
A Notation

For a given joint distribution p(x,y, e) on x, y and e, a binary selection t = f(x,y, e, ε), and a
conditional distribution q(y|x) we use the following notation

A.1 Conditional Kullback-Leibler divergence

DKL(p(y|x)||q(y|x)) := Ex,y∼p(x,y)

[
log

p(y = y|x = x)

q(y = y|x = x)

]
. (14)

Note that the expectation is always considered with respect to the joint distribution for the first
argument of the KL-divergence. The notation DKL(py|x||qy|x) will be used to abbreviate the same
quantity.

A.2 Jensen-Shannon divergence

DJSD(p(x)||q(x)) :=
1

2
DKL(p(x)||m(x)) +

1

2
DKL(q(x)||m(x)), (15)

with m(x) = 1/2 p(x) + 1/2 q(x).

A.3 Mutual Information

I(x;y) := DKL(p(x,y)||p(x)p(y)) (16)
= DKL(p(y|x)||p(y)) (17)
= DKL(p(x|y)||p(x)). (18)

The subscript t = 1 is used to indicate that both joint and marginal distribution are conditioned on
t = 1:

It=1(x;y) := DKL(p(x,y|t = 1)||p(x|t = 1)p(y|t = 1)) (19)

Conditional mutual information is defined as:

I(x;y|e) := DKL(p(x,y|e)||p(x|e)p(y|e)) (20)
:= DKL(p(y|x, e)||p(y|e)) (21)
:= DKL(p(x|y, e)||p(x|e)). (22)

Note that all the mutual information terms in this work are implicitly expressed in terms of the
distribution p.

B Proofs and Additional details

The proofs for the statement in the main text are reported in this section.

B.1 Proof for Proposition 1

Proof. Consider DKL(p(y|x)||q(y|x)). By multiplying and dividing by p(y|x, t), we obtain:

DKL(p(y|x)||q(y|x)) = Ex,y∼p(x,y)

[
log

p(y = y|x = x)

q(y = y|x = x)

]
= Ex,y,t∼p(x,y,t)

[
log

p(y = y|x = x, t = t)

q(y = y|x = x)

p(y = y|x = x)

p(y = y|x = x, t = t)

]
= DKL(p(y|x, t)||q(y|x))− I(y; t|x). (23)

15

Splitting the expectation on t, we express the first term as:

DKL(p(y|x, t)||q(y|x)) = p(t = 1)Ex,y∼p(x,y|t=1)

[
log

p(y = y|x = x, t = 1)

q(y = y|x = x)

]
+ p(t = 0) Ex,y∼p(x,y|t=0)

[
log

p(y = y|x = x, t = 0)

q(y = y|x = x)

]
= p(t = 1)DKL(p(y|x, t = 1)||q(y|x)) + p(t = 0)DKL(p(y|x, t = 0)||q(y|x))
= p(t = 1)DKL(p

t=1
y|x||qy|x) + p(t = 0)DKL(p

t=0
y|x||qy|x). (24)

Since the KL-divergence between two distributions is always positive, using the result from equa-
tions 23 and 24, we have:

I(y; t|x) ≤ DKL(p(y|x, t)||q(y|x))
= p(t = 1)DKL(p

t=1
y|x||qy|x) + p(t = 0)DKL(p

t=0
y|x||qy|x)

≤ (1− α)
(
DKL(p

t=1
y|x||qy|x) +DKL(p

t=0
y|x||qy|x)

)
, (25)

with α := min{p(t = 0), p(t = 1)}.
Whenever α = 1, the inequality in equation 25 holds since I(y; t|x) = 0 and KL-divergence is
always positive. For α < 1 we can divide both sides by 1− α, obtaining:

DKL(p
t=1
y|x||qy|x) +DKL(p

t=0
y|x||qy|x) ≥

1

1− α
I(y; t|x)

B.2 Proof for Proposition 2

Proof. Using Jensen’s inequality we have:

DKL(p
t=1
y|x||qy|x) = Ex,y∼(x,y|t=1)

[
log

p(y = y|x = x, t = 1

Ez∼q(z|x=x)[q(y = y|z = z)]

]
≤∗ Ex,y∼(x,y|t=1)Ez∼q(z|x=x)

[
log

p(y = y|x = x, t = 1)

q(y = y|z = z)

]
= DKL(p

t=1
y|x||qy|z), (26)

in which ∗ holds with equality when q(z|x) is a delta distribution (deterministic encoder).

Secondly, by multiplying and dividing by p(y = y|z = z, t = 1):

DKL(p
t=1
y|x||qy|z) = Ex,y∼(x,y|t=1)Ez∼q(z|x=x)

[
log

p(y = y|x = x, t = 1)

p(y = y|z = z, t = 1)

p(y = y|z = z, t = 1)

q(y = y|z = z)

]
= I(y;x|z) +DKL(p

t=1
y|z ||qy|z). (27)

The bound for DKL(p
t=0
y|x||q(y|x)) is obtained analogously.

16

B.3 Proof for Proposition 3

Proof. We first define the average latent predictive distribution p(y|z) := 1
2p(y|z, t = 0) +

1
2p(y|z, t = 1), then

I(y; t|z) = DKL(p(y|z, t)||p(y|z))
= p(t = 0)DKL(p

t=0
y|z ||py|z) + p(t = 1)DKL(p

t=1
y|z ||py|z)

≥ 2α

(
1

2
DKL(p

t=0
y|z ||py|z) +

1

2
DKL(p

t=1
y|z ||py|z)

)
= 2α Et∼Ber(1/2)Ez,y∼p(z,y|t=t)

[
log

p(y = y|z = z, t = t)

p(y = y|z = z)

]
= 2α Et∼Ber(1/2)Ez,y∼p(z,y|t=t)

[
log

p(y = y|z = z, t = t)

p(y = y|z = z)

p(y = y|z = z)

p(y = y|z = z)

]
= 2α DJSD(p

t=0
y|z ||p

t=1
y|z) +DKL(p(y|z)||p(y|z))

≥ 2α DJSD(p
t=0
y|z ||p

t=1
y|z), (28)

where Ber(1/2) refers to a Bernoulli distribution with parameter p = 1/2.

Secondly, since the square root of the Jensen-Shannon divergence is a metric (Endres & Schindelin,
2003), using triangle inequality we have:√

DJSD(p
t=1
y|z=z||qy|z=z) +

√
DJSD(p

t=0
y|z=z||p

t=1
y|z=z) ≥

√
DJSD(p

t=0
y|z=z||qy|z=z). (29)

Note that the conditional distributions pt=0
y|z=z and pt=1

y|z=z are defined only for latent vectors z that
have positive probability according to p(z|t = 0) and p(z|t = 1) respectively. Therefore inequality
is defined only for z that have simultaneously strictly positive probability on both train and test
distributions.

Lastly, The Jensen-Shannon divergence can be upper-bounded by a function of the corresponding
Kullback-Leibler divergence:

DJSD(p
t=1
y|z ||qy|z) =

1

2
DKL(p

t=1
y|z ||qy|z)−DKL(my|z||qy|z) ≤

1

2
DKL(p

t=1
y|z ||qy|z), (30)

with my|z := 1/2p(y|z, t = 1) + 1/2q(y|z).
Using the results from 28, 29 and 30 we have

DJSD(p
t=0
y|z=z||qy|z=z)

(29)

≤
(√

DJSD(p
t=1
y|z=z||qy|z=z) +

√
DJSD(p

t=0
y|z=z||p

t=1
y|z=z)

)2
(28)

≤

(√
1

2α
I(y; t|z = z) +

√
DJSD(p

t=0
y|z=z||p

t=1
y|z=z)

)2

(30)

≤

(√
1

2α
I(y; t|z = z) +

√
1

2
DKL(p

t=1
y|z=z||qy|z=z)

)2

(31)

B.4 Upper-bounding the test error

We show two inequalities, that relate the Jensen-Shannon divergence in equation 31 to the latent test
error (defined as a Kullback-Leibler divergence).

B.4.1 Ratio of f -divergences

Since both Jensen-Shannon and Kullback Leibler divergence are instances of f -divergences, we can
use the result from theorem 1 in Sason & Verdú (2016) to write the following inequality:

17

DJSD(p
t=0
y|z=z||qy|z=z) ≥ K(pt=0

y|z=z, qy|z=z)DKL(p
t=0
y|z=z||qy|z=z), (32)

with

K(pt=0
y|z=z, qy|z=z) = sup

y
k

(
p(y = y|z = z, t = 0)

q(y = y|z = z)

)
,

in which

k(r) =

{
f(r)
g(r) for r ∈ (0, 1) ∪ (1,+∞)

1 for r = 1
,

and

f(r) = r log r

g(r) =
1

2

[
r log r − (r + 1) log

r + 1

2

]
B.4.2 Pinsker-type bound

Fisrt, since the Jensen-Shannon divergence is a f -divergence, we can use the result from theorem 3
in Gilardoni (2010) to express a lower-bound as a function of the total variation DTV :√

DJSD(p
t=0
y|z=z||qy|z=z) ≥

√
f ′′(1)

2
DTV (p

t=0
y|z=z||qy|z=z)

=
√
2 DTV (p

t=0
y|z=z||qy|z=z), (33)

with f ′′(1) as the second derivative of f(t) = 1
2

[
(t+ 1) log 2

t+1 + t log t
]

evaluated in t = 1.

Secondly, since the Kullback-Leibler divergence is also a f -divergence, we use the result of theorem 1
from Binette (2019) to upper-bound the latent test error as a function of the total variation:

DKL(p
t=0
y|z=z||qy|z=z) ≤

(
f(m(z))

1−m(z)
+
f(M(z))

M(z)− 1

)
DTV (p

t=0
y|z=z||qy|z=z)

=

(
m(z) logm(z)

1−m(z)
+
M(z) logM(z)

M(z)− 1

)
DTV (p

t=0
y|z=z||qy|z=z), (34)

with m(z) := miny
p(y=y|z=z,t=0)

q(y=y|z=z) , M(z) := maxy
p(y=y|z=z,t=0)

q(y=y|z=z) , and f(t) = t log t.

Combining the two bounds we obtain:

DKL(p
t=0
y|z=z||qy|z=z) ≤

1√
2

(
m(z) logm(z)

1−m(z)
+
M(z) logM(z)

M(z)− 1

)√
DJSD(p

t=0
y|z=z||qy|z=z).

(35)

Note that the right-hand side of this last inequality is finite whenever the support of the model
q(y|z = z) contains the support of p(y|z = z, t = 0) (and therefore M(z) is finite). When this does
not happen, both left-hand and right hand side of the inequality are unbounded.

B.5 Bound in expression 9

Proof. Consider the amount of predictive information lost by encoding x into z:

It=1(x;y|z) = It=1(zx;y)− It=1(z;y)

= It=1(x;y) + It=1(z;y|x)− It=1(z;y)

= It=1(x;y)− It=1(z;y), (36)

in which It=1(z;y|x) = 0 since z depends only on x.

18

Since I(x;y) is constant in q(z|x):
min
q(z|x)

It=1(x;y|z) = I(x;y)− max
q(z|x)

It=1(y; z). (37)

The upper-bound is derived considering q(y|z) as a variational distribution. For any q(y|z):
It=1(x;y|z) = DKL(p

t=1
y|x||p

t=1
y|z)

= DKL(p
t=1
y|x||qy|z)−DKL(p

t=1
y|z ||qy|z)

≤ DKL(p
t=1
y|x||qy|z), (38)

and in particular
It=1(x;y|z) ≤ min

q(y|z)
DKL(p

t=1
y|x||qy|z), (39)

in which equality holds for q(y|z) = p(y|z, t = 1).

B.6 Proof for Proposition 4

Proof. Consider the latent concept shift I(y; t|z). Using the chain rule of mutual information, we
obtain:

I(y; t|z) = I(y; et|z)− I(y; e|zt)
≤ I(y; et|z)
= I(y; e|z) + I(y; t|ze). (40)

Whenever t can be expressed as a function of e and some independent noise ε, we have:
t = f(e, ε)

=⇒ p(t|e) = p(t|e, z) = p(t|e, z,y)
=⇒ DKL(p(t|e, z)||p(t|e, z,y)) = 0

⇐⇒ I(y; t|ze) = 0. (41)
Therefore, we conclude:

I(y; t|z) ≤ I(y; e|z) (42)

B.7 Proof for Proposition 5

Proof. Consider the latent concept shift I(y; t|z). Using the chain rule of mutual information, we
obtain:

I(y; t|z) = I(yz; t)− I(t; z)
≤ I(yz; t)
= I(y; t) + I(t; z|y) (43)

Then, we express I(t; z|y) as a function of I(e; z|y):
I(t; z|y) = I(et; z|y)− I(e; z|yt)

≤ I(et; z|y)
= I(e; z|y) + I(t; z|ye). (44)

Whenever t can be expressed as a function of e, y and some independent noise ε, we have:
∃f : t = f(e,y, ε)

=⇒ p(t|e,y) = p(t|e,y, z)
=⇒ DKL(p(t|e,y, z)||p(t|e,y)) = 0

⇐⇒ I(t; z|ye) = 0. (45)

Using the results from equations 43, 44 and 45:
I(y; t|z) ≤ I(y; t) + I(t; z|y)

≤ I(y; t) + I(e; z|y). (46)

19

B.8 Correcting for prior shift

When the separation constraint I(e; z|y) = 0 is enforced the reverse concept shift I(t; z|y), which
represents how much the distribution p(z|y) changes as a result of the selection, is zero (equations 44
and 45). Considering the stability of p(z|y), we can express the test predictive distribution p(y|z, t =
0) as a function of the train one using Bayes rule:

p(y|z, t = 0) =
p(z|y, t = 0)p(y|t = 0)

p(z|t = 0)

=∗
p(z|y, t = 1)p(y|t = 0)

p(z|t = 0)

=

p(y|z,t=1)p(z|t=1)
p(y|t=1) p(y|t = 0)

p(z|t = 0)

= p(y|z, t = 1)
p(y|t = 0)

p(y|t = 1)︸ ︷︷ ︸
r(y)

p(z|t = 1)

p(z|t = 0)︸ ︷︷ ︸
1/Z

, (47)

where ∗ uses p(z|y, t = 0) = p(z|y, t = 1). The ratio r(y) represents the fraction of the marginal
probabilities of y, while Z is a normalization constant.

We define the corrected model q′(y|z) following the result from equation 47:

q̂′(y|z) := 1

Z
q(y|z)r(y). (48)

The test error for the model q′(y|z) for a representation z that has positive support in both train and
test (p(z|t = 1) > 0,p(z|t = 0) > 0) is determined by the train latent test error:

DKL(p
t=0
y|z=z||q

′
y|z=z) = Ey∼p(y|z=z,t=0)

[
log

p(y = y|z = z, t = 0)

q′(y = y|z = z)

]
= Ey∼p(y|z=z,t=0)

[
log

p(y = y|z = z, t = 0)

q(y = y|z = z)

p(y = y|t = 1)

p(y = y|t = 0)

p(z = z|t = 0)

p(z = z|t = 1)

]

= Ey∼p(y|z=z,t=0)

log p(y=y|z=z,t=0)p(z=z|t=0)
p(y=y|t=0)

p(y=y|z=z,t=1)p(z=z|t=1)
p(y=y|t=1)

p(y = y|z = z, t = 1)

q(y = y|z = z)

= Ey∼p(y|z=z,t=0)

[
log

p(z = z|y = y, t = 0)

p(z = z|y = y, t = 1)

]
+DKL(p

t=1
y|z ||qy|z)

=∗ DKL(p
t=1
y|z ||qy|z), (49)

where ∗ uses p(z|y, t = 0) = p(z|y, t = 1).

B.9 Relation between the different criteria

The different criteria mentioned in section 3 are related by the following expression, which follows
from the chain rule of mutual information:

I(e; z|y)︸ ︷︷ ︸
separation

+I(e;y) = I(e;y|z)︸ ︷︷ ︸
sufficiency

+ I(e; z)︸ ︷︷ ︸
independence

From which we can derive the following:

1. if y and e are independent (I(y; e) = 0) enforcing separation is equivalent to enforcing
both sufficiency and independence:

I(e; z|y) + I(e;y) = 0

⇐⇒ I(y; e|z) + I(e; z) = 0 (50)

2. if y and e are dependent (I(e;y) > 0), sufficiency and independence are mutually exclusive
conditions (Barocas et al., 2018):

I(e;y|z) + I(e; z) ≥ I(e;y) (51)

20

C Datasets

Here we report the conditional probability distributions used to produce the d-CMNIST and y-
CMNIST datasets, underlining the commonalities and differences from the original CMNIST distri-
bution.

Across the three datasets:

• The first two environments are selected for training.

p(t = t|e = e)
e = 0 e = 1 e = 2

t = 1 1 1 0
t = 0 0 0 1

• The correlation between color c and label y is positive in the first two environments and
negative on the last.

p(c = 1|y = y, e = e)
e = 0 e = 1 e = 2

y = 0 9/10 4/5 1/10
y = 1 1/10 1/5 9/10

• For a given color c and digit d, the corresponding picture is a MNIST digit with label d and
red (c = 1) or green (c = 0) color. In the discrete settings we assume that pictures contain
only color and digit information (ignoring the style) and we construct x as a concatenation
of the color c and digit d: x := [c, d].

C.1 CMNIST

• All 10 digits d the same probability:

∀d ∈ 0, . . . , 9 : p(d = d) = 1/10

• The 3 environments have the same probability to occur:

∀e ∈ 0, 1, 2 : p(e = e) = 1/3

Note that the first two environments will have probability 0.5 on the selected training set,
while the last one will be drawn with probability 1 from the test distribution.

• The label y = 1 is assigned with probability 0.75 for digits 5-9 and 0.25 for digits 0-4 across
all environments.

p(y = y|d = d)
d < 5 d ≥ 5

y = 0 3/4 1/4
y = 1 1/4 3/4

C.2 d-CMNIST

• Digits from 0-4 are more likely to occur on the first environment, less likely on the second,
while the probability is uniform on the third environment.

p(d ∈ D|e = e)
e = 0 e = 1 e = 2

D = [0, 4] 3/5 1/5 1/2
D = [5, 9] 2/5 4/5 1/2

21

Digits from 0 to 4 (and from 5 to 9) have the same probability:

∀d ∈ [0, 4] : p(d = d) =

∑
d′∈[0,4] p(d = d′)

5

∀d ∈ [5, 9] : p(d = d) =

∑
d′∈[5,9] p(d = d′)

5

• The first environment is more likely than the second:

p(e = 0) = 1/2

p(e = 1) = 1/6

p(e = 2) = 1/3

Note that this assignments is designed to ensure that marginally the digits d have uniform
distribution on both train and test.

• Labels y are assigned in the same way as the original CMNIST distribution, based on the
digits d.

C.3 y-CMNIST

• Digits 0-4 are more likely to occur for y = 0 and less likely for y = 1:

p(d ∈ D|y = y)
y = 0 y = 1

D = [0, 4] 3/4 1/4
D = [5, 9] 1/4 3/4

Similarly to d-CMNIST, digits in the same group ([0,4], [5,9]) have equal likelihood:

∀d ∈ [0, 4] : p(d = d) =

∑
d′∈[0,4] p(d = d′)

5

∀d ∈ [5, 9] : p(d = d) =

∑
d′∈[5,9] p(d = d′)

5

Note that the conditional distribution p(d|y) is the same as the one of the original CMNIST
distribution.

• The label y = 0 is more likely in the first environment and less on the second. The two
labels have the same probability on the third environment:

p(y = y|e = e)
e = 0 e = 1 e = 2

y = 0 3/5 1/5 1/2
y = 1 2/5 4/5 1/2

• The marginal environment distribution is the same as the one described in the d-CMNIST
dataset. This assignment ensures that both labels y and digits d have marginal uniform
distribution on train t = 1 and test t = 0 splits.

C.4 Dataset properties

Table 1 reports some of the mutual information measurements for the three CMNIST, d-CMNIST,
and y-CMNIST datasets. Note that only representations that contain digit or no information result in
zero concept shift.

C.5 Sampling

Since all the three dataset have uniform digit distribution on both train and test splits (p(d = d|t =
1) = p(d = d|t = 0) = 1/10), the training dataset are produced using the following sampling
procedure:

22

Concept shift Independence Sufficiency Separation

dataset I
(y
;

t|x
)

I
(y
;

t|c
)

I
(y
;

t|d
)

I
(y
;

t)

I
t
=

1
(e
;
x
)

I
t
=

1
(e
;

c)

I
t
=

1
(e
;

d)

I
t
=

1
(y
;

e)

I
t
=

1
(y
;

e|
x)

I
t
=

1
(y
;

e|
c)

I
t
=

1
(y
;

e|
d)

I
t
=

1
(e
;

x|
y)

I
t
=

1
(e
;

c|
y)

I
t
=

1
(e
;

d|
y)

CMNIST 0.219 0.283 0.0 0.0 0.00143 0.0 0.0 0.0 0.00854 0.00997 0.0 0.00997 0.00997 0.0
d-CMNIST 0.238 0.306 0.0 0.0 0.0642 0.000636 0.0633 0.0152 0.00588 0.0164 0.0 0.0549 0.00760 0.0481
y-CMNIST 0.238 0.306 0.0 0.0 0.0331 0.0258 0.0152 0.0633 0.0371 0.0444 0.0481 0.00683 0.00683 0.0

Table 1: Mutual information quantities for the three CMNIST datasets. Note that only a representation
containing digit or no information results in zero concept shift. Both color and digit satisfy the
independence criterion on CMNIST, while digit information is not satisfying sufficiency or separation
for the y-CMNIST and d-CMNIST datasets.

1. Determine p(c, e, y|d, t = 1) using Bayes rule:

p(c, e, y|d, t = 1) =
p(c, e, y, d|t = 1)

p(d|t = 1)
.

2. Sample a MNIST picture x̃ with label d from the MNIST dataset.

3. Sample from p(c, e, y|d = d, t = 1) to determine color c, environment e and label y.

4. Color the picture x̃ in green or red depending on the value of c to obtain x.

5. Return the triple (x, y, e)

Note that in the reported experiments, step 3) is performed at run-time. Therefore, the same picture x̃
can appear in different environments with different colors if sampled multiple times.

Digits used for the train t = 1 and test t = 0 splits are disjoint, following the traditional train-test
MNIST splits. The code used to generate the three datasets can be found at https://github.com/
mfederici/dsit.

D Direct Optimization

In order to optimize for the objective prescribed by the different criteria directly, we define a discrete
random variable x̂ obtained by concatenating the random variables representing color c and digit
d. All the extra information in x (e.g. style, position, small rotations, ..) does not interact with the
environment e or label y, therefore we can safely assert that x is conditionally independent of y and e
once x̂ is observed:

I(x; ye|x̂) = 0. (52)

At the same time, we can safely assume that color and digit can be identified when a picture x is
observed:

∃g s.t. x̂ = g(x) =⇒ I(x̂; ye|x) = 0. (53)

Using the assumptions in 52 and 53, we can infer that x̂ is a sufficient statistic for x. In particular,
we can show that any (conditional or not) mutual information measurement involving x, y and e is
unchanged if x̂ is used instead of x.

23

https://github.com/mfederici/dsit
https://github.com/mfederici/dsit

For example:

I(y; e|x) = I(xy; e)− I(x;y)
= I(xy; e)− I(xx̂;y) + I(x̂;y|x)︸ ︷︷ ︸

=0 using eq.53

= I(xy; e)− I(x̂;y)− I(x;y|x̂)︸ ︷︷ ︸
=0 using eq.52

= I(y; e) + I(x; e|y)− I(x̂;y)
= I(y; e) + I(xx̂; e|y)− I(x̂; e|xy)︸ ︷︷ ︸

=0 using eq.53

−I(x̂;y)

= I(y; e) + I(x̂; e|y) + I(x; e|x̂y)︸ ︷︷ ︸
=0 using eq.52

−I(x̂;y)

= I(x̂y; e)− I(x̂;y)
= I(y; e|x̂).

Note that in this proof we also show I(x;y) = I(x̂;y) and I(x; e|y) = I(x̂; e|y). The proof for the
other reported quantity is analogous.

The dashed trajectories in figure 3 are computed by directly optimizing the objectives reported in
section 3 using x̂ instead of x. We use a [(10× 2)× 64] normalized matrix W to parametrize the
encoder q(z|x). Each column of W sums to 1 to represent a valid conditional probability distribution.
This matrix maps each combination of digit (10) and color (2) into a representation z consisting of 64
different options using a dot product:

z = W T flatten(x̂), (54)

in which flatten(·) represent the operation flattening the 2× 10 matrix into a 20-dimensional vector.
Since x̂ is a categorical variable, this encoder can represents any possible function from [2× 10] to
the latent space of size [64]. We expect the family of encoders parametrized by W to be sufficiently
flexible since the dimensionality of the representation is bigger when compared to the number of
possible inputs.

All mutual information terms in the objective can be computed and differentiated directly, and we
can progressively update W using stochastic gradient descent until convergence. The matrix W is
initialized randomly and updated using the ADAM optimizer (Kingma & Ba, 2015) with a learning
rate of 10−3. The optimization stops when the total variation of train and test error is less than 10−4

for at least 1000 iterations.

The results for different values of the hyper-parameter λ are obtained by training a new matrix W
from scratch for each considered value of λ. The parameter λ varies from 0 to 106 for models
trained using the independence, sufficiency and separation criteria, while a maximum value of 10
is used for the information bottleneck experiments since λ = 2 is usually sufficient to obtain a
constant representation. Further details on the procedure can be found at https://github.com/
mfederici/dsit.

E Training details

Each model in section 4 is composed of the same encoder q(z|x) and decoder q(y|z) neural network
consisting of multi-layer perceptrons:

• Encoder:

Flatten()→ Linear(in_size= 768, out_size= 1024)→
Linear(in_size= 1024, out_size= 128)→
Linear(in_size= 128, out_size= 64(×2))

with 0.25 dropout probability and ReLU activation in-between each layer. Note that a final
size of 128 = 64 + 64 is used for the VIB experiments to separately parametrize mean and
variance of the stochastic encoder q(z|x).

24

https://github.com/mfederici/dsit
https://github.com/mfederici/dsit

0.3 0.4 0.5 0.6 0.7
Train Cross-entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Te
st

 C
ro

ss
-e

nt
ro

py

CMNIST

0.3 0.4 0.5 0.6 0.7
Train Cross-entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

d-CMNIST

0.3 0.4 0.5 0.6 0.7
Train Cross-entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

y-CMNIST
VIB
DANN
IRM
CDANN
VREx

Figure 4: Train and test error on the CMNIST, d-CMNIST and y-CMNIST datasets obtained by
training a convlolutional architecture using the same hyper-parameters described in section E. The
results are consistent with the ones obtained with a multi-layer perceptron (MLP), which are reported
in figure 3.

• Classifier:

Linear(in_size= 64, out_size= 128)→
Linear(in_size= 128, out_size= 2)

with ReLU activation and softmax output normalization.

Each model is trained for a total of 25000 iterations with batches of size 256 (with the exception of
the IRM and VREx model that use a batch size of 4096) using the ADAM optimizer (Kingma & Ba,
2015) with a learning rate of 10−4. The neural networks are trained for a total of 3000 iterations
without any regularization, then λ is linearly scaled by a constant value after each iteration (5× 10−3

for VREx, 2× 10−2 for DANN, CDANN and IRM, 5× 10−5 for VIB). The increment policy has
been chosen to maintain stability while exploring the full range of latent representation for each one
of the models. The train and test cross-entropy error are measures and reported every 2000 training
steps across 3 different seeded runs.

The DANN and CDANN models also require an auxiliary discriminator architecture. In both cases
we use multi-layer perceptrons:

Linear(in_size= 64(+2), out_size= 1024)→
Linear(in_size= 1024, out_size= 128)→

Linear(in_size= 128, out_size= 2)

with ReLU activations, softmax output and spectral normalization (Miyato et al., 2018) for additional
stability. The +2 in parenthesis accounts for the extra dimensions that are required for the label
concatenation in the CDANN model. In between each update of the encoder and classifier neural
network, the discriminator model is trained for a total of 64 iterations with a learning rate of
10−4. This procedure is required to ensure stability of the adversarial training. The entirety of the
experiments reported in this work required approximately a total of 250 compute hours on Nvidia
1080 GPUs. The code used to train the architectures is publicly available at https://www.github.
com/mfederici/dsit.

E.1 CNN results

In order to validate the result obtained with the different regularization strategies, we perform some
additional experiments using a convolutional encoder architecture:

Conv(in_channels= 2, out_channels= 32, kernel_size= 5, stride= 2)→
Conv(in_channels= 32, out_channels= 64, kernel_size= 5, stride= 2)→

Conv(in_channels= 64, out_channels= 128, kernel_size= 4, stride= 2)→
Flatten()→ Linear(in_size= 128, out_size= 64)

25

https://www.github.com/mfederici/dsit
https://www.github.com/mfederici/dsit

0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

CM
NI

ST

Te
st

 C
ro

ss
-E

nt
ro

py

2

0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

4

0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

8

0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

16

0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

32

0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

64
picture
digit
color
prior
DANN
CDANN

0.3 0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

1.8

d-
CM

NI
ST

Te
st

 C
ro

ss
-E

nt
ro

py

0.3 0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7
Train Cross-Entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

y-
CM

NI
ST

Te
st

 C
ro

ss
-E

nt
ro

py

0.3 0.4 0.5 0.6 0.7
Train Cross-Entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7
Train Cross-Entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7
Train Cross-Entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7
Train Cross-Entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7
Train Cross-Entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure 5: Measurements of train and test cross-entropy for varying number of discriminator training
iterations (columns) on the three CMNIST variations (rows) on three different runs. The model
convergence and stability is strongly affected by the number of discriminator iterations, especially on
the d-CMNIST and y-CMNIST datasets.

with ReLU activations and dropout.

The corresponding results reported in Figure 4 for the three CMNIST variations are consistent with
the ones reported in figure 3, underlying that the observed behaviour depends on the model objectives
more than the chosen architectures.

F Hyper-parameters and their effect

F.1 On the number of adversarial steps

The results reported in figure 5 clearly show that the effectiveness of the DANN and CDANN model
strongly depends on the number of adversarial iterations used for each training step of the encoder
model. The plots in the figure 5 display that an increased number of adversarial iterations helps with
both stability and performance of the model. This indicates that the optimality of the adversarial
predictors q(e|z) and q(e|z,y) plays a fundamental role in the training procedure of the model.

Note that the training cost and time scales up linearly with the number of adversarial itera-
tions. This becomes especially problematic with bigger models and datasets.

F.2 On the size of the training batch

We observed that both the IRM and VREx models are sensitive to the choice of the size of the training
batch used for optimization. We hypothesize that this is due to the fact that both method rely on the
computation of a higher order batch statistic (variance and gradient norm).

Figure 6 reports train and test cross-entropy obtained for different values of batch size. We observe
that increasing batch size is required to stabilize the training procedure and improve generalization
results at the cost of increased memory and computational requirements.

F.3 Practical limitations of Invariant Risk Minimization

We observed that the IRM model is unable to minimize the test error on the d-CMNIST dataset
despite the optimality of the sufficiency criterion. We identify two main reasons that can explain this
issue:

26

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CM
NI

ST

Te
st

 C
ro

ss
-E

nt
ro

py

64

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.6

0.8

1.0

1.2

1.4

1.6

1.8
256

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.6

0.8

1.0

1.2

1.4

1.6

1.8
1024

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.6

0.8

1.0

1.2

1.4

1.6

1.8
4096

picture
digit
color
prior
IRM
VREx

0.3 0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

1.8

d-
CM

NI
ST

Te
st

 C
ro

ss
-E

nt
ro

py

0.3 0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7
Train Cross-Entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

y-
CM

NI
ST

Te
st

 C
ro

ss
-E

nt
ro

py

0.3 0.4 0.5 0.6 0.7
Train Cross-Entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7
Train Cross-Entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7
Train Cross-Entropy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure 6: Visualization of the effect of different choices of batch size (different columns) for the IRM
and VREx models on the three CMNIST variations (rows) using the MLP architectures described in
appendix E. Increasing the batch size generally results in better stability and performance at the cost
of extra computation time. The models in the pictures are trained for the same amount of iterations.

1. The Invariant Risk Minimization introduces a relaxation of the sufficiency criterion:

Sufficiency =⇒ IRM-optimality, IRM-optimality 6=⇒ Sufficiency.

As a consequence, the model can converge to an IRM-optimal solution which is not enforcing
sufficiency. Further discussion on the relation between sufficiency and IRM is discussed in
Huszár (2019).

2. The gradient penalized by the regularization term Ee||∇`e(qy|z ◦qz|x)||2 becomes too small
to produce meaningful encoder updates.

Figure 7 shows that the gradient on the different datasets quickly goes to zero as the regularization
strength λ is increased. Increasing the batch size results in a decrease in the variance of the gradient
estimate, but it does not increase its magnitude. This suggests that either the model already achieved
IRM-optimality, or that the gradient is so small that the variance of the regularization term needs to
be decreased by orders of magnitudes to result in meaningful updates. Although possible, the latter
option would imply that drastically bigger batch size are needed, reducing the applicability of the
IRM model to larger settings.

G Generalizing constraints from the train distribution

In section 3, we mention that different criteria implicitly rely on the assumption that enforcing a
constraint (or maximizing predictive information) on the training distribution is sufficient to ensure
that the constraint holds for the whole distribution, even outside of the selection. Here we report
a simple example in which these assumption are clearly violated to underline the importance of
environment variety at training time and pinpoint the limitations of the approaches explored in this
work.

27

Iteration0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

CM
NI

ST

Gr
ad

ie
nt

 P
en

al
ty

64

Iteration

256

Iteration

1024

Iteration

4096

Iteration0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

d-
CM

NI
ST

Gr
ad

ie
nt

 P
en

al
ty

64

Iteration

256

Iteration

1024

Iteration

4096

0 5000 10000 15000 20000 25000
Iteration

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

y-
CM

NI
ST

Gr
ad

ie
nt

 P
en

al
ty

64

0 5000 10000 15000 20000 25000
Iteration

256

0 5000 10000 15000 20000 25000
Iteration

1024

0 5000 10000 15000 20000 25000
Iteration

4096

Figure 7: Gradient penalty measured during training of the IRM models using different batch size on
the three variations of the CMNIST dataset. Increasing the size of the training batches reduces the
variance of the gradient but it does not increase its magnitude.

Consider the problem of constructing a classifier to distinguish pictures of cows from camels.
To simplify our reasoning, we will assume that each picture contains only animal features a ∈
{patches, horns, humps, ..} and background features b ∈ {sand, grass}. The data is collected from
different locations e, which represent the environmental factors. If the training distribution does not
contain any example of cows on sandy terrains or camels on pastures, we can not expect any of the
described criteria to successfully classify pictures. This happens for two main reasons:

1. On the training distribution animal and background feature are equally predictive of the
label:

It=1(y; a) = It=1(y; b) = It=1(y; ab).

As a consequence, we can not expect the encoder q(z|x) to preferentially extract animal
features a, especially when the background b is much easier to identify.
Note that the amount of predictive information for the background b on the distribution that
has not been selected (camels on pastures, cows on sand for t = 0) is strictly less than the
amount of information carried by a:

It=0(y; b) < It=0(y; a) = It=0(y; ab).

This is because not all camels are necessarily in sandy locations, but all of them have humps
(Ht=0(y|b) > H(y|a) = 0). In other words, the lack of diversity in the selection makes the
background information b as predictive as the animal features a on the training distribution,
although background is not more predictive than the animal features in general.

2. Background information is stable across all the training locations e:

p(y, b|e, t = 1) = p(y, b|t = 1).

This happens since, within the training locations, all cows are on green patches and all
camels are on sandy terrains. Since the joint distribution of background and label is the same
across different training locations, the constraint imposed by both sufficiency and separation

28

criteria cannot remove the background information b from the representation z. Since both
p(y|b, t = 1) and p(b|y, t = 1) appear stable we have:

It=1(y; e|b) = 0, It=1(e; b|y) = 0.

In other words, no regularization strength λ can force a model trained using the sufficiency
or separation (or independence) criterion to remove background information from the
representation.
Note that even if background appears to be a stable feature on the selection, it is not stable
in general and we have:

I(y; e|b) > 0, I(e; b|y) > 0,

since both p(y|b) and p(b|y) can change for some environmental conditions that have not
been selected. This is because in some (unobserved) locations it is possible to find cows on
sandy beaches or camels on grasslands.

To summarize, lack of diversity in the training environment may compromise the effectiveness of
the criteria mentioned in this analysis. This is because models can rely on features that appear to
be stable on the training distribution to make predictions. Whenever the stability is due to lack of
diversity in the data selection, we cannot expect optimal out-of-distribution performance.

29

