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Abstract

In this paper, we model the subspace of convolutional filters with a neural ordinary
differential equation (ODE) to enable gradual changes in generated images. Decom-
posing convolutional filters over a set of filter atoms allows efficiently modeling
and sampling from a subspace of high-dimensional filters. By further modeling
filters atoms with a neural ODE, we show both empirically and theoretically that
such introduced continuity can be propagated to the generated images, and thus
achieves gradually evolved image generation. We support the proposed framework
of image generation with continuous filter atoms using various experiments, includ-
ing image-to-image translation and image generation conditioned on continuous
labels. Without auxiliary network components and heavy supervision, the proposed
continuous filter atoms allow us to easily manipulate the gradual change of gen-
erated images by controlling integration intervals of neural ordinary differential
equation. This research sheds the light on using the subspace of network parameters
to navigate the diverse appearance of image generation.

1 Introduction

Conditional image generation has been widely studied in recent years due to its numerous applications
including image segmentation [12, 18], style transfer [57, 20], image inpainting [33, 52], image
super-resolution [54, 44], image registration [1], and image synthesis [31]. Despite extensive research
and applications in these fields, limited progress has been made on conditional image generation
using continuous or closely spaced labels due to the difficulties pointed out in [8], e.g., the absence
of real images for some labels. It is shown in [8] that the standard training with empirical risk
minimization does not apply well to continuous labels. Moreover, it remains challenging to encourage
the generation diversity, especially without heavy supervision, while maintaining output fidelity.
Previously, generation diversity is mainly encouraged using explicit regularization terms to convey
diversity with additional latent codes [26, 34]. However, explicit regularizations inevitably introduce
additional hyperparameters, and sub-optimal hyperparameters can often cause either poor diversity or
noticeable sacrifices in terms of generation quality and the correspondence to input conditions.

On the other hand, achieving generation diversity by modeling the deep network parameter space
has attracted limited attention [47]. This direction is mainly challenged by the prohibitive cost on
both modeling of and sampling from the very high-dimensional space of convolutional filters in
modern image generative networks. Motivated by the observation that a convolutional filter can be
well approximated by a linear combination of low-dimensional filter atoms, BasisGAN [47] shows in
image generation that, the high-dimensional filter space in each layer can be well approximated by a
low-dimensional filter subspace, which significantly reduces the cost of both parameter modeling and
sampling. In this way, each sampling of the modeled parameter subspace results in one deterministic
transformation from the input condition to the desired target domain, and the diverse outputs are
achieved by sampling multiple times. More importantly, it is empirically shown in [47] that without
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any explicit regularizations, such parameter subspace modeling can work as a plug-and-play module
to convert a deterministic conditional image generation network to produce diverse images with
appealing stochasticity, without any auxiliary network components or regularization terms.

However, we observe that the filter subspace modeling in [47] suffers from several major limitations:
First, this method is sensitive to network configurations of the basis generator, as minor changes
to the parameters can highly likely to trigger mode collapse in the parameter distribution, which
results in a point estimation to the subspace of parameter and removes diversity in the output images.
Furthermore, BasisGAN is incapable of modeling a continuous space, so that gradual changes to the
generated parameters cannot be obtained by simply interpolating the latent codes.

In this paper, we adopt a subspace view to convolutional filters by performing atom-coefficients
decomposition, as in [35, 47, 46, 48]. Then we further model the filter subspace using a neural
ordinary differential equation (ODE), so that we are able to sample from this continuous subspace
a series of filter atoms at arbitrarily fine resolution. The low-dimensional filter subspace allows
extremely efficient learning and modeling using ODE. We show both empirically and theoretically
that, continuous transition in the filter subspace can be propagated naturally to generated images, and
thus produce visually appealing images with gradually varying appearance. More importantly, we
show that the continuity introduced to the filter subspace and the induced generation smoothness
allow continuous manipulation of generated appearance with only discrete samples as supervision,
which is a task that is used to be considered intractable by training with standard empirical risk
minimization [8]. These appealing properties of the proposed method enable various significant
applications through only standard training, without requiring any auxiliary network components,
additional regularization terms, or heavy supervision.

We perform various experiments on conditional image generation, with conditions being in the form
of images, labels, or both. We list here several example applications that are enabled by the proposed
image generation using continuous filter atoms from an ODE atom generator:

• Continuous image synthesis that covers a wide range of gradually varying appearance with
high fidelity and accurate correspondence to the input condition.

• Sequential image synthesis with explicitly specified starting and ending points to allow
flexible appearance manipulation without heavy supervision.

• Interpolation of generated image appearance at arbitrarily fine resolution.

• An effective approach to generating images conditioned on continuous labels.

2 Related Work

Conditional image generation. Image generation is widely studied in the machine learning com-
munity, from restricted Boltzmann machines [39] to variational autoencoders [21]; in particular
variants with conditions [30, 40, 42] show promising results. Empowered by GANs [11], conditional
generative adversarial networks (cGANs) [17, 33, 38, 43, 50, 57, 26, 47] have demonstrated superior
performance on image generation with the restriction of condition. Recently, conditional image
generation with conditions on continuous labels has attracted attention, and new training schemes
[8] are proposed to improve continuous conditional image generation. From the perspective of the
dynamic of parameter subspace, our method provides a simple yet effective solution.

Continuous image translation. Many works have discussed improving the diversity of generated
images in image-to-image translation tasks [47, 34, 6, 26, 23, 45, 15, 53, 5]. However, continuous
image translation that aims to generate intermediate images between the source and the target images
is not yet widely studied. Some previous works [55, 51, 27, 49, 10] have manipulated the attribute
vectors either by interpolation or linear transformations to continuously control the latent space.
[16, 25] employ multiple generative networks in the middle of the pathway from source to target
image to generate intermediate results. [6, 36] disentangle the latent space as content and style codes
and interpolate the styles, in order to produce intermediate samples. However, all the aforementioned
methods rather need to import auxiliary neural networks or carry extra burdens on model training by
introducing additional regularization or supervisions. Moreover, synthesizing intermediate images
without relying on interpolation of either domain labels, or disentangled representations, which can
discourage the stochasticity of generated images, is still considered a big challenge.
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3 Continuous Filter Atoms

In this section, we start with a brief review of neural ODEs and atom-coefficient filter decomposition,
which serve as key ingredients in the proposed image generation approach. We then present in detail
that, with the effectiveness being theoretically justified, how the proposed continuous atom generation
using neural ODEs achieves gradual image generation.

3.1 Neural ODEs

Neural ordinary differential equations (ODEs) are introduced in [4] as an approach to interpreting
the neural network as a system of ODEs, where each ODE represents an underlying dynamic of the
hidden elements. Especially, neural ODEs are frequently adopted to enforce continuous dynamics in
latent representations, for example, [19, 32] propose to use neural ODEs to smoothly connect the
latent space of video frames; [37] adopts ODE-RNNs to model time-continuous hidden dynamics to
handle irregularly sampled time-series data.

Neural ODEs model a latent state z(ts) as z(ts) = z(t0) +
R ts
t0

f(z(t), t;✓) dt, where dz(t)
dt =

f(z(t), t;✓) is modeled as a neural network parametrized by ✓. Then, the latent state at an arbitrary
point ts can be obtained as

z(ts) = ODESolve(z(t0), f, (t0, ts), ✓), (1)

where t0 and ts denote the start and the end of the integral interval, respectively. The simplest method
for approximating the solutions of the ordinary differential equations with a given initial value is
the Euler’s method, which is a first-order integrator with a fixed step size. In practice, families of
Runge-Kutta methods, e.g., the Midpoint method and fourth-order Runge-Kutta [22], are preferred
due to their superior convergence and stability. Note that all the experiments in this paper follow the
implementation in [4] for Runge-Kutta of fifth-order of Dormand-Prince-Shampine with adaptive
step size [9].

For any given integral interval (ti, tj) where i, j 2 {0...T}, ODESolver always outputs a unique
solution for the integral of the continuous dynamics, as long as the ordinary equation f is uniformly
Lipschitz continuous in z and t [7]. Parametrizing f as a neural network equipped with Lipschitz
continuous non-linear functions will meet the requirements. Thus, in our paper, modeling filter
subspace using neural ODEs guarantees continuity as we will theoretically justify later.

3.2 Convolutional Filter Decomposition

Directly modeling the space of high-dimensional convolutional filters in an image generation network
is practically prohibitive in terms of both computation and parameter scale [47]. Inspired by the
observation that a convolutional filter can be well-approximated as a linear combination of filter bases
[35], as shown in [47], a subspace view to the convolutional filters can be adopted in image generation
network by decomposing each convolutional filter as a linear combination of low-dimensional filter
atoms. Specifically, given an l ⇥ l-sized convolutional filter F 2 Rc⇥c0⇥l⇥l with c0 input and c
output channels, respectively, we can decompose the filter over a set of m atoms D as F = AD,
where D 2 Rm⇥l⇥l, and A 2 Rc⇥c0⇥m are the filter subspace coefficients. As we will show later,
by modeling the continuity of a low-dimensional filter subspace using neural ordinary differential
equations, we achieve efficient training and modeling of gradual appearance changes in conditional
image generation.

3.3 Continuous Atom Generation for Smooth Appearance Modeling

In this paper, we aim for modeling gradual changes in generated images with respect to continuous
input conditions. Instead of seeking new ways of training, we provide a unique view by modeling the
transformation from an input condition to the corresponding output with parameters instantiated from
an underlying continuous space, which subsequently leads to generated images with gradual changes.

We adopt the aforementioned atom-coefficient decomposition, which permits low computational
modeling of filter subspace as also validated in [47]. However, modeling a filter subspace with
standard neural networks can still suffer from mode collapse often caused by sub-optimal network
configurations, and the continuity is also difficult to be guaranteed by standard training as discussed
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Figure 1: Illustration of the proposed
image generation using continuous filter
atoms. Note that only a single convolu-
tional layer is shown here for easier view-
ing. We decompose each convolutional fil-
ter as F = AD, where the coefficients
A 2 Rc⇥c0⇥m remain learned determinis-
tically, and the filter atoms D 2 Rm⇥l⇥l

are sampled from a continuous atom space
modeled with neural ODE. As shown in the
red box, continuously sampled atoms can
produce images with gradual appearance
changes.

in [8]. We therefore adopt a neural ODE based filter atom generator with the continuity property
discussed in Section 3.1, and show theoretically that such atom continuity can be propagated to the
deep network outputs to achieve conditional image generation with gradual changes.

Specifically, we decompose the i-th layer filters Fi into respective atoms Di and coefficients Ai,
as Fi = AiDi. Over k layers of filters {Fi}k1 , we jointly model the corresponding atoms {Di}k1
using atom generation. We assume that all instantiations of filter atoms reside in a continuous space
parametrized as D(t) where t is a time variable, i.e., the generated atoms at the time point t can be
expressed as D(t). In the limit of a small step ✏, the local dynamic within this atom space can then be
expressed as D(t+ ✏) = D(t) + ✏ · dD(t)/dt. Therefore, given an initial state of atoms within this
space denoted as D(t0), and modeling the derivative of dD(t)/dt using a neural network f(·, ·; ✓):

dD(t)

dt
= f(D(t), t; ✓), (2)

any samples within this atom space can then be obtained by an integral of the function values of
f from t0 to the desired ending point. The described dynamic leads naturally to a neural ordinary
differential equation, where the instantiation at a time point ts, s > 0, in this continuous dynamic can
be obtained through a continuous atom generator T by

D(ts) = T (ts;D(t0), ✓) = D(t0) +

Z ts

t0

f(D(t), t; ✓)dt. (3)

Note that the initial state D(t0) here are free parameters to be optimized in the training jointly with
✓ that parametrizes f . Starting from the initial state D(t0), an instantiation of filter atoms D(ts) is
defined to be a unique solution to the ODE initial value problem at some condition ts, by Picard’s
existence theorem. Consequently, as t varies, different instantiations of atoms are generated from this
modeled continuous filter subspace, and our corresponding atom generator equipped with ODESolver
learns the underlying continuous dynamics of the filter subspace.

Given the subspace of filters modeled as an underlying continuous dynamic through neural ODE, we
prove the Lipschitz-type continuity transducted from atoms to output features in the i-th layer. For
simplicity, let c = c0 = 1, and the argument extends. Given an input image X(u) (u 2 U ,U ⇢ Z2) ,
define the local input norm ||x||2,Nu

:= (
P

u02Nu
x(u� u0)2)1/2 and the convolution hx,wiNu

:=P
u02Nu

x(u � u0)w(u0), where Nu ⇢ U is a local Euclidean grid centered at u. The i-th layer
function F i : Xi�1 �! Xi can be expressed as,

Xi(u) = F i(Xi�1,Di;Ai) = �(
mX

k=1

Ai
khXi�1,Di,kiNu + bi), (4)

where Di,k denotes the k-th atom in the i-th layer, Ai
k is the corresponded k-th coefficient, and bi

denotes the bias at the i-th layer.
Theorem 1. Suppose Di

1 and Di
2 are two continuously generated atoms, (i.e., 9M > 0, ||Di

1 �
Di

2||2  M |t1 � t2|), and assume the activation function � is non-expansive which holds for ReLU,
then F i is continuous in Di,

||Xi
1 �Xi

2||2  (||Ai||2�)
p
|U| · ||(Di

1 �Di
2)||2, with � = sup

u2U
||Xi�1||2,Nu , (5)

4



!! !" !# !$%" !$

D(#!)
D(#")

D(##) D(#$%")

D(#$)

$(#!)
$(#")

$(##)
$(#$%")

$(#$)

Figure 2: An example of generating rotat-
ing chairs with the proposed continuous filter
atoms. Each t in the figure represents a dis-
tinct angle along the roll axis, and is given as
an explicit condition to the atom generation.

15! 20! 25! 30! 35! 40! 45!

17.5! 22.5! 27.5! 32.5! 37.5! 42.5!

Figure 3: Visualization of interpolated samples in the
rotating chair example. As the neural ODE-based
atom generator learns a smooth trajectory of rotation,
image generation at any desired degrees is now al-
lowed. The images generated at the blue dots are
interpolation results for unseen rotation angles.

in which Xi
1 = F i(Xi�1,Di

1;A
i), Xi

2 = F i(Xi�1,Di
2;A

i) are outputs correspond to two atoms.

Proof. The proof is provided in the Appendix Section A.

Notably, modeling the atom subspace of filters offers significant advantages on efficiency. Under
the rule of neural ODE, the dimensionality of D(t) cannot be varied, meaning the dimension of the
input and the output of the ODESolver remain strictly consistent. This additional restriction makes
modeling the space of full-size filters practically infeasible due to the computation and memory
constraints. Meanwhile, by modeling the filter subspace instead, we significantly reduce the cost
of learning the corresponding neural ODE. Typically, atoms across layers introduce a few hundred
parameters only and significantly simplify the training and inference of atom generator T .

3.4 Image Generation with Continuous Labels

Depending on the specific applications of the proposed continuous atom generation as we will show
next, the ending points of the ODE integral can be: 1) explicitly given to strictly control the behavior
of continuous dynamics, or 2) stochastically sampled from a prior distribution, e.g., Uniform or
Gaussian, to enhance the diversity of the generated images.

Explicit continuous conditions. Compared to the previous conditional GAN methods [28, 29],
where label information is vectorized or one-hot encoded, the proposed method permits minimal
preprocessing to the continuous labels, which are fed into the continuous atom generator simply in
the forms of raw floating numbers preserving the continuity of labels. Moreover, unlike [28] which
can only take finite discretized conditions, such as categorical class information, continuous filter
atoms do not hold any such restrictions. Therefore, by sampling filter atoms from the subspace of
convolutional filters modeled by neural ODE, with the desired ending points of integral specified by
the continuous labels, the continuous filter atoms can be evaluated with any values within a valid
range of the regression labels. To illustrate this, we present an interpolation example in Figure 3, and
show that, with the underlying dynamics of the rotated chair images captured by continuous atom
generator trained on limited angels only, the proposed method allows interpolation to the modeled
dynamic at arbitrarily fine resolution, and generates rotated chairs at any angels that are not exposed
to the model during training.

Stochastic continuous conditions. The stochastic modeling of integration interval permits gen-
erated images with diverse appearances, and gradual transitions among the generated images. As
we will show in Section 4.1, while the proposed method cannot directly enforce perceptual diverse
samples as in [47], the sampled sequences with gradual appearance changes jointly offer decent
diversity while maintaining outstanding fidelity and correspondence to the input conditions.

3.5 Conditional Image Generation with Continuous Atoms

By simply plugging in the proposed continuous atom generator to off-the-shelf GANs, we show
next that variants of conditional generative adversarial models (cGAN) [11, 28] with continuity can
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be easily obtained. The training does not involve any auxiliary network components or additional
regularizations.

Conditional on images. Image generation conditional on images, also known as image-to-image
translation [17], aims at generating a target image of a certain domain with high fidelity and desirable
diversity [47, 26, 34] while maintaining correspondence w.r.t. an input image condition. We introduce
image generation conditional on input images with the output space modeled as a smooth sequence
through continuous atom filters, thus sampling the continuous filter atoms allows generating images
with gradual appearance changes without losing the correspondence to the conditions. Formally,
representing the condition images as x, which are usually samples from an empirical distribution p(x),
we aim at modeling a conditional distribution p(y|x). By plugging in the continuous atom generator
T (t;D0, ✓), the conditional distribution is learned to be modeled by generator G�,✓,D0 , where �
contains all remaining parameters in the generator, e.g., the coefficients A in each decomposed
convolutional layer. And the input to the discriminator D is now trained to evaluate the compatibility
of a pair of images, one from the source domain x ⇠ p(x), the other one comes from either true
target distribution y ⇠ p(y|x), or the generated approximation G�,✓,D0(x; T (t;D0, ✓)).

The training can be realized as

min
G

max
D

L(D,G) =Ex⇠p(x),y⇠p(y|x)[log(D(x,y))]+

Ex⇠p(x),t⇠U(t0,t�1)[log(1� D(x,G�,✓,D0(x; T (t;D0, ✓))))],
(6)

where U(t0, t�1) denotes uniform distribution with the range specified by t0 and t�1.

Conditional on labels. As pointed out in [8], cGANs are good at conditional image generation with
discrete labels but can struggle at continuous labels. In our method, without leveraging any customized
training schemes as in [8], we show that the continuous image generation with standard empirical
risk minimization can be significantly improved by placing an assumption on the gradual appearance
change across continuous labels, and trained with continuous atom generation given continuous
labels as the inputs. Formally, we define the scalar regression label as x sampled continuously from
x ⇠ p(x), and plug in the continuous atom generator to standard cGAN to model the desired target
distribution p(y|x). The image generation is then achieved as G�,✓,D0(z; T (↵x;D0, ✓)), with an
input vector z ⇠ N (0, I) carrying randomness as in standard cGANs. Comparing to (6), the input to
the continuous atom generator is replaced as ↵x, where ↵ is a predefined scalar that linearly scales
the input continuous labels. And we use a standard discriminator with each input consists of an image
and a label. The training can be realized as

min
G

max
D

L(D,G) =Ex⇠p(x),y⇠p(y|x)[log(D(x,y))]+

Ex⇠p(x),z⇠N (0,I)[log(1� D(x,G�,✓,D0(z; T (↵x;D0, ✓))))].
(7)

Conditional on both images and labels. For image-to-image translation tasks, a few works have
explored imposing conditions on both images and labels to achieve scalable image translation while
introducing diversity and manipulations. Specifically, [45] and [5] impose additional domain attributes
to navigate the image translation. However, the domain attributes they condition on are all categorical
labels, and none of those methods can adopt continuous or raw format (e.g, float numbers) labels
to capture the gradual changes in the desired target image space. Our method permits using the
continuous labels fed into the atom generator to explicitly control sampling in the continuous filter
subspace, while maintaining consistent input image conditions. Therefore, the proposed method is
able to achieve image generation with gradual appearance changes w.r.t. the input continuous label
conditions, and preserve strong correspondence to the source image. To the best of our knowledge, our
method is the first work to present gradually changing image-to-image translation results conditioned
on both images and continuous labels. Formally, having both x ⇠ p(x) and x ⇠ p(x), which refer
to the input image and the scalar label, respectively, we employ our continuous atom generator,
T (↵x;D0, ✓), to get the desired target distribution p(y|x,x). We then formulate our image generator
as G�,✓,D0(x; z; T (↵x;D0, ✓)). The training can be realized as

min
G

max
D

L(D,G) =Ex⇠p(x),y⇠p(y|x,x)[log(D(x,y))]+

Ex⇠p(x),x⇠p(x)[log(1� D(x,G�,✓,D0(x; T (↵x;D0, ✓))))].
(8)
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Input Ground truth Generated samples with gradual changes

Figure 4: Continuous image-to-image translation. The network is trained without any auxiliary loss
functions or regularizations. From top to bottom, the image to image translation tasks are: edges !
handbags, edges ! shoes, nights ! days, labels ! facades, and maps ! satellite.

Table 1: Quantitative results on image generation conditional on images only.

Methods Labels!Facedee Map!Satellite Night!Day Edge!Shoe Edge!Handbag
LPIPS " FID # LPIPS " FID # LPIPS " FID # LPIPS " FID # LPIPS " FID #

BicycleGAN 0.1413 98.85 0.1150 145.78 0.103 120.63 0.139 72.49 0.184 96.28

MSGAN 0.1894 92.84 0.2189 152.43 0.176 107.90 0.167 60.28 0.228 89.96

BasisGAN 0.2648 88.70 0.2417 35.54 0.184 102.56 0.242 64.17 0.350 88.76

Ours 0.2712 87.75 0.1803 98.72 0.264 106.95 0.237 57.29 0.276 38.07

4 Experiments

In this section, we present results and comparisons in two experimental settings. We start with
continuous image-to-image translation tasks where we show that by directly plugging in the proposed
continuous atom generator, we can either condition the generated images solely on images, or on
both images and labels, where each of the cases refers to (6) and (8), respectively. In both cases, we
quantitatively and qualitatively show that our method achieves continuous image generation with
high fidelity and diversity. Then, we proceed to image generation tasks conditional on continuous
labels following (7). We compare the proposed method with [8] and [28] on the face generation
experiments. Implementation details are in Appendix Section B. More qualitative results are in
Appendix Section C.

4.1 Continuous Image-to-image Translation

The introduced continuous atom generation can be naturally applied to the image-to-image translation
experiments [47] as a simple plug-and-play module. Specifically, in image-to-image translation tasks
with paired samples, we adopt a ResNet [13] based generator network following the implementation of
Pix2Pix [17]. All the convolutional filters of the ResNet blocks are decomposed into atom-coefficients
where an individual atom of each block is generated continuously with neural ODE. Note that a
single neural ODE is utilized throughout the entire network, enforcing the network to be governed by
a single continuous dynamic. These settings are also applied in unpaired image-to-image translation
tasks, where we replace our baseline model from the Pix2Pix to ResNet-based CycleGAN [57].

Continuous image-to-image translation conditional on images. We present results on various
datasets including edges ! handbags, edges ! shoes, maps ! satellite, night ! days, and labels !
facades. Compared to previous methods working on the same datasets, our method does not focus
on generating images with strong diversity. Instead, we show that by plugging in the introduced
continuous filter atoms, images with smooth intermediate transitions can be obtained by directly
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Table 2: Quantitative results on image generation conditional on both images and labels under the
configuration of image-to-image translation tasks with paired inputs. Diversity and fidelity are
measured using LPIPS and FID, respectively. As Pix2Pix is a deterministic model, LPIPS scores for
Pix2Pix are all marked as ‘-’, and all the scores resulted in zero.

Datasets RC49 RCA20 RA20 RL20 RT20

Methods Pix2Pix Ours Pix2Pix Ours Pix2Pix Ours Pix2Pix Ours Pix2Pix Ours

LPIPS " - 0.1127 - 0.0931 - 0.068 - 0.1089 - 0.1213

FID # 251.49 195.01 218.88 85.06 165.01 73.82 227.04 124.83 206.49 70.92

0� 10� 20� 30� 40� 50� 60� 70� 80� 90�

Input Gradually rotating samples

Figure 5: Continuous image-to-image translation conditional on both images and labels with paired
samples. From top to bottom, the trained datasets are: RA-20, RCA-20, RL-20, and RT-20. The
generated images of all datasets rotate from a degree 0.1 to 89.9 at the interval of 5 degree, along the
yaw axis. All models are trained with Pix2Pix by plugging in our continuous atom generator.

training the network without any additional supervision and regularizations. As shown qualitatively
in Figure 4 and quantitatively in Table 1, these smooth transitions in the generated appearance can
naturally lead to satisfying diversity without compromising the quality of the generated images and
the correspondence to the input conditions.

Continuous image-to-image translation conditional on regression labels. We present results
of image-to-image translation tasks conditional on regression labels on a variety of datasets and
experimental settings. Following (8), the generated images are conditional on explicitly given
regression labels, while keeping correspondence to the input image. We start with experiments on
image-to-image translation on paired samples, and then proceed to the unpaired samples.

Paired samples. In this experiment, we plug in our continuous filter atoms to the Pix2Pix [17]
model and conduct continuous conditional image-to-image translation tasks on five different synthetic
datasets, RC-49 [8], RA-20, RCA-20, RT-20, RL-20, where objects in each dataset are rendered to
rotate between 0� and 360� with 0.1� interval. Since there are very few datasets of 3-D objects with
continuous labels, we created new datasets RA-20, RCA-20, RT-20, RL-20, by rendering ‘Airplanes’,
‘Cars’, ‘Tables’, ‘Laptops’ categories of ShapeNet, respectively, following the manuals of RC-49.
We add further descriptions of datasets in the Appendix Section B.1. During training, we only use
samples with rotation degrees below 90�, and fix the 0� image as the source image with varying target
images. We adopt the gap of rotation degree between the source and the target image as an external
condition for atom generation. We show in the Figure 5, that the generated images rotate smoothly
according to the given rotation degrees. Especially for the results of RC-49, although we have
organized the training data in 5� interval, it is noteworthy that our method generated interpolation
results at the interval of 2.5 degree in the Figure 3. Table 2 also demonstrates that the generated
images of our proposed method hold a higher level of fidelity than the baseline.

Unpaired samples. For translation tasks on unpaired datasets, we present results on UTKFace [56],
SteeringAngle, cells-200, and Waymo [41] dataset. Other than the Waymo dataset [41], all the
datasets are composed of images with continuous labels, e.g., the age for UTKFace, the angle of
the steering wheel of a car for the SteeringAngle, and the number of cells for Cells-200. Waymo
[41] dataset has four different time labels for each image, which are dawn, daytime, dusk, and night.
We add more detailed descriptions on the datasets in the Appendix Section B.1 with additional
results of aging face experiments on the CACD2000 [3] at Appendix Section B.2. In the unpaired
image-to-image translation tasks, using continuous labels can lead to confusion in training, as the
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Table 3: Quantitative results on conditional image generation when image and label were both given
as input conditions under the configuration of unpaired image-to-image translation task. We present
results on UTKFace [56], CACD2000[3], SteeringAngle, and Cell200. Diversity and fidelity are
measured using LPIPS and FID, respectively. The LPIPS scores for the CycleGAN are marked as ’-’,
as the all LPIPS scores resulted in zero, with no meaningful diversity observed.

Datasets Cell200 SteeringAngle UTKFace CACD2000

Methods CycleGAN Ours CycleGAN Ours CycleGAN Ours CycleGAN Ours

LPIPS " - 0.1355 - 0.0544 - 0.0052 - 0.0018

FID # 30.44 22.22 73.03 52.39 47.24 41.55 58.43 57.15

Input Generated samples with gradual changes

Figure 6: Continuous image-to-image translation conditional on both image and labels with unpaired
samples. From top to bottom, the datasets are: UTKFace (young ! old), SteeringAngle (steering
angle at -80� ! steering angle at 80�), Cell200 (one cell ! two-hundred cells), and Waymo (dawn
! day). All models are trained with CycleGAN by plugging in our continuous atom generator.

tendency of continuous labels can be violated within unpaired samples. For instance, in the human
face translation experiment, due to different levels of aging among people, it is more natural to have
the age group as a class, rather than treating each age as a class. Therefore, the target domain is
divided into a specific interval of labels, so that each sub-group of the target domain can be assigned
distinct labels instead. The distinct labels are then directly used as a condition for modeling the
continuous subspace of atoms as in (8). Despite the use of distinct labels, we highlight that it is
still possible to capture continuous variation between the generated images via interpolation in the
continuous filter subspace. During the training, images with certain conditions,.e.g, teenagers for
the UTKFace, -65� to -80� for SteeringAngle, one number of cell for Cells-200, and dawn time
for Waymo, are fixed as a source domain input. Figure 6 shows the gradual changing between the
condition of the target domain. While keeping a certain amount of consistency within the input image,
smooth transitions between generated images are observed. In particular, the result of the Waymo
dataset at the fourth row of Figure 6 well captures progressive changes over time in the generated
images from dawn to daytime, through interpolation in filter subspace. Table 3 also highlights our
proposed method’s superior fidelity over the baseline model. Additional training details are presented
in the Appendix Section B.

4.2 Conditional Image Generation with Regression Labels

We present face image generation with the condition only on a regression label specifying the age.
The training objective follows (7) strictly. We construct a conditional image generation network by
replacing the Adaptive Instance Normalization (AdaIN) [14] layers with standard batch normalization
layers, and replace convolutional filters with the proposed continuous atom generation networks.
As shown in the qualitative results in Figure 7, by fixing the input latent code z, and changing only
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Figure 7: Continuous image generation conditional on regression labels. From left to right, each
column are images generated with the same atoms sampled from the continuous atom space and
model the appearance of face at a particular age from 0 to 60. By fixing z in (7), each row shows the
gradual appearance changes w.r.t. continuously sampled atoms.

Table 4: Quantitative results on conditional image generation when the label is given as an input
condition. We present results on UTKFace [56] with age as regression labels.

Dataset Methods Intra-FID # NIQE # Diversity " Label Score #

UTKFace
cGAN 4.516 2.315 0.254 11.087

CcGAN 0.425 1.725 1.298 7.452

Ours 0.432 1.749 1.321 7.399

the condition scalar x, we are able to generate sequences of images with gradual age changes. And
switching z allows changing the identity of the face sequence. Comparable quantitative results in
Table 4 with CcGAN [8] further demonstrate the effectiveness.

5 Conclusion

In this paper, we presented both theoretically and empirically that, continuous dynamics of con-
volutional filters can be effectively modeled in the filter subspace by neural ordinary differential
equation, to subsequently achieve conditional image generation with gradual appearance changes.
The introduced continuous filter atom generation enables continuous image generation conditional
on images, labels, or both. We demonstrated its effectiveness using both superior quantitative and
qualitative results.
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