of pe(x)=↵ p
1
e(x)+(1�↵) p

2
e(x), ↵2(0; 1). We start with a noticing:

E pe(x)
q�(z|x)

log
⇡(z)

q�(z|x)

q̂(z)

q̂(z)
=↵ E p1

e(x)
q�(z|x)

log
⇡(z)

q�(z|x)

q̂1(z)

q̂1(z)
+(1�↵) E p2

e(x)
q�(z|x)

log
⇡(z)

q�(z|x)

q̂2(z)

q̂2(z)
.

(21)
We select q̂i(z)=Epi

e(x)
q�(z|x), i=1, 2 and with direct using derivations above conclude with the

desirable decomposition (5):

L(✓,�, �)=E pe(x)
q�(z|x)

log p✓(x|z)�
X

i=1,2

↵i (Epi
e(x)

KL[q�(z|x)|q̂i(z)]+KL[q̂i(z)|⇡(z)]).

(22)

Proof of the approximated optimal prior in (7) We consider the modified optimization problem
over the probability density space P (6) with the approximation of the aggregated variational posterior
of the first task q̂

a
1 (z)⇡ q̂1(z):

min
⇡(z)2P

↵ KL[q̂a(z)|⇡(z)]+(1�↵) KL[q̂2(z)|⇡(z)]. (23)

The optimization problem (23) is convex over ⇡(z) as the sum of convex functions, hence we proceed
with FOC of the corresponded Lagrangian with normalization conditions:

�

�⇡
↵ KL[q̂a(z)|⇡(z)]+(1�↵) KL[q̂2(z)|⇡(z)]+�

✓Z
dz ⇡(z)�1

◆
=

=�
✓

↵
q̂
a(z)

⇡(z)
+(1�↵)

q̂2(z)

⇡(z)

◆
+�=0.

(24)

By rearranging terms and normalize the solution, we conclude with the stated result:

⇡
1,2(z)=↵q̂

a
1 (z)+(1�↵)q̂2(z). (25)

Proof of the bi-convexity of the optimization problem (8) over h and � We consider the func-
tional:

↵ KL[q̂a1 (z)|(1��)⇡1(z)+�h(z)]+(1�↵) KL[q̂2(z)|(1��)⇡1(z)+�h(z)]). (26)

We show bi-convexity over h and � for the term KL[q̂a1 (z)|(1��)⇡1(z)+�h(z)] as other is of the
same form and sum of convex functions is a convex function. The convexity over h follows from
convexity of KL divergence:

KL[q̂a1 (z)|(1��)⇡1(z)+�(↵h1(z)+(1�↵)h2(z)]
(1��) KL[q̂a1 (z)|⇡1(z)]+� (↵ KL[q̂a1 (z)|h1(z)]+(1�↵) KL[q̂a1 (z)|h2(z)]) .

(27)

We check convexity over � by expecting of the second derivative:

r�KL[q̂a1 (z)|(1��)⇡1(z)+�h(z)]=�
Z

dz q̂
a
1 (z)

h(z)�⇡
1(z)

(1��)⇡1(z)+�h(z)
,

r2
�KL[q̂a1 (z)|(1��)⇡1(z)+�h(z)]=

Z
dz q̂

a
1 (z)

✓
h(z)�⇡

1(z)

(1��)⇡1(z)+�h(z)

◆2

>0.

(28)

Derivation of the functional gradient for the optimization problem (8) over h The functional
of our interest is ↵ KL[q̂a1 (z)|(1��)⇡1(z)+�h(z)]+(1�↵) KL[q̂2(z)|(1��)⇡1(z)+�h(z)]). We
consider the perturbation of the argument ⇡

1(z) with h(z) as following (1��)⇡1(z)+�h(z). We
start from the linearization of the first term:

KL[q̂a1 (z)|(1��)⇡1(z)+�h(z)]=�
Z

dz q̂
a
1 (z)

n
log

⇡
1(z)

q
a
1 (z)

+log
h
1+�

⇣
h(z)
⇡1(z)�1

⌘io
=

={log(1+x)=x+o(x),
x!0

}=KL[q̂a1 (z)|⇡1(z)]��

✓Z
dz h(z)

q̂
a
1 (z)

⇡1(z)
�1

◆
+o(�).

(29)

15



With application of this result to the second term, we obtain:

↵ KL[q̂a1 (z)|(1��)⇡1(z)+�h(z)]+(1�↵) KL[q̂2(z)|(1��)⇡1(z)+�h(z)])=

↵ KL[q̂a1 (z)|⇡1(z)]+(1�↵) KL[q̂2(z)|⇡1(z)]��

✓Z
dz h(z)


↵

q̂
a
1 (z)

⇡1(z)
+(1�↵)

q̂2(z)

⇡1(z)

�
�1

◆

| {z }
1�

+o(�).

(30)
The term 1� is the functional gradient. We project direction h to match it at the optimization problem
(12).

A.2 BooVAE for VAE with flow-based prior

Consider the ELBO objective:

L(✓,�),Epe(x)q�(z|x) (log p✓(x|z)⇡(z)� log q�(z|x)) . (31)

The simplest choice of the prior p(z) is the standard normal distribution. Instead, in order to
improve ELBO, one could obtain multi-modal prior distribution p(z) by using learnable bijective
transformation f :

v⇠p0(v), z=f(v). (32)
This induce the following density over the prior in z-space:

⇡(z)=

Z
p(v)�z(f(v)) dv=p0(f

�1(z))|Jf�1

z |. (33)

We could obtain optimal prior in z-space by using the following decomposition of the ELBO:

Epe(x)

⇥
Eq�(z|x) log p✓(xkz)�KL[q�(z|x)kq̂(z)]�KL[q̂(z)k⇡(z)]

⇤
, (34)

where q̂(z)=Epe(x)q�(z|x) is the aggregated variational posterior. As KL-divergence is non-negative,
the global maximum over ⇡ is reached when: ⇡(z)=Epe(x)q�(z|x). In oder to reach it, we should
match:

⇡(z)= q̂(z)=)p0(f
�1(z))|Jf�1

z |=Epe(x)q�(z|x). (35)

It could be done with tuning base distribution p0 and parameters of the transformation f . In order
to use BooVAE algorithm, we decouple this updates. The parameters of the transformation f are
updated in the Maximization step, together with encoder q�(z|x) and decoder p✓(x|z) and base
prior distribution p0(·) is fixed. So this step is the same as optimization step in VAE training. In the
Minorization step, we need to update p0(·). In order to do this, we came back to the v-space.

KL[⇡(z)|q̂(z)]=

Z
⇡(z) log

⇡(z)

q̂(z)
dz=

n
z=f(v),

dz=|Jf
v |dv

o
=

=

Z
p0(v)|Jf�1

f(v)| log
p0(f�1(f(v)))|Jf�1

f(v)|
q̂(f(v))

|Jf
v |dv=

Z
p0(v) log

p0(v)

q̂(f(v)|Jf
v |

dv=KL[p0(v)|q̂(f(v)|Jf
v |].

(36)

We conclude with the same problem of matching aggregation posterior, but in the v-space.

A.3 Step-back for components

On practice, it is not obvious, what is the optimal number of components in the prior. We have
experimentally observed, that excessive amount of the prior component can be as harmful as the
insufficient number of components. This happens because we learn each component as a pseudoinput
to the encoder. Throughout VAE training we update parameters of the encoder by maximizing
the ELBO, meaning that components are also unintentionally updated and some of them become
irrelevant.

To circumvent this disadvantage without the need to retrain VAE with different number components,
we suggest to prune the prior after the maximal number of components is reached. This approach

16



allows us in theory to select this maximal number to be as large as possible and then remove all the
relevant ones during pruning.

Pruning is performed as minimization of the KL-divergence between optimal prior and current
approximation with the respect to the weights if the mixture. This optimization procedure is performed
in the latent space and only ones during training. Therefore, it almost does not influence the training
time. In the experiment setting we report the maximal number of components. That is total number
of prior components before pruning.

B Details of the Experiments and Ablation Study

All the experiments we performed on a single NVIDIA Tesla V100 GPU.

B.1 Results in continual learning setting

In Tables (2), (3) we provide full results for continual learning experiments, which are illustrated
by Fig.(2),(3). We provide negative log-likelihood in Table (2) and KL-divergence used as diversity
measure in Table (3). The first column in both tables states how many tasks did the VAE see in total
and the value in the table indicates value of negative log-likelihood or diversity metrics on the test set
containing current and all the previous tasks.

We add comparison with multi-head architectures. We observe that BooVAE is capable to achieve
results comparable to multi-head architecture. We find this to be a good result, because fixed
architecture that we use has approximately 6 times less parameters. Moreover, when computing
NLL on the test set multi-head architecture requires task tables in order to use proper head, while
in case of BooVAE the test evaluation is performed in unsupervised manner. Even though NLL
on a test set is a default way of assessing VAEs, during our experiments, we’ve observed that good
NLL scores do not always correspond to diverse samples from the prior in the continual setting. See
samples in Fig.(12),(13),(14) for the confirmation of this observation. For example, random coresets
are performing well in terms of NLL, but we can see that they are still prone to catastrophic forgetting
when it comes to generating samples. Therefore, we were interested in quantitative evaluation of
the samples, produced by the VAE on each step. As the diversity score we calculate KL-divergence
between desired P (x) and observed Q(x) distribution of generated images over the classes. Desired
distribution is multinomial with equal probabilities for each class. To evaluate observed distribution
of classes we generate N =103 samples from VAE and classify them using neural network, trained
on the same dataset as the VAE. Then we calculate the proportion of images from the class i in the
generated sample and evalutate KL-divergence:

P (x= i)=pi=
1

T
, i2{1, . . . , T}, Q(x= i)= p̂i=

Ni

N
, i2{1, . . . , T}, KL[P (x)|Q(x)]=

TX

i=1

1

T
log

1
T

p̂i
.

(37)

If the model generates images from all the classes in equal proportions, the value of the metrics is
zero. The large is KL-divergence, the less diversity is there in the samples. We would like to note, that
this metric is reflecting the situation that we observe in Figures 12, 13, 14 and confirms that BooVAE
is dealing with catastrophic forgetting much better that other methods. Moreover, we observe that
even though the combination of BooVAE with VCL is the best in terms of reconstruction error (NLL),
it produce more blurred samples and therefore the classification network make more error with is
reflected on the KL-divergence.

B.2 Metrics for each task separately

In Fig.(9),(10) we report test NLL and diversity metrics from the previous section for each task
separately. Each subgraph shows performance of the VAE on one specific task (e.g. on ’0’s, ’1’s, etc.
for MNIST), depending on the total number of tasks seen by the model in continual setting. Each line
begins when the class appears in the train set for the first time. We observe, how the performance on
this task changes as wee keep updating the model on the new tasks. We expect the line to be as flat as
possible. This means, that quality of reconstructions and proportion of samples does not get worse
when new tasks arrive. In Fig.(10) we show each term in the KL-divergence as a characteristic of

17



Table 2: NLL on a test set, averaged over 5 runs with standard deviation in the brackets. Each model
was trained on 10 tasks in a continual setting, in multi-head models new encoder and extra decoder
layer was added for every new task. We use bold italics to denote the best result among all the models
and bold to denote best among the models with one encoder-decoder pair for all the tasks.

#
Ta

sk
s Standard EWC VCL Coreset MoG Boo Boo + VCL Multihead Multihead +

EWC

MNIST

2 343.5 (26) 258.3 (12) 84.8 (0.4) 108.6 (2.2) 98.1 (3.2) 96.1 (0.9) 74.9 (0.3) 399.2 (6.8) 119.6 (18.5)
3 122.0 (2.3) 118.9 (1.5) 107.6 (0.6) 106.9 (0.2) 106.9 (2.7) 101.3 (0.4) 95.2 (0.7) 203.9 (1.5) 114.2 (6.9)
4 146.1 (0.3) 138.5 (1.5) 118.3 (0.5) 121.8 (1.3) 123.7 (0.8) 111.9 (0.1) 104.1 (0.9) 217.6 (3.5) 115.3 (7.0)
5 197.0 (5.7) 187.4 (2.2) 129.9 (1.2) 138.1 (1.9) 141.2 (3.5) 121.0 (2.3) 109.1 (0.8) 281.5 (2.6) 115.9 (8.0)
6 164.3 (3.8) 158.8 (2.8) 126.1 (0.8) 135.8 (1.1) 144.5 (3.4) 120.8 (0.2) 113.5 (0.9) 215.0 (2.3) 113.5 (5.8)
7 205.2 (5.6) 184.2 (3.8) 128.0 (0.8) 144.2 (1.7) 161.9 (5.8) 122.9 (0.3) 113.7 (0.8) 247.6 (4.2) 113.7 (6.1)
8 213.2 (9.2) 187.0 (2.5) 125.6 (0.6) 141.4 (2.5) 168.7 (7.8) 122.4 (0.8) 111.2 (0.4) 301.0 (5.8) 112.2 (6.6)
9 171.0 (3.6) 157.7 (3.7) 127.4 (0.5) 137.5 (2.8) 163.3 (2.4) 124.5 (2.7) 114.5 (0.9) 210.6 (5.0) 112.3 (5.9)
10 186.8 (2.3) 169.3 (3.2) 125.7 (0.6) 137.0 (3.5) 180.1 (1.3) 124.5 (1.9) 112.7 (1.1) 256.5 (6.3) 111.3 (5.6)

notMNIST

2 329.5 (24) 298.9 (9.0) 221.6 (3.1) 241.8 (2.4) 251.1 (4.7) 238.6 (0.7) 210.4 (0.9) 497.9 (21) 188.1 (1.7)
3 412.3 (23) 346.5 (7.1) 234.1 (5.5) 243.5 (4.6) 288.5 (11) 245.6 (3.1) 206.3 (1.7) 702.6 (58) 179.8 (1.8)
4 299.2 (6.2) 290.3 (8.2) 253.4 (5.4) 227.5 (1.4) 271.2 (6.3) 238.8 (3.6) 215.7 (2.3) 662.5 (38) 175.2 (3.5)
5 321.4 (9.6) 290.1 (4.7) 238.5 (3.8) 235.0 (4.9) 274.2 (4.6) 251.1 (7.1) 212.7 (1.1) 644.0 (33) 174.2 (2.3)
6 329.1 (15) 316.8 (11) 248.3 (4.3) 228.1 (3.5) 301.7 (18) 247.5 (11) 214.6 (0.9) 803.7 (72) 170.2 (2.0)
7 310.9 (20) 294.3 (3.6) 241.3 (3.3) 231.2 (3.1) 288.8 (7.1) 255.8 (5.9) 216.4 (0.9) 724.6 (39) 170.8 (2.1)
8 338.6 (35) 316.4 (14) 254.5 (7.1) 230.6 (2.0) 320.4 (15) 263.1 (4.2) 224.2 (1.6) 757.9 (47) 169.1 (2.0)
9 339.1 (12) 314.1 (3.8) 234.2 (3.1) 229.0 (2.6) 317.8 (13) 252.7 (5.3) 214.8 (1.3) 905.3 (56) 161.5 (1.6)
10 402.4 (13) 374.4 (12) 242.2 (3.3) 233.7 (2.3) 358.6 (14) 261.4 (8.7) 214.3 (1.0) 951.2 (47) 158.7 (2.2)

fashionMNIST

2 259.1 (4.9) 270.9 (9.7) 223.5 (0.6) 230.3 (1.3) 256.4 (13) 224.5 (0.6) 218.8 (0.6) 383.3 (15) 231.0 (11.4)
3 290.9 (3.8) 284.1 (6.8) 253.8 (0.4) 257.8 (0.6) 266.1 (2.7) 252.9 (0.6) 249.7 (0.4) 327.1 (9.6) 250.8 (4.2)
4 273.5 (2.4) 269.5 (1.8) 250.9 (0.6) 254.1 (1.5) 273.4 (3.8) 244.7 (0.4) 242.1 (0.6) 336.1 (9.5) 240.8 (4.0)
5 272.0 (1.8) 268.1 (1.0) 255.9 (0.4) 255.2 (0.9) 266.3 (3.2) 250.8 (0.8) 248.6 (0.2) 333.6 (3.7) 247.7 (3.5)
6 507.8 (46) 447.4 (20) 262.7 (2.4) 258.1 (0.5) 329.3 (14) 245.2 (3.2) 243.5 (1.7) 675.8 (14.1) 242.8 (5.6)
7 276.5 (3.2) 271.0 (2.8) 257.2 (0.5) 255.7 (0.7) 266.3 (4.7) 250.0 (1.1) 248.5 (0.3) 382.7 (9.4) 247.7 (3.2)
8 1468 (585) 540.8 (25) 254.7 (1.6) 258.0 (0.3) 314.8 (18) 243.5 (1.4) 240.5 (0.8) 606.2 (35.7) 239.7 (3.0)
9 310.1 (19) 284.1 (1.4) 261.9 (0.9) 260.8 (0.8) 285.1 (3.0) 249.3 (1.1) 249.1 (1.1) 502.7 (30.3) 248.9 (4.5)
10 799.9 (273) 399.2 (27) 268.6 (1.5) 263.0 (1.6) 330.9 (8.4) 250.6 (4.6) 248.7 (0.5) 569.1 (28.4) 247.3 (4.7)

the per task diversity, which is equal to the 1
K

�
log 1

K � log p̂i

�
, i2{1, · · · , K}. Ideally, this value

should be 0 everywhere. If it is positive, then there is not enough images from a given class in the
sample. And vice versa, in case of negative value, there are too many samples from a given class. As
we can see from the plots, BooVAE is extremely close to the desired behaviour. If the method suffer
from catastrophic forgetting, it produces too many samples when the task is seen for the first time
(green zone on the graph) and not enough samples later on (red area), since it forgets how to produce
this samples.

18



Table 3: Diversity results, averaged over 5 runs with standard deviation in the brackets. The lower is
better, we use bold to denote the best model with one encoder-decoder pair.

#
Ta

sk
s Standard EWC VCL Coreset MoG Boo Boo + VCL

MNIST

2 0.69 (0.00) 0.69 (0.00) 0.10 (0.02) 0.69 (0.00) 0.00 (0.00) 0.00 (0.00) 0.21 (0.03)
3 1.04 (0.00) 1.01 (0.01) 0.23 (0.02) 1.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.29 (0.02)
4 1.33 (0.01) 1.32 (0.02) 0.24 (0.02) 1.29 (0.02) 0.00 (0.00) 0.00 (0.00) 0.34 (0.02)
5 1.57 (0.01) 1.58 (0.01) 0.12 (0.02) 1.54 (0.01) 0.24 (0.00) 0.00 (0.00) 0.30 (0.02)
6 1.68 (0.03) 1.67 (0.02) 0.57 (0.04) 1.58 (0.03) 0.51 (0.01) 0.00 (0.00) 0.64 (0.01)
7 1.92 (0.01) 1.88 (0.02) 0.65 (0.04) 1.82 (0.01) 0.67 (0.14) 0.00 (0.00) 0.58 (0.02)
8 2.02 (0.02) 2.01 (0.01) 0.63 (0.04) 1.91 (0.04) 0.88 (0.15) 0.03 (0.05) 0.59 (0.02)
9 2.09 (0.02) 2.07 (0.02) 0.67 (0.02) 1.90 (0.04) 1.07 (0.14) 0.08 (0.11) 0.63 (0.02)
10 2.26 (0.01) 2.22 (0.01) 0.78 (0.02) 2.09 (0.01) 1.23 (0.14) 0.11 (0.15) 0.74 (0.01)

notMNIST

2 0.62 (0.02) 0.62 (0.02) 0.00 (0.00) 0.57 (0.05) 0.22 (0.08) 0.01 (0.01) 0.10 (0.03)
3 1.04 (0.01) 1.02 (0.01) 0.02 (0.01) 0.93 (0.03) 0.53 (0.16) 0.01 (0.00) 0.31 (0.05)
4 1.11 (0.09) 1.12 (0.03) 0.06 (0.01) 0.92 (0.05) 0.72 (0.18) 0.02 (0.02) 0.51 (0.07)
5 1.35 (0.04) 1.32 (0.03) 0.04 (0.01) 0.94 (0.04) 0.91 (0.19) 0.01 (0.01) 0.44 (0.06)
6 1.49 (0.08) 1.52 (0.03) 0.10 (0.02) 1.07 (0.06) 1.01 (0.19) 0.05 (0.03) 0.40 (0.06)
7 1.52 (0.12) 1.51 (0.04) 0.14 (0.03) 1.00 (0.05) 1.22 (0.24) 0.05 (0.04) 0.40 (0.06)
8 1.46 (0.14) 1.53 (0.06) 0.35 (0.07) 0.76 (0.03) 1.40 (0.21) 0.07 (0.03) 0.44 (0.07)
9 1.10 (0.39) 1.09 (0.09) 0.23 (0.03) 0.37 (0.08) 1.49 (0.22) 0.14 (0.10) 0.62 (0.06)
10 1.95 (0.06) 1.94 (0.05) 0.35 (0.06) 1.22 (0.03) 1.59 (0.21) 0.20 (0.15) 0.60 (0.05)

fashionMNIST

2 0.68 (0.00) 0.67 (0.01) 0.01 (0.00) 0.65 (0.01) 0.03 (0.03) 0.00 (0.00) 0.00 (0.00)

3 1.02 (0.00) 1.00 (0.02) 0.21 (0.02) 0.89 (0.03) 0.19 (0.07) 0.00 (0.00) 0.00 (0.00)

4 1.28 (0.01) 1.26 (0.02) 0.55 (0.01) 1.15 (0.03) 0.34 (0.11) 0.00 (0.00) 0.00 (0.00)

5 1.34 (0.01) 1.30 (0.02) 0.30 (0.01) 1.10 (0.04) 0.37 (0.09) 0.00 (0.00) 0.01 (0.00)
6 1.78 (0.00) 1.77 (0.01) 0.31 (0.02) 1.68 (0.02) 0.53 (0.14) 0.00 (0.00) 0.01 (0.00)
7 1.31 (0.03) 1.31 (0.05) 0.61 (0.03) 1.11 (0.04) 0.63 (0.12) 0.01 (0.01) 0.02 (0.01)

8 2.08 (0.00) 2.08 (0.00) 0.36 (0.02) 1.96 (0.02) 0.67 (0.12) 0.00 (0.00) 0.03 (0.01)
9 2.07 (0.01) 2.10 (0.00) 0.86 (0.04) 1.96 (0.02) 0.77 (0.11) 0.01 (0.01) 0.02 (0.01)

10 2.24 (0.01) 2.24 (0.01) 0.63 (0.03) 2.03 (0.03) 0.85 (0.10) 0.02 (0.02) 0.04 (0.01)

19



1 2 3 4 5 6 7 8 9 10

Num of tasks

50

100

150

200

250

NLL for task 1

2 3 4 5 6 7 8 9 10

Num of tasks

NLL for task 2

3 4 5 6 7 8 9 10

Num of tasks

NLL for task 3

4 5 6 7 8 9 10

Num of tasks

NLL for task 4

5 6 7 8 9 10

Num of tasks

NLL for task 5

6 7 8 9 10

Num of tasks

50

100

150

200

250

NLL for task 6

7 8 9 10

Num of tasks

NLL for task 7

8 9 10

Num of tasks

NLL for task 8

9 10

Num of tasks

NLL for task 9

10

Num of tasks

NLL for task 10

Standard

EWC

VCL

Coreset

MoG

Boo

Boo + VCL

(a) MNIST

1 2 3 4 5 6 7 8 9 10

Num of tasks

150

200

250

300

350

400

NLL for task 1

2 3 4 5 6 7 8 9 10

Num of tasks

NLL for task 2

3 4 5 6 7 8 9 10

Num of tasks

NLL for task 3

4 5 6 7 8 9 10

Num of tasks

NLL for task 4

5 6 7 8 9 10

Num of tasks

NLL for task 5

6 7 8 9 10

Num of tasks

150

200

250

300

350

400

NLL for task 6

7 8 9 10

Num of tasks

NLL for task 7

8 9 10

Num of tasks

NLL for task 8

9 10

Num of tasks

NLL for task 9

10

Num of tasks

NLL for task 10

Standard

EWC

VCL

Coreset

MoG

Boo

Boo + VCL

(b) notMNIST

1 2 3 4 5 6 7 8 9 10

Num of tasks

150

200

250

300

350

400

450

500

NLL for task 1

2 3 4 5 6 7 8 9 10

Num of tasks

NLL for task 2

3 4 5 6 7 8 9 10

Num of tasks

NLL for task 3

4 5 6 7 8 9 10

Num of tasks

NLL for task 4

5 6 7 8 9 10

Num of tasks

NLL for task 5

6 7 8 9 10

Num of tasks

150

200

250

300

350

400

450

500

NLL for task 6

7 8 9 10

Num of tasks

NLL for task 7

8 9 10

Num of tasks

NLL for task 8

9 10

Num of tasks

NLL for task 9

10

Num of tasks

NLL for task 10

Standard

EWC

VCL

Coreset

MoG

Boo

Boo + VCL

(c) Fashion MNIST

Figure 9: NLL on the test dataset for each task separately averaged over 5 runs. The lower is better.

20



1 2 3 4 5 6 7 8 9 10

Num of tasks

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Task 1

2 3 4 5 6 7 8 9 10

Num of tasks

Task 2

3 4 5 6 7 8 9 10

Num of tasks

Task 3

4 5 6 7 8 9 10

Num of tasks

Task 4

5 6 7 8 9 10

Num of tasks

Task 5

6 7 8 9 10

Num of tasks

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Task 6

7 8 9 10

Num of tasks

Task 7

8 9 10

Num of tasks

Task 8

9 10

Num of tasks

Task 9

10

Num of tasks

Task 10

Standard

EWC

VCL

Coreset

MoG

Boo

Boo + VCL

Too many samples

Not enough samples

(a) MNIST

1 2 3 4 5 6 7 8 9 10

Num of tasks

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0
Task 1

2 3 4 5 6 7 8 9 10

Num of tasks

Task 2

3 4 5 6 7 8 9 10

Num of tasks

Task 3

4 5 6 7 8 9 10

Num of tasks

Task 4

5 6 7 8 9 10

Num of tasks

Task 5

6 7 8 9 10

Num of tasks

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0
Task 6

7 8 9 10

Num of tasks

Task 7

8 9 10

Num of tasks

Task 8

9 10

Num of tasks

Task 9

10

Num of tasks

Task 10

Standard

EWC

VCL

Coreset

MoG

Boo

Boo + VCL

Too many samples

Not enough samples

(b) notMNIST

1 2 3 4 5 6 7 8 9 10

Num of tasks

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Task 1

2 3 4 5 6 7 8 9 10

Num of tasks

Task 2

3 4 5 6 7 8 9 10

Num of tasks

Task 3

4 5 6 7 8 9 10

Num of tasks

Task 4

5 6 7 8 9 10

Num of tasks

Task 5

6 7 8 9 10

Num of tasks

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Task 6

7 8 9 10

Num of tasks

Task 7

8 9 10

Num of tasks

Task 8

9 10

Num of tasks

Task 9

10

Num of tasks

Task 10

Standard

EWC

VCL

Coreset

MoG

Boo

Boo + VCL

Too many samples

Not enough samples

(c) Fashion MNIST

Figure 10: Diversity score for each computed for each class separately. Each subgraph shows values
1/K (log 1/K� log p̂i) , i2{1, · · · , K} for the task k. That is one term from the sum (KL-divergence),
which shows difference between ideal and generated proportion of images for a specific class. On the
x axis there is total number of tasks seen by the model. Negative value means that model generates
too many images of the class, positive — not enough images from the given class.

21



B.3 Examples of generated samples

Figures (11),(12),(13),(14) contain samples from different VAE. Each row-block corresponds to the
total number of tasks seen by the model, while each columns corresponds to a different model. We
can clearly see, that BooVAE generates diverse samples after training on all the tasks (last row). We
also observe that addition of the regularization-based approaches makes samples from the models
more blurred. We assume that this is exactly reflected in the worse diversity metrics for BooVAE
with VCL. Even though the samples are still diverse, they are are sometimes of lower quality and
classification network makes more mistakes.

These samples provide qualitative proof of the generation diversity metrics, shown in Figure (2) and
in Tables (3),(1).

O
nl

y
B
la

ck
ha

ir
+

B
lo

nd
ha

ir
+

B
ro

w
n

ha
ir

+
G
ra

y
ha

ir

Standard + EWC Multihead + EWC Coreset (80 comp.) Boo (40 comp.)

Figure 11: Samples from prior after training on different number of tasks in the continual setting:
CelebA dataset. Each row-wise block from the top to the bottom corresponds to the cumulative
increasing number of tasks. Each column-wise block corresponds to the particular model.

22



O
nl

y
0

+
1s

+
2s

+
3s

+
4s

+
5s

+
6s

+
7s

+
8s

+
9s

Standard EWC VCL Coreset MoG Boo Boo + VCL

Figure 12: Samples from prior after training on different number of tasks in the continual setting:
MNIST dataset. Each row-wise block from the top to the bottom corresponds to the cumulative
increasing number of tasks. Each column corresponds to the particular model.

23



O
nl

y
A

+
B
s

+
C
s

+
D

s
+

E
s

+
Fs

+
G
s

+
H

s
+

Is
+

Js

Standard EWC VCL Coreset MoG Boo Boo + VCL

Figure 13: Samples from prior after training on different number of tasks in the continual setting:
notMNIST dataset. Each row-wise block from the top to the bottom corresponds to the cumulative
increasing number of tasks. Each column-wise block corresponds to the particular model.

24



O
nl

y
T

-s
hi

rt
+

T
ro

us
er

s
+

P
ul

lo
ve

rs
+

D
re

ss
es

+
C
oa

ts
+

Sa
nd

al
s

+
Sh

ir
ts

+
Sn

ea
ke

rs
+

B
ag

s
+

A
nk

le
bo

ot
s

Standard EWC VCL Coreset MoG Boo Boo + VCL

Figure 14: Samples from prior after training on different number of tasks in the continual setting:
Fashion MNIST dataset. Each row-wise block from the top to the bottom corresponds to the
cumulative increasing number of tasks. Each column-wise block corresponds to the particular model.

25



B.4 Random Coreset Size

In all the experiments we use the size of the random coreset equal to the maximal number of
components in BooVAE, which is 15 for all the MNIST dataset and 40 for CelebA. Since random
coreset basically means that we store a subset of the training data from the previous tasks, it is always
possible to find such size of the random coreset, that there is no catastrophic forgetting at all. In this
section we show, how large the random coreset should be to achieve results comparable to BooVAE
with 15 components.

We observe that on MNIST dataset only random coreset of size 500 per task results in better results in
terms of both NLL and KL divergence. Lower size of the random coreset does not produce samples
that are as diverse as samples from BooVAE. For Fashion MNIST we observe that situation with
NLL is similar, but even 500 samples is not enough to get diverse enough samples from the model.

100

105

110

115

120

125

N
LL

MNIST

240

245

250

255

260

FashionMNIST

15 30 50 100 500

Coreset size

0.50

0.75

1.00

1.25

1.50

1.75

2.00

K
L

15 30 50 100 500

Coreset size

0.0

0.5

1.0

1.5

2.0 Random Coresets

Boo

Figure 15: Negative Loglikelohood (top row) and KL, which assesses diversity of generated samples
(bottom row) for MNIST and Fashion MNIST dataset for different sizes of Random Corsets after
training on 10 tasks.

B.5 Architecture and Optimization details

Optimization We use validation dataset to select hyperparameters for a simple VAE (with a
standard Normal prior, trained on the whole training dataset) for each dataset. After that we fix these
hyperparemeters for all the methods used in the experiments in the continual learning setting.

For MNIST and FashionMNIST we randomly remove 10’000 images from the train dataset for
validation. For notMNIST we use small version of the dataset (19k images in total) and remove 10%
as a test data and 10% more as validation. For CelebA dataset we use split provided by the dataset
authors.

We use Adam to perform the optimization for all the datasets with LR scheduler, that reduce learning
rate by the factor when the loss is not decreasing for patience number of epochs. In the Table 4
we provide all the parameters of the optimization procedure. For CelebA dataset we use ��VAE
with � annealing. The value of � is gradually increasing from 0 to 2 during the first 10 epochs.

MNIST architecture We’ve used MLP with 3 linear layers and LeakyReLU activations both for
the encoder and decoder in all the cases. Detailed architectures are presented in Table 5.

CelebA architecture For CelebA dataset we’ve used convolutional NN. We use 2D convolu-
tions with kernel size 5⇥5, Batch normalization and ReLU activations for encoder and symmetric
architecture but with transposed convolutions for the decoder. See all the details in Table 6.

26



Table 4: Optimization parameters used in the experiments.

Parameter MNIST notMNIST FashionMNIST CelebA

Batch-size 250 250 500 512
Initial Learning rate 5e–4 5e–4 5e–4 1e–3
LR scheduler patience 30 30 30 9
LR scheduler factor 0.5 0.5 0.5 0.5
Max epochs 500 500 1000 300
Early stopping 50 50 50 15
(# ep. without improvement)
Latent dimension 40 40 40 128
Beta annealing No No No From 0 to 2 during first 10 epochs
# components per task (BooVAE) 15 15 15 40
Regularization weight (BooVAE, eq. (17)) 1 1 1 1

Table 5: MLP architectures for MNIST, notMNIST and FashionMNIST datasets.

MNIST notMNIST FashionMNIST

Encoder

Linear(784 -> 300) Linear(784 -> 1024) Linear(784 -> 1024)
LeakyReLU() LeakyReLU LeakyReLU
Linear(300 -> 300) Linear(1024 -> 1024) Linear(1024 -> 1024)
LeakyReLU() LeakyReLU LeakyReLU
µz Linear(300 -> 40) µz Linear(1024 -> 40) µz Linear(1024 -> 40)
log �

2
z Linear(300 -> 40) log �

2
z Linear(1024 -> 40) log �

2
z Linear(1024 -> 40)

Decoder

Linear(40 -> 300) Linear(40 -> 1024) Linear(40 -> 1024)
LeakyReLU() LeakyReLU LeakyReLU
Linear(300 -> 300) Linear(1024 -> 1024) Linear(1024 -> 1024)
LeakyReLU() LeakyReLU LeakyReLU
Linear(300 -> 784) Linear(1024 -> 784) Linear(1024 -> 784)
µx Sigmoid() µx Sigmoid() µx Sigmoid()

Table 6: Convolutional architecture for CelebA dataset.

Encoder Decoder

Conv(5x5, 3 -> 32) Linear(128 -> 4096)
BatchNorm() ReLU()
ReLU() ConvTranspose(5x5, 256 -> 128)
Conv(5x5, 32 -> 64) BatchNorm()
BatchNorm() ReLU()
ReLU() ConvTranspose(5x5, 128 -> 64)
Conv(5x5, 64 -> 128) BatchNorm()
BatchNorm() ReLU()
ReLU() ConvTranspose(5x5, 64 -> 32)
Conv(5x5, 128 -> 256) BatchNorm()
BatchNorm() ReLU()
ReLU() Conv(1x1, 32 -> 3)
µz Linear(256 -> 128) µx Softsign()
log �

2
z Linear(256 -> 128)

27


	My Bookmarks
	Introduction
	Background
	BooVAE Algorithm (Proposed Method)
	Optimal prior in continual learning
	BooVAE Algorithm

	Related Work
	Experiments
	Disjoint image generation task
	Generative Replay for Discriminative Model with continual VAE

	Conclusion
	Details of the BooVAE algorithm derivations
	Derivations for the optimal prior in continual framework
	BooVAE for VAE with flow-based prior
	Step-back for components

	Details of the Experiments and Ablation Study
	Results in continual learning setting
	Metrics for each task separately
	Examples of generated samples
	Random Coreset Size
	Architecture and Optimization details


