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A General Auxiliary Results

In this section, we provide some useful auxiliary results that will be used throughout our analysis.
First, we have the following basic concentration inequality.

Lemma 1. ([59, Lemma 1.3]) Suppose that A ∈ Rm×n has i.i.d. standard normal entries. For fixed
x ∈ Rn, we have for any ε ∈ (0, 1) that

P
(

(1− ε)‖x‖22 ≤
∥∥∥ 1√

m
Ax
∥∥∥2

2
≤ (1 + ε)‖x‖22

)
≥ 1− 2e−ε

2(1−ε)m/4. (23)

Next, we state the following standard definition.

Definition 1. A random variable X is said to be sub-Gaussian if there exists a positive constant C
such that (E [|X|p])1/p ≤ C

√
p for all p ≥ 1. The sub-Gaussian norm of a sub-Gaussian random

variable X is defined as ‖X‖ψ2
= supp≥1 p

−1/2 (E [|X|p])1/p.

According to [60, Proposition 5.10], we have the following concentration inequality for sub-Gaussian
random variables.

Lemma 2. (Hoeffding-type inequality [60, Proposition 5.10]) Let X1, . . . , XN be indepen-
dent zero-mean sub-Gaussian random variables, and let K = maxi ‖Xi‖ψ2

. Then, for any
α = [α1, α2, . . . , αN ]T ∈ RN and any t ≥ 0, it holds that

P

(∣∣∣ N∑
i=1

αiXi

∣∣∣ ≥ t) ≤ exp

(
1− ct2

K2‖α‖22

)
, (24)

where c > 0 is a constant.

Alongside the sub-Gaussian notion in Definition 1, we use the following definition of a sub-
exponential random variable and sub-exponential norm.

Definition 2. A random variable X is said to be sub-exponential if there exists a positive constant
C such that (E [|X|p])

1
p ≤ Cp for all p ≥ 1. The sub-exponential norm of X is defined as

‖X‖ψ1
= supp≥1 p

−1 (E [|X|p])
1
p .

We have the following concentration inequality for sums of independent sub-exponential random
variables.

Lemma 3. (Bernstein-type inequality [60, Proposition 5.16]) Let X1, . . . , XN be independent
zero-mean sub-exponential random variables, and K = maxi ‖Xi‖ψ1

. Then for every α =
[α1, . . . , αN ]T ∈ RN and ε ≥ 0, it holds that

P
(∣∣∣ N∑

i=1

αiXi

∣∣∣ ≥ ε) ≤ 2 exp

(
−c ·min

( ε2

K2‖α‖22
,

ε

K‖α‖∞

))
, (25)

where c > 0 is a constant.

B Proof of Theorem 1 (Recovery Guarantee for Amplitude-Based Loss
Minimization)

Before proving the theorem, we present some additional auxiliary results.
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B.1 Useful Lemmas

First, based on a basic two-sided concentration bound for standard Gaussian matrices (cf., Lemma 1
in Appendix A), and the well-established chaining arguments used in [5, 36], we have the following
lemma, which essentially gives a two-sided Set-Restricted Eigenvalue Condition (S-REC) [5].

Lemma 4. [5, Lemma 4.1], [36, Lemma 2] For α < 1 and δ > 0, if m = Ω
(
k
α2 log Lr

δ

)
, then with

probability 1− e−Ω(α2m), we have for all x1,x2 ∈ G(Bk2 (r)) that

(1− α)‖x1 − x2‖2 − δ ≤
1√
m
‖A(x1 − x2)‖2 ≤ (1 + α)‖x1 − x2‖2 + δ. (26)

In addition, we have the following lemma, which is similar to Lemma 1 in Appendix A.
Lemma 5. [61, Lemma 4.3] Suppose that X1, X2, . . . , XN are i.i.d. standard normal random
variables. Then, for 0 ≤ ε ≤ µ, we have with probability 1− e−Ω(Nε2) that

√
N(µ− ε) <

√√√√dN/2e∑
i=1

|X|2(i) <
√
N(µ+ ε), (27)

where µ ≥ 1
18

√
π
2 is a positive constant, and |X|(1) ≤ |X|(2) ≤ . . . ≤ |X|(N), i.e., |X|(k) is the

k-th smallest entry in |X1|, |X2|, . . . , |XN |.

Based on Lemma 5 and using a chaining argument as in [5, 35], we arrive at the following lemma,
which can be viewed as another (one-sided) variant of the S-REC in Lemma 4. The proof of Lemma 6
follows easily from [5, 35]; for completeness, we provide an outline in Appendix D.
Lemma 6. Let µ ≥ 1

18

√
π
2 be the same positive constant as in Lemma 5. For α < µ and δ > 0, if

m = Ω
(
k
α2 log Lr

δ

)
, then with probability 1− e−Ω(α2m), we have for all x1,x2 ∈ G(Bk2 (r)) that

(µ− α)‖x1 − x2‖2 − δ ≤ min
I⊆[m],|I|≥m2

1√
m
‖AI(x1 − x2)‖2, (28)

where for any index set I ⊆ [m], AI denotes the |I| × n sub-matrix of A that only keeps the rows
indexed by I .

B.2 Proof of Theorem 1

Since p ∈ Range(G), we have

‖y − |Ap|‖22 + τ ≥ min
w∈Range(G)

‖y − |Aw|‖22 + τ (29)

≥ ‖y − |Aq|‖22 (30)

= ‖(y − |Ap|)− (|Aq| − |Ap|)‖22, (31)

where (30) follows from (5). Let S, T be the following index sets:

S := {i ∈ [m] : sign(aTi p) = sign(aTi q)}, (32)

T := {i ∈ [m] : sign(aTi p) 6= sign(aTi q)}. (33)

Without loss of generality, we assume that |S| ≥ m
2 (otherwise, we have |T | ≥ m

2 and we can derive
an upper bound for ‖q+x‖2 instead of for ‖q−x‖2). Expanding the squares in (31) and rearranging,
we obtain

‖|Ap| − |Aq|‖22 ≤ 2〈y − |Ap|, |Aq| − |Ap|〉+ τ (34)
≤ 2‖y − |Ap|‖2‖|Aq| − |Ap|‖2 + τ (35)
≤ 2‖y − |Ap|‖2‖A(q− p)‖2 + τ (36)
≤ 2(‖η‖2 + ‖A(p− x)‖2)‖A(q− p)‖2 + τ, (37)

where (36) follows from the inequality ||a|−|b|| ≤ min{|a−b|, |a+b|} for a, b ∈ R, and (37) follows
from (1) and the triangle inequality. Note that p− x is a fixed vector. From a basic concentration
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bound for standard Gaussian matrices (cf., Lemma 1 in Appendix A), we have with probability
1− e−Ω(m) that

‖A(p− x)‖2 ≤ 2
√
m‖p− x‖2. (38)

In addition, setting α = 1
2 in Lemma 4, we obtain that if m = Ω

(
k log Lr

δ

)
, then with probability

1− e−Ω(m), it holds that

‖A(q− p)‖2 ≤
√
m

(
3

2
‖q− p‖2 + δ

)
. (39)

Moreover, setting α = µ
2 in Lemma 6, we have that ifm = Ω

(
k log Lr

δ

)
, with probability 1−e−Ω(m),

it holds that

‖|Ap| − |Aq|‖22 = ‖AS(p− q)‖22 + ‖AT (p + q)‖22 (40)

≥ ‖AS(p− q)‖22 (41)

≥ m
(µ

2
‖p− q‖2 − δ

)2

(42)

≥ m
(
µ2

4
‖p− q‖22 − µδ‖p− q‖2

)
, (43)

where (40) follows from the definitions of S and T , and (42) follows from Lemma 6 and our
assumption |S| ≥ m

2 . Combining (37), (38), (39), and (43), we obtain

µ2

4
‖p− q‖22 − µδ‖p− q‖2 ≤ 2

(
‖η‖2√
m

+ 2‖p− x‖2
)(

3

2
‖p− q‖2 + δ

)
+
τ

m
, (44)

which implies

‖p− q‖22 ≤ O
(
‖p− x‖2 +

‖η‖2√
m

+ δ

)
‖p− q‖2 +

(
‖p− x‖2 +

‖η‖2√
m

)
δ +O

( τ
m

)
. (45)

Simplifying terms in (45), we obtain

‖p− q‖2 ≤ O
(
‖p− x‖2 +

‖η‖2 +
√
τ√

m
+ δ

)
. (46)

From the triangle inequality ‖q− x‖2 ≤ ‖p− q‖2 + ‖p− x‖2, we obtain the desired result.

C Proof of Theorem 2 (Spectral Initializations with Generative Priors)
Before proving Theorem 2, we provide a simplified outline and some useful auxiliary results. In
this appendix, it is particularly important to remember that c and c′ represent small constants whose
values may differ from line to line.

C.1 Simplified Outline of the Proof

Since the full proof of Theorem 2 is rather lengthy, we first provide an outline with certain simplifying
assumptions (which are non-rigorous but will be dropped subsequently). Specifically, we consider an
idealized scenario in which η = 0 (i.e, the noiseless setting), and λ exactly equals its expectation
‖x‖2. Then, we have yi = |〈ai,x〉|, and V simplifies to

V0 =
1

m

m∑
i=1

yiaia
T
i 1{l<|aTi x̄|<u}. (47)

In this simplified scenario, the mean is given by (cf. (13))

J = E[V0] = ‖x‖2(γ0In + β0x̄x̄
T ), (48)

and x̂ ∈ Sn−1 is the vector that satisfies

x̂ = arg max
w∈G̃(D)

wTV0w. (49)
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On the one hand, since x̄ ∈ G̃(D), we have

x̂TV0x̂ ≥ x̄TV0x̄ (50)

= x̄T (V0 − J)x̄ + x̄TJx̄ (51)

= x̄T (V0 − J)x̄ + ‖x‖2(γ0 + β0), (52)

where (52) uses (48). With yi = |aTi x|, we have that yi(aTi x̄)21{l<|aTi x̄|<u} is upper bounded by
‖x‖2u3. From (52) we can use the concentration inequality for the sum of sub-Gaussian random
variables (cf. Lemma 2) to derive a lower bound of x̂TV0x̂.

On the other hand, we have

x̂TV0x̂ = x̂T (V0 − J)x̂ + x̂TJx̂ (53)

= x̂T (V0 − J)x̂ + ‖x‖2
(
γ0 + β0(x̂T x̄)2

)
, (54)

where we again used (48). Note that x̂ is dependent on V0. To upper bound (54), we construct a
δ-net, and write x̂ as

x̂ = (x̂− x̃) + x̃, (55)
where x̃ is in the δ-net satisfying ‖x̃− x̂‖2 < δ. For any s ∈ Rn, we have that yi(aTi s)

21{l<|aTi x̄|<u}
is sub-exponential, with the sub-exponential norm being upper bounded by ‖x‖2uC‖s‖22, where C
is an absolute constant. Using a concentration inequality for the sum of sub-exponential random
variables (cf. Lemma 3) and taking a union bound over the δ-net, we obtain an upper bound for
x̃T (V0 − J)x̃. Using a high-probability upper bound on ‖ai‖2 and the fact that ‖x̃− x̂‖2 < δ, we
can control the terms (x̂ − x̃)T (V0 − J)x̂ and (x̂ − x̃)T (V0 − J)(x̂ − x̃). Then, from (54), we
obtain an upper bound on x̂TV0x̂. Combining the upper and lower bounds on x̂TV0x̂, we can derive
the desired result.

In the full analysis in Section C.3, we additionally carefully deal with the noise terms and the case
that λ approximately equals ‖x‖2.

C.2 Additional Lemmas

Based on Lemma 2, we present the following simple lemma showing that λ approximates ‖x‖2.

Lemma 7. For any fixed c ∈ (0, 1), with probability 1 − e−Ω(m), we have that λ defined in (11)
satisfies

1− c < λ

‖x‖2
< 1 + c. (56)

Proof. Since |〈ai,x〉| is sub-Gaussian with the sub-Gaussian norm upper bounded by C‖x‖2 and

E[|〈ai,x〉|] =
√

2
π‖x‖2, from Lemma 2, we have with probability 1− e−Ω(m) that∣∣∣∣∣ 1

m

m∑
i=1

|〈ai,x〉| −
√

2

π
‖x‖2

∣∣∣∣∣ ≤ c‖x‖2. (57)

In addition, by the Cauchy–Schwarz inequality and the upper bound for the noise term assumed
in (8), we have ∣∣∣∣∣ 1

m

m∑
i=1

ηi

∣∣∣∣∣ ≤ ‖η‖2√
m
≤ c0‖x‖2. (58)

Then, using (57), (58), and the triangle inequality, we obtain(√
2

π
− c′

)
‖x‖2 ≤

1

m

m∑
i=1

yi =
1

m

m∑
i=1

(|〈ai,x〉|+ ηi) ≤

(√
2

π
+ c′

)
‖x‖2. (59)

Therefore, we obtain

(1− c)‖x‖2 < λ =

√
π

2

(
1

m

m∑
i=1

yi

)
< (1 + c)‖x‖2 (60)

for a choice of c possibly different from that above, but still arbitrarily small.
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Next, we present the following lemma concerning the expectation of the truncated empirical matrix.

Lemma 8. Suppose that a ∼ N (0, In). For any s ∈ Rn and η ∈ R, choosing α1, α2 ∈ R such that
1 + η

‖s‖2 < α1 < α2 and setting y = |〈a, s〉|+ η, we have

E
[
yaaT1{α1‖s‖2<y<α2‖s‖2}

]
= ‖s‖2

(
γ1In + β1s̄s̄

T
)

+ η(γ̌1In + β̌1s̄s̄
T ), (61)

where s̄ := s
‖s‖2 , and for g ∼ N (0, 1) and φ1(x) = 1{α1− η

‖s‖2
<|x|<α2− η

‖s‖2
}, we define γ1 =

E[|g|φ1(g)], β1 = E[|g|3φ1(g)] − γ1, γ̌1 = E[φ1(g)] and β̌1 = E[g2φ1(g)] − γ̌1. (Note that from
the assumption that 1 + η

‖s‖2 < α1 < α2, we have β1 > 0 and β̌1 > 0.)

Proof. Let g = 〈a, s̄〉 ∼ N (0, 1). We have

yaaT1{α1‖s‖2<y<α2‖s‖2} = (‖s‖2|aT s̄|+ η)aaT1{α1− η
‖s‖2

<|〈a,s̄〉|<α2− η
‖s‖2
} (62)

= (‖s‖2|g|+ η)φ1(g)aaT . (63)

For any i ∈ [n], we have Cov[ai, g] = s̄i, and thus ai can be written as

ai = s̄ig + ti, (64)

where ti ∼ N (0, 1− s̄2
i ) is independent of g. Then, we have

E
[
|g|φ1(g)a2

i

]
= E

[
|g|φ1(g)(s̄ig + ti)

2
]

(65)

= s̄2
iE
[
|g|3φ1(g)

]
+
(
1− s̄2

i

)
E[|g|φ1(g)] (66)

= γ1 + β1s̄
2
i , (67)

and similarly,

E
[
φ1(g)a2

i

]
= E

[
φ1(g)(s̄ig + ti)

2
]

(68)

= s̄2
iE
[
g2φ1(g)

]
+
(
1− s̄2

i

)
E[φ1(g)] (69)

= γ̌1 + β̌1s̄
2
i . (70)

Moreover, for 1 ≤ i 6= j ≤ n, we have 0 = E[aiaj ] = E[(s̄ig + ti)(s̄jg + tj)] = s̄is̄j + E[titj ],
which gives E[titj ] = −s̄is̄j . Then, similarly to (67) and (70), we have

E [|g|φ1(g)aiaj ] = E [|g|φ1(g)(s̄ig + ti)(s̄jg + tj)] = β1s̄is̄j , (71)

and

E [φ1(g)aiaj ] = E [φ1(g)(s̄ig + ti)(s̄jg + tj)] = β̌1s̄is̄j . (72)

Combining (63), (67), (70), (71), (72), we obtain the desired result.

C.3 Proof of Theorem 2

Let E be the event that

1− c ≤ λ

‖x‖2
≤ 1 + c. (73)

From Lemma 7, we know that E occurs with probability 1− e−Ω(m). Throughout the following, we
assume that E holds, and the relevant probabilities are conditioned accordingly.
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Lower bounding x̂TVx̂: Since x̄ ∈ G̃(D), and x̂ is a solution of (14), we have

x̂TVx̂ ≥ x̄TVx̄ (74)

=
1

m

m∑
i=1

yi
(
aTi x̄

)2
1{lλ<yi<uλ} (75)

=
‖x‖2
m

m∑
i=1

|aTi x̄|31{lλ<yi<uλ} +
1

m

m∑
i=1

ηi
(
aTi x̄

)2
1{lλ<yi<uλ} (76)

≥ ‖x‖2
m

m∑
i=1

|aTi x̄|31{l(1+c′)‖x‖2<yi<u(1−c′)‖x‖2}

− 1

m

m∑
i=1

|ηi|
(
aTi x̄

)2
1{l(1−c′)‖x‖2<yi<u(1+c′)‖x‖2} (77)

=
‖x‖2
m

m∑
i=1

|aTi x̄|31{l(1+c′)− ηi
‖x‖2

<|aTi x̄|<u(1−c′)− ηi
‖x‖2

}

− 1

m

m∑
i=1

|ηi|
(
aTi x̄

)2
1{l(1−c′)− ηi

‖x‖2
<|aTi x̄|<u(1+c′)− ηi

‖x‖2
} (78)

≥ ‖x‖2
m

m∑
i=1

|aTi x̄|31{l(1+c)<|aTi x̄|<u(1−c)} −
1

m

m∑
i=1

|ηi|
(
aTi x̄

)2
1{l(1−c)<|aTi x̄|<u(1+c)}, (79)

where we use (73) in (77), we use yi = |aTi x| + ηi in (76) and (78), and we use (9) as well as
u > l > 1 + c1 to derive (79). We aim to bound the two terms in (79). Let

U =
1

m

m∑
i=1

|aTi x|aiaTi 1{l(1+c)<|aTi x̄|<u(1−c)}, (80)

W =
1

m

m∑
i=1

|aTi x|aiaTi 1{l(1−c)<|aTi x̄|<u(1+c)}, (81)

Ǔ =
1

m

m∑
i=1

|ηi|aiaTi 1{l(1+c)<|aTi x̄|<u(1−c)}, (82)

W̌ =
1

m

m∑
i=1

|ηi|aiaTi 1{l(1−c)<|aTi x̄|<u(1+c)}. (83)

According to the proof of Lemma 8, we have

E[U] = ‖x‖2
(
γIn + βx̄x̄T

)
, (84)

E[W] = ‖x‖2
(
γ′In + β′x̄x̄T

)
, (85)

E[Ǔ] = η̄
(
γ̌In + β̌x̄x̄T

)
, (86)

E[W̌] = η̄
(
γ̌′In + β̌′x̄x̄T

)
. (87)

where for g ∼ N (0, 1) and

φ(x) := 1{l(1+c)<|x|<u(1−c)}, (88)

ψ(x) := 1{l(1−c)<|x|<u(1+c)}, (89)

we set γ = E[|g|φ(g)], β = E[|g|3φ(g)] − γ, γ′ = E[|g|ψ(g)], β′ = E[|g|3ψ(g)] − γ′, η̄ =
1
m

∑m
i=1 |ηi|, γ̌ = E[φ(g)], β̌ = E[g2φ(g)] − γ̌, γ̌′ = E[ψ(g)], and β̌′ = E[g2ψ(g)] − γ̌′. Then,

in (79), we have

‖x‖2
m

m∑
i=1

|aTi x̄|31{l(1+c)<|aTi x̄|<u(1−c)}

= x̄TUx̄ (90)
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= x̄T (U− E[U])x̄ + x̄TE[U]x̄ (91)

=
1

m

m∑
i=1

(
|aTi x|(aTi x̄)2φ

(
aTi x̄

)
− E

[
|aTi x|(aTi x̄)2φ

(
aTi x̄

)])
+ ‖x‖2(γ + β), (92)

where we use (84), (88), and ‖x̄‖2 = 1 to obtain (92). Note that |aTi x|(aTi x̄)2φ
(
aTi x̄

)
=

|aTi x|(aTi x̄)21{l(1+c)<|aTi x̄|<u(1−c)} ≤ u3(1 − c)3‖x‖2 = O(‖x‖2). Then, from Lemma 2, we
have with probability 1− e−Ω(m) that∣∣∣∣∣ 1

m

m∑
i=1

(
|aTi x|(aTi x̄)2φ

(
aTi x̄

)
− E

[
|aTi x|(aTi x̄)2φ

(
aTi x̄

)])∣∣∣∣∣ ≤ c‖x‖2. (93)

In addition, we have

1

m

m∑
i=1

|ηi|
(
aTi x̄

)2
1{l(1−c)<|aTi x̄|<u(1+c)}

= x̄TW̌x̄ (94)

= x̄T (W̌ − E[W̌])x̄ + x̄TE[W̌]x̄ (95)

=
1

m

m∑
i=1

|ηi|
((

aTi x̄
)2
ψ
(
aTi x̄

)
− E

[(
aTi x̄

)2
ψ
(
aTi x̄

)])
+ η̄(γ̌′ + β̌′) (96)

≤ 1

m

m∑
i=1

|ηi|
((

aTi x̄
)2
ψ
(
aTi x̄

)
− E

[(
aTi x̄

)2
ψ
(
aTi x̄

)])
+ c0‖x‖2(γ̌′ + β̌′), (97)

where we use η̄ = 1
m

∑m
i=1 |ηi| ≤

‖η‖2√
m
≤ c0‖x‖2 (see (8)) in (97). From the definition of ψ in (89),

we have
(
aTi x̄

)2
ψ
(
aTi x̄

)
≤ u2(1 + c)2 = O(1). Setting αi = |ηi|

m and Xi =
(
aTi x̄

)2
ψ
(
aTi x̄

)
−

E
[(
aTi x̄

)2
ψ
(
aTi x̄

)]
in Lemma 2, we obtain with probability 1− e−Ω(m) that∣∣∣∣∣ 1

m

m∑
i=1

|ηi|
((

aTi x̄
)2
ψ
(
aTi x̄

)
− E

[(
aTi x̄

)2
ψ
(
aTi x̄

)])∣∣∣∣∣ ≤ ‖η‖2√
m
≤ c0‖x‖2. (98)

Combining (79), (92), (93), (97) and (98), we have with probability 1− e−Ω(m) that

x̂TVx̂ ≥ (γ + β − c)‖x‖2. (99)

Upper bounding x̂TVx̂: We have

x̂TVx̂ =
1

m

m∑
i=1

|aTi x|(aTi x̂)21{lλ<yi<uλ} +
1

m

m∑
i=1

ηi(a
T
i x̂)21{lλ<yi<uλ} (100)

≤ 1

m

m∑
i=1

|aTi x|(aTi x̂)21{l(1−c)<|aTi x̄|<u(1+c)} +
1

m

m∑
i=1

|ηi|(aTi x̂)21{l(1−c)<|aTi x̄|<u(1+c)}

(101)

= x̂TWx̂ + x̂TW̌x̂ (102)

= x̂T (W − E[W])x̂ + x̂T (W̌ − E[W̌])x̂ + ‖x‖2
(
γ′ + β′

(
x̂T x̄

)2)
+ η̄(γ̌′ + β̌′

(
x̂T x̄)2

)
(103)

≤ x̂T (W − E[W])x̂ + x̂T (W̌ − E[W̌])x̂ + ‖x‖2
(
γ′ + β′

(
x̂T x̄

)2)
+ c‖x‖2, (104)

where (101) is derived similarly to (79), (102) comes from the definitions of W and W̌ in (81)
and (83), (103) follows from (85) and (87), and (104) is deduced from η̄ ≤ c0‖x‖2.

We aim to provide an upper bound for (104). For δ > 0, let M be a (δ/L̃)-net of D ⊆ Bk2 (r). There
exists such a net with [60, Lemma 5.2]

log |M | ≤ k log
4L̃r

δ
. (105)
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By the L̃-Lipschitz continuity of G̃, we have that G̃(M) is a δ-net of G̃(D). We write

x̂ = (x̂− x̃) + x̃, (106)

where x̃ ∈ G̃(M) with ‖x̂− x̃‖2 ≤ δ. Then, we have

x̂T (W−E[W])x̂ = x̃T (W−E[W])x̃+2(x̂−x̃)T (W−E[W])x̃+(x̂−x̃)T (W−E[W])(x̂−x̃).
(107)

We bound the three terms in (107) separately.

• The first term: For any s ∈ G̃(M), we have from (81) that

sT (W − E[W])s =
1

m

m∑
i=1

(
|aTi x|〈ai, s〉21{l(1−c)<|aTi x̄|<u(1+c)} − sTE[W]s

)
. (108)

Note that for s ∈ G̃(M), ‖s‖2 = 1. Then, |aTi x|〈ai, s〉21{l(1−c)<|aTi x̄|<u(1+c)} is sub-
exponential with the sub-exponential norm upper bounded by Cu(1 + c)‖x‖2. From Lemma 3,
we have with probability at least 1− e−Ω(mε2) that∣∣sT (W − E[W])s

∣∣ ≤ ε‖x‖2. (109)

Taking a union bound over all G̃(M), we obtain that when m = Ω
(
k
ε2 log L̃r

δ

)
, with probability

1− e−Ω(mε2), for all s ∈ G̃(M),∣∣sT (W − E[W])s
∣∣ ≤ ε‖x‖2. (110)

Hence, since x̃ ∈ G̃(M), setting ε to be a sufficiently small absolute constant, we obtain that
when m = Ω

(
k log L̃r

δ

)
, with probability 1− e−Ω(m),∣∣x̃T (W − E[W])x̃

∣∣ ≤ c‖x‖2. (111)

• The second term: From Lemma 2 and a union bound over [m], we have with probability
1−me−Ω(n) that

max
i∈[m]

‖ai‖2 ≤
√

2n. (112)

Conditioned on the event in (112), we have

(x̂− x̃)T (W − E[W])x̃

=
1

m

m∑
i=1

(
|aTi x|(aTi x̃)(aTi (x̂− x̃))1{l(1−c)<|aTi x̄|<u(1+c)} − (x̂− x̃)TE [W] x̃

)
(113)

=
1

m

m∑
i=1

|aTi x|(aTi x̃)(aTi (x̂− x̃))1{l(1−c)<|aTi x̄|<u(1+c)}

− ‖x‖2
(
γ′(x̂− x̃)T x̃ + β′((x̂− x̃)T x̄)(x̃T x̄)

)
(114)

≤ (2n(1 + c)u+ γ′ + β′)‖x‖2δ, (115)

where we use (112), ‖x̂ − x̃‖2 ≤ δ, ‖x̃‖2 = ‖x̄‖2 = 1, and the standard inequality |aTb| ≤
‖a‖2‖b‖2 (for any a and b) in (115). Therefore, we obtain with probability 1− e−Ω(n) that∣∣2(x̂− x̃)T (W − E[W])x̃

∣∣ ≤ 2(2n(1 + c)u+ γ′ + β′)‖x‖2δ. (116)

• The third term: By an argument similar to (116), we have with probability 1− e−Ω(n) that∣∣(x̂− x̃)T (W − E[W])(x̂− x̃)
∣∣ ≤ (2n(1 + c)u+ γ′ + β′)‖x‖2δ2. (117)

Combining (107), (111), (116), and (117), and setting δ = c
n , we obtain that when m =

Ω(k log(L̃nr)), with probability 1− e−Ω(m), it holds that∣∣x̂T (W − E[W])x̂
∣∣ ≤ c‖x‖2. (118)
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Next, we provide an upper bound for x̂T (W̌ − E[W̌])x̂. The strategy is mostly similar to that
for upper bounding x̂T (W − E[W])x̂ in (104), but we provide the details below for completeness.
Similarly to (107), we have

x̂T (W̌−E[W̌])x̂ = x̃T (W̌−E[W̌])x̃+2(x̂−x̃)T (W̌−E[W̌])x̃+(x̂−x̃)T (W̌−E[W̌])(x̂−x̃).
(119)

We bound the three terms in (119) separately.

• The first term: From the definition of W̌ in (83), we have for any s ∈ G̃(M) that

sT (W̌ − E[W̌])s =
1

m

m∑
i=1

|ηi|(aTi s)21{l(1−c)<|aTi x̄|<u(1+c)} − sTE[W̌]s. (120)

Note that ‖s‖2 = 1. For any i ∈ [m], (aTi s)
21{l(1−c)<|aTi x̄|<u(1+c)} is sub-exponential with

the sub-exponential norm upper bounded by an absolute constant C. Then, from Lemma 3 (see
also [21, Theorem 3.1]), we obtain that for t > 2, with probability 1− e−t, it holds that∣∣sT (W̌ − E[W̌])s

∣∣ ≤ C (‖η‖2
m

√
t+
‖η‖∞
m

t

)
. (121)

Setting t = m in (121), and from ‖η‖2√
m
≤ c0‖x‖2 (cf. (8)) and ‖η‖∞ ≤ c1‖x‖2 (cf. (9)), we

obtain with probability 1− e−m that∣∣sT (W̌ − E[W̌])s
∣∣ ≤ c‖x‖2. (122)

Taking a union bound over all G̃(M), we obtain that when m = Ω
(
k log L̃r

δ

)
, with probability

1− e−Ω(mε2), for all s ∈ G̃(M),∣∣sT (W̌ − E[W̌])s
∣∣ ≤ c‖x‖2. (123)

Hence, since x̃ ∈ G̃(M), we have∣∣x̃T (W̌ − E[W̌])x̃
∣∣ ≤ c‖x‖2. (124)

• The second term: Conditioned on the event in (112), we have

(x̂− x̃)T (W̌ − E[W̌])x̃

=
1

m

m∑
i=1

|ηi|
(
aTi (x̂− x̃)

)
(aTi x̃)1{l(1−c)<|aTi x̄|<u(1+c)}

− η̄(γ̌′(x̂− x̃)T x̃ + β̌′((x̂− x̃)T x̄)(x̃T x̄)) (125)

≤ η̄δ(2n+ γ̌′ + β̌′). (126)

Therefore, we obtain with probability 1− e−Ω(n) that∣∣2(x̂− x̃)T (W̌ − E[W̌])x̃
∣∣ ≤ 2η̄δ(2n+ γ̌′ + β̌′). (127)

• The third term: By an argument similar to (127), we have with probability 1− e−Ω(n) that∣∣(x̂− x̃)T (W̌ − E[W̌])(x̂− x̃)
∣∣ ≤ (2n(1 + c)u+ γ′ + β′)η̄δ2. (128)

Note that η̄ ≤ ‖η‖2√
m
≤ c0‖x‖2 (cf. (8)). Combining (119), (124), (127), and (128), and setting δ = c

n ,

we obtain that when m = Ω(k log(L̃nr)), with probability 1− e−Ω(m), it holds that∣∣x̂T (W̌ − E[W̌])x̂
∣∣ ≤ c‖x‖2. (129)

Combining (104), (118), and (129), we obtain that when m = Ω(k log(L̃nr)), with probability
1− e−Ω(m), it holds that

x̂TVx̂ ≤
(
c+ γ′ + β′(x̂T x̄)2

)
‖x‖2. (130)
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Combining and simplifying: Finally, combining (99) and (130), we obtain that when m =
Ω(k log(L̃nr)), with probability 1− e−Ω(m),

(γ + β − c)‖x‖2 ≤
(
c+ γ′ + β′(x̂T x̄)2

)
‖x‖2. (131)

Simplifying (131), we obtain

β′(x̂T x̄)2 ≥ β + (γ − γ′)− 2c. (132)

Defining Φ(x) =
∫ x
−∞

1√
2π
e−

t2

2 dt to be the standard normal distribution function and setting
C0 = maxx∈R Φ′(x) = 1√

2π
, we have for g ∼ N (0, 1) that

γ′ − γ = E[|g|1{l(1−c)≤|g|≤l(1+c)}] + E[|g|1{u(1−c)≤|g|≤u(1+c)}] (133)

≤ 2E[|g|1{u(1−c)≤|g|≤u(1+c)}] (134)

≤ 4u(1 + c)P(u(1− c) < g < u(1 + c)) (135)
≤ 5u(Φ(u(1 + c))− Φ(u(1− c))) (136)

≤ 10C0u
2c = O(c), (137)

where (134) uses the definitions of γ and γ′ following (89), (135) multiplies by two due the re-
placement of |g| by g in the probability, and (136) holds for small enough c. Similarly, we have
β ≥ β′ − O(c). Recall from (73) that the event E occurs with probability 1 − e−Ω(m). Therefore,
from (132), we obtain that when m = Ω(k log(L̃nr)), with probability 1− e−Ω(m), it holds that

(x̂T x̄)2 ≥ 1− c′. (138)

Without loss of generality, we assume that x̂T x̄ > 0 (otherwise, we can similarly derive an upper
bound for ‖x̂ + x̄‖2 instead of for ‖x̂− x̄‖2). Then, we have

‖x̂− x̄‖22 = 2(1− x̂T x̄) ≤ 2
(
1− (x̂T x̄)2

)
≤ 2c′. (139)

By suitably renaming the constant, we obtain (16) as desired. Using Lemma 7, we also obtain (17).

D Proof of Lemma 6 (Variant of the S-REC)

For fixed δ > 0 and a positive integer `, let M = M0 ⊆M1 ⊆ . . . ⊆M` be a chain of nets of Bk2 (r)
such that Mi is a δi

L -net with δi = δ
2i . There exists such a chain of nets with [60, Lemma 5.2]

log |Mi| ≤ k log
4Lr

δi
. (140)

By the L-Lipschitz assumption on G, we have for any i ∈ [`] that G(Mi) is a δi-net of G(Bk2 (r)).
We write

x1 = (x1 − s`) +
∑̀
i=1

(si − si−1) + s0, x2 = (x2 − t`) +
∑̀
i=1

(ti − ti−1) + t0, (141)

where si, ti ∈ G(Mi) for all i ∈ [`], and ‖x1 − s`‖ ≤ δ
2`

, ‖x2 − t`‖ ≤ δ
2`

, ‖si − si−1‖2 ≤ δ
2i−1 ,

and ‖ti − ti−1‖2 ≤ δ
2i−1 for all i ∈ [`]. Therefore, the triangle inequality gives

‖x1 − s0‖2 < 2δ, ‖x2 − t0‖2 < 2δ. (142)

For any index I ⊆ [m] with |I| ≥ m
2 , from the triangle inequality, we have

‖AI(x1 − x2)‖2 ≥ ‖AI(s0 − t0)‖2 −
∑̀
i=1

(‖AI(si − si−1)‖2 + ‖AI(ti − ti−1)‖2)

− ‖AI(s` − x1)‖2 − ‖AI(t` − x2)‖2 (143)

≥ ‖AI(s0 − t0)‖2 −
∑̀
i=1

(‖A(si − si−1)‖2 + ‖A(ti − ti−1)‖2)

− ‖A(s` − x1)‖2 − ‖A(t` − x2)‖2. (144)
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For any r1, r2 ∈ G(M) and 0 < α < µ, from Lemma 5, we have with probability 1− e−Ω(α2m) that

‖AI(r1 − r2)‖2 ≥
√
m(µ− α)‖r1 − r2‖2. (145)

Taking a union bound over G(M)×G(M), we have that when m = Ω
(
k
α2 log Lr

δ

)
, with probability

1− e−Ω(α2m), for all r1, r2 ∈ G(M),

‖AI(r1 − r2)‖2 ≥
√
m(µ− α)‖r1 − r2‖2. (146)

Therefore, we have that when m = Ω
(
k
α2 log Lr

δ

)
, with probability 1− e−Ω(α2m),

1√
m
‖AI(s0 − t0)‖2 ≥ (µ− α)‖s0 − t0‖2 ≥ (µ− α)(‖x1 − x2‖2 − 4δ), (147)

where we applied (142). In addition, using the results in [5, 35], for the standard Gaussian matrix A,
we have m = Ω

(
k
α2 log Lr

δ

)
, with probability 1− e−Ω(α2m),

∑̀
i=1

(‖A(si − si−1)‖2 + ‖A(ti − ti−1)‖2) ≤ O(
√
mαδ) = O(

√
mδ). (148)

Moreover, by [60, Corollary 5.35], we have
∥∥ 1√

m
A
∥∥

2→2
≤ 2 +

√
n
m with probability at least

1− e−m/2. Hence, choosing ` = dlog2 ne, we have with probability at least 1− e−m/2 that∥∥∥ 1√
m
A(t` − x2)

∥∥∥
2

+
∥∥∥ 1√

m
A(s` − x1)

∥∥∥
2
≤ 2

(
2 +

√
n

m

)
δ

2l
= O(δ), (149)

where we used the fact that ‖t` − x2‖ ≤ δ
2`

and ‖s` − x1‖ ≤ δ
2`

. Combining (144), (147), (148)
and (149), we obtain the desired result.

E Further Experiments: Comparing the Iterative Algorithm in CoPRAM
Combined with Various Initialization Methods

In this section, we provide additional numerical results comparing our approach with other ini-
tialization methods, in that case that the initialization is combined with the subsequent iterative
algorithm used in CoPRAM. In addition to PRI-SPCA-NT and the spectral initialization methods used
in ThWF, SPARTA, and CoPRAM, we also compare with random initialization, in which the initial
vector is λ g

‖g‖2 with g ∼ N (0, In). The worsened performance of random initialization reveals the
importance of using spectral initialization methods for sparse phase retrieval.

We first consider the noiseless case and compare the relative error and empirical success rate of
different methods. More specifically, after obtaining initial vectors from different initialization
methods using the procedure discussed in Section 5, we run the iterative algorithm of CoPRAM for
T = 100 iterations to further refine the estimated vectors and obtain x(T ). For our experiments, we
found that 100 iterations are usually sufficient for convergence. A trial is declared to be successful if
the relative error

min{‖x(T ) − x‖2, ‖x(T ) + x‖2}
‖x‖2

(150)

is less than 0.01. We fix n = 1000, and consider s = 10 or s = 20, while varying m in
{100, 150, 200, . . . , 1000}. For each of the experiments in this section, we repeat 50 trials for
10 times, and calculate the standard deviation over these 10 times to produce the error bars.

We report the relative error in Figure 4, and we report the empirical success rate of different methods
in Figure 5. From Figures 4 and 5, we observe that for most cases, our PRI-SPCA method leads to
the smallest relative error and the largest empirical success rate.

Next, we consider the noisy case, and compare the relative error for using approximately the same
time cost. The time cost is calculated as the sum of the running time of each initialization method
and the running time of the subsequent iterative algorithm. As we have mentioned in Section 5, the
time complexity of each iteration in GRQI is O(s3 + sn), while for the iterative algorithm of CoPRAM,
the time complexity of each iteration is O(s2n log n), which dominates the total time complexity.
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Figure 4: Relative error vs. number of measurements m in the noiseless setting with s = 10 (Left)
and s = 20 (Right).
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Figure 5: Empirical success rate vs. number of measurements m in the noiseless setting with s = 10
(Left) and s = 20 (Right).

In this experiment, we fix n = 1000, m = 500, s = 20, and consider σ = 0.1 and 0.2. Since the
running times of the initialization methods are typically less than 0.1 second, we vary the time cost
(in seconds) t in {0.1, 0.12, . . . , 0.48, 0.5}. For each t and each of the methods we consider, we find
the number of the iteration whose time cost is closest to t, and record the corresponding relative
error. Note that as mentioned in Section 5, for noisy measurements, we do not compare with ThWF
because it corresponds to quadratic measurements. The results are reported in Figure 6, from which
we observe that when combined with the iterative algorithm of CoPRAM and using approximately the
same time cost, our PRI-SPCA method gives smallest relative error in most cases.
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0.1 0.2 0.3 0.4 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

CoPRAM

PRI-SPCA

PRI-SPCA-NT

SPARTA

RandInit

Figure 6: Relative error for different initialization methods combined with the iterative algorithm
of CoPRAM in the noisy setting with σ = 0.1 (Left) and σ = 0.2 (Right), when using approximately
the same time cost.

26


