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A Proof of Moser’s Theorem.

We will review here the proof of Moser Theorem 1; for more details see Moser’s original paper
(Moser, 1965) or Lang (2012), Chapter 18 section 2. Let α̂t = αtdV be the time-dependent volume
form overM corresponding to the density interpolant αt. Note that

∫
M α̂t = 1. Moser’s idea is to

replace equation 2 with its continuous version:

α̂0 = Φ∗t α̂t, t ∈ [0, 1] (A1)

If equation A1 holds for all t ∈ [0, 1] then plugging t = 1 leads to equation 2. Since equation A1
holds trivially for t = 0 (since Φ0 is the identity mapping), solving it amounts to asking that Φ∗t α̂t is
constant, i.e.,

d

dt
Φ∗t α̂t = 0. (A2)

The time derivative of Φ∗t α̂t can be computed with the help of the Lie derivative (e.g., Proposition 5.2
in Lang (2012)): If Φt is the flow corresponding to the time dependent vector field vt (see equation 3),
and ω is a differential form then

d

dt
(Φ∗tω) = Φ∗t (Lvtω),

where L denotes the Lie derivative. The Lie derivative Lvω of a smooth vector field v and smooth
differential form ω can be computed using Cartan’s "magic formula" (see e.g., Theorem 14.35 in Lee
(2013)):

Lvω = iv(dω) + d(ivω),

where ivω is the interior multiplication of a vector field and a differential form defined by
(ivω)(v2, . . . , vn) = ω(v, v2, . . . , vn). In case ω is an n-form (as α̂t in our case) we have dω = 0 so
the first term in the r.h.s. above vanishes. Lastly, we will need the following "trick":

d

dt
(Φ∗t α̂t) =

d

ds

∣∣∣
s=t

(Φ∗sα̂t) +
d

ds

∣∣∣
s=t

(Φ∗t α̂s).

Putting the last three equations together we get:

d

dt
(Φ∗t α̂t) = Φ∗t (Lvt α̂t) + Φ∗t

(
d

dt
α̂t

)
= Φ∗t

(
d(ivt α̂t) +

d

dt
α̂t

)
. (A3)

The theorem is proven if one can show that vt ∈ X(M) exists such that d(ivt α̂t) + d
dt α̂t = 0. The

divergence operator is defined by the equality d(iwdV ) = div(w)dV , for a vector field w ∈ X(M).
Therefore d(ivt α̂t) = div(αtvt)dV . Denote γ̂t = d

dt α̂t. Then we need to show that vt ∈M exists
such that

d(ivt α̂t) + γ̂t = 0. (A4)

By the Hodge decomposition (see Theorem 4.18 in Morita (2001)) γ̂t can be written as a sum of an
exact and harmonic forms: γ̂t = dβ̂t + ĥt. Since every harmonic form on a connected, compact,

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



oriented Riemannian manifold is a constant multiple of the Riemannian volume form, cdV (see
Corollary 4.14 in Morita (2001)), we have

0 =
d

dt
1 =

d

dt

∫
M
α̂t =

∫
M
γ̂t =

∫
M
dβ̂t +

∫
M
ĥt =

∫
M
ĥt = c

∫
M
dV,

where in the second from the right equality we used Stokes Theorem (see e.g., Theorem 16.11 in Lee
(2013)) and the fact thatM has no boundary. This implies that c = 0, and

γ̂t = dβ̂t. (A5)

Using the correspondence between vector fields and d − 1 forms we let βt = iutdV , where ut ∈
X(M), and dβt = d(iutdV ) = div(ut)dV .

Lastly, consider vt defined as follows:

vt = −ut
αt
. (A6)

With this choice equation A4 is satisfied:

d(ivt α̂t) + γ̂t = −d(i ut
αt

(αtdV )) + iutdV = 0.

The theorem is proven.

One comment is that for practically finding vt, according to equation A6, we need to get ut, which
amounts to solving the Hodge decomposition equation, div(ut)dV = γ̂t, that is equivalent to the
following PDE on the manifoldM:

div(ut) =
d

dt
αt. (A7)

Proof of Lemma 1. The proof uses Stokes theorem:∫
M

div(u)dV =

∫
M
d(iudV ) =

∫
∂M

iudV = 0,

where the last equality is due to the fact that either ∂M = ∅, or, for x ∈ ∂M, we have that u(x) ∈
Tx∂M, and therefore (iudV )(v1, . . . , vn−1) = dV (u, v1, . . . , vn−1) = 0, for all v1, . . . , vn−1 ∈
Tx∂M. This implies iudV = 0.

B Other proofs

Proof of Theorem 2. As we showed in the paper, our loss can be equivalently presented (up to
constant factors) as

l(θ) = D(µ, µ̄+) + (λ− 1)

∫
M
µ̄−dV

Where the first term D(µ, µ̄+) is the generalized KL divergence which is non-negative and equals
zero iff µ̄+ = µ and since λ ≥ 1 the second term is also non-negative and equals zero iff µ− = 0 or
λ = 1.
First we show that µ̄ = µ is a minimizer of the loss. Since we assumed µ ≥ ε we have that
µ̄+ = max(µ, ε) = µ and µ̄− = µ̄+ − µ̄ = 0. So both D(µ, µ̄+) and

∫
M µ̄−dV are minimized,

which means the entire loss is minimized.
Now lets assume µ̄ is a minimizer of the loss. If λ > 1 µ̄ has to minimize both terms, as we know there
exists a minimizer that minimizes both of them. In particular for any λ ≥ 1 we have that µ̄ minimizes
D(µ, µ̄+) meaning µ̄+ = µ. Now we have that 0 = 1− 1 =

∫
M µ̄dV −

∫
M µdV =

∫
M µ̄+dV +∫

M µ̄−dV −
∫
M µdV =

∫
M µ̄−dV . So we get that µ− = 0. Finally µ̄ = µ̄++µ̄− = µ+0 = µ.

Proof of Lemma 2. Proposition 1.2 in Lang (2012) and Definition 1 in Section 4-4 in Do Carmo
(2016) imply that for submanifolds with induced metric the Riemannian covariant derivative at
x ∈ M satisfies ∇eiu = Px

∂u
∂ei

, where Px is the projection matrix on TxM introduced above.
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Then, denoting e1, . . . , en,n1, . . . ,nk an orthonormal basis of Rd where the first n vectors span
TxM and the latter k span NxM:

div(u) =

n∑
i=1

〈∇eiu, ei〉g =

n∑
i=1

〈
Px

∂u

∂ei
, ei

〉
=

n∑
i=1

〈
∂u

∂ei
,Pxei

〉
=

n∑
i=1

〈
∂u

∂ei
, ei

〉

=

n∑
i=1

〈
∂u

∂ei
, ei

〉
+

k∑
j=1

〈
∂u

∂nj
,nj

〉
= divE(u),

Proof of Theorem 3. From Theorem 6.24 in Lee (2013) there exists a neighbourhood Ω ⊂ Rd ofM
such that the projection π : Ω →M is smooth over Ω̄ (i.e., can be extended to a smooth function
over a neighborhood of Ω̄). Since M is compact, Ω̄ is also compact. According to Theorem 1
there exists a vector field u? ∈ X(M) so that µ = ν − div(u?). We extend u? to Ω̄ by setting
u?(x) = u?(π(x)), for x /∈M. Note that for x ∈M this definition coincides with the former u?
defined overM. Similarly to equation 18 we have that u?(x) = Pπ(x)u

?(π(x)).

Corollary 3.4 in Hornik et al. (1990) shows that given a target smooth function f : Ω̄→ R and ε > 0,
there exists an MLP with l-finite smooth activation that uniformly approximate the first 0 ≤ m ≤ l
derivatives of f over Ω̄ with error at most ε. An activation σ : R → R is l-finite if it is l-times
continuously differentiable and satisfies 0 <

∫∞
−∞

∣∣σ(l)
∣∣ < ∞. Note that sigmoid and tanh are

l-finite for all l ≥ 1, and Softplus is l-finite for l ≥ 2.

Using this approximation result (adapted to vector valued MLP) there exists an MLP vθ : Rd → Rd
such that each coordinate of u? and vθ are ε close in value and first partial derivatives over Ω̄.

Now for arbitrary x ∈M we have
µ̄(x) = ν(x)− divE(Pπ(x)vθ(π(x)))

= ν(x)− divE

(
Pπ(x)vθ(π(x))− Pπ(x)u

?(π(x))
)
− div(u?(x))

= µ(x)− divE

(
Pπ(x) [vθ(π(x))− u?(π(x))]

)
= µ(x)− divE

(
Pπ(x)e(x)

)
,

where we denote e(x) = vθ(π(x))− u?(π(x)). We will finish the proof by showing that∣∣∣divE

(
Pπ(x)e(x)

)∣∣∣ < cε

for some constant c > 0 depending only onM. Note that the l.h.s. of this equation is a sum of
terms of the form ∂

∂xi

(
(Pπ(x))i,je(x)j

)
, where (Pπ(x))i,j is the (i, j)-th entry of the matrix Pπ(x)

and e(x)j is the j-th entry of e(x). Since the value and first partial derivatives of π and P (as the
differential of π) overM can be bounded, depending only onM, the theorem is proved.

C Laplacian eigen function calculation

Given a triangular surface meshM′, we wish to calculate the k-th eigenfunction of the (discrete)
Laplace-Beltrami operator over M′. We will use the standard (cotangent) discretization of the
Laplacian over meshes (Botsch et al., 2010). That is, we define L to be the cotangent-Laplacian
matrix of the graph defined byM′, and M the mass matrix ofM′, i.e., a diagonal matrix where Mii

is the area of the the Voroni cell of the i-th vertex in the mesh. We then calculate the eigenfunctions
as the solution to the generalized eigenvalue problem Lx = λkMx where λk is the k-th eigenvalue.
We sample theseM′ piecewise-linear functions at centroids of faces.

D Linearization of the projection operator π

Since we only sample and derivate the projection operator π : Rd → M overM, implementing
equation 18 does not require knowledge of the full projection π. Rather, it is enough to use its first
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order expansion overM. For x0 ∈M

π(x) ≈ π(x0) + Px0(x− x0) = x0 + Px0(x− x0) = π̂(x0,x).

Now since π(·) and π̂(x0, ·) have the same value and first partial derivatives at x0 we can replace
equation 18 for each sample point x0 ∈ X ∪ Y , with

u(x) = Pπ̂(x0,x)vθ(π̂(x0,x)).

E Unnormalized densities

As described in section 4, our formulation of the loss is dependent on knowing the volume of the
manifoldM. For simple cases like the flat torus or the sphere, we have a closed form formula for
this volume. For more general cases, we can show that we don’t actually require to know this value,
since we can work with unnormalized density functions:

`(θ) = − 1

m

m∑
i=1

log max {ε, ν(xi)− divEu(xi)}

+
V (M)λ−

l

l∑
j=1

(
ε−min {ε, ν(yj)− divEu(yj)}

)
,

= log V (M)− 1

m

m∑
i=1

log max {ε′, ν′(xi)− divEu
′(xi)}

+
λ−
l

l∑
j=1

(
ε′ −min {ε′, ν′(yj)− divEu

′(yj)}
)
,

where ν′ = V (M)ν ≡ 1, u′ = V (M)u, ε′ = V (M)ε′, and log V (M) is a constant. Lastly note
that the definition of vt is invariant to this scaling and can be computed with the unnormalized
quantities.

F Additional Experimental Details

We used an internal academic cluster with NVIDIA Quadro RTX 6000 GPUs. Every run and seed
configuration required 1 GPU. All other experimental details are mentioned in the main paper. Our
codebase, implemented in PyTorch, is attached in the supplementary materials. We will open-source
it post the review process.
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Figure A1: Comparing learned density and generated samples with MF and FFJORD at different
times (in k-sec); top right shows NLL scores for both MF and FFJORD at different times; bottom
right shows time per iteration (in log-scale, sec) as a function of total running time (in sec); FFJORD
iterations take longer as training progresses. Flickr images (license CC BY 2.0): Bird by Flickr user
"lakeworth" https://www.flickr.com/photos/lakeworth/46657879995/; Flower by Flickr
user "daiyaan.db" https://www.flickr.com/photos/daiyaandb/23279986094/.
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