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Abstract

Generative Adversarial Networks (GANs) produce high-quality images but are
challenging to train. They need careful regularization, vast amounts of compute,
and expensive hyper-parameter sweeps. We make significant headway on these is-
sues by projecting generated and real samples into a fixed, pretrained feature space.
Motivated by the finding that the discriminator cannot fully exploit features from
deeper layers of the pretrained model, we propose a more effective strategy that
mixes features across channels and resolutions. Our Projected GAN improves im-
age quality, sample efficiency, and convergence speed. It is further compatible with
resolutions of up to one Megapixel and advances the state-of-the-art Fréchet In-
ception Distance (FID) on twenty-two benchmark datasets. Importantly, Projected
GANs match the previously lowest FIDs up to 40 times faster, cutting the wall-clock
time from 5 days to less than 3 hours given the same computational resources.
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Figure 1: Convergence with Projected GANs. Evolution of samples for a fixed latent code during
training on the AFHQ-Dog dataset [5]. We find that discriminating features in the projected feature
space speeds up convergence and yields lower FIDs. This finding is consistent across many datasets.

1 Introduction

A Generative Adversarial Network (GAN) consists of a generator and a discriminator. For image
synthesis, the generator’s task is to generate an RGB image; the discriminator aims to distinguish
real from fake samples. On closer inspection, the discriminator’s task is two-fold: First, it projects
the real and fake samples into a meaningful space, i.e., it learns a representation of the input space.
Second, it discriminates based on this representation. Unfortunately, training the discriminator jointly
with the generator is a notoriously hard task. While discriminator regularization techniques help to
balance the adversarial game [31], standard regularization methods like gradient penalties [36] are
susceptible to hyperparameter choices [26] and can lead to a substantial decrease in performance [4].

In this paper, we explore the utility of pretrained representations to improve and stabilize GAN
training. Using pretrained representations has become ubiquitous in computer vision [29, 30, 48]
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and natural language processing [18,45,47]. While combining pretrained perceptual networks [58]
with GANs for image-to-image translation has led to impressive results [14, 49, 59, 64], this idea
has not yet materialized for unconditional noise-to-image synthesis. Indeed, we con�rm that a naïve
application of this idea does not lead to state-of-the-art results (Section 4) as strong pretrained fea-
tures enable the discriminator to dominate the two-player game, resulting in vanishing gradients for
the generator [2]. In this work, we demonstrate how these challenges can be overcome and identify
two key components for exploiting the full potential of pretrained perceptual feature spaces for GAN
training: feature pyramids to enable multi-scale feedback with multiple discriminators andrandom
projections to better utilize deeper layers of the pretrained network.

We conduct extensive experiments on small and large datasets with a resolution of up to10242 pixels.
Across all datasets, we demonstrate state-of-the-art image synthesis results at signi�cantly reduced
training time (Fig. 1). We also �nd that Projected GANs increase data ef�ciency and avoid the
need for additional regularization, rendering expensive hyperparameter sweeps unnecessary. Code,
models, and supplementary videos can be found on the project page https://sites.google.com/view/
projected-gan.

2 Related Work

We categorize related work into two main areas: pretraining for GANs and discriminator design.

Pretrained Models for GAN Training. Work on leveraging pretrained representations for GANs
can be divided into two categories: First, transferring parts of a GAN to a new dataset [15,38,65,71]
and, second, using pretrained models to control and improve GANs. The latter is advantageous as
pretraining does not need to be adversarial. Our work falls into this second category. Pretrained models
can be used as a guiding mechanism to disentangle causal generative factors [54], for text-driven image
manipulation [44], matching the generator activations to inverted classi�ers [19,56], or to generate
images via gradient ascent in the latent space of a generator [41]. The non-adversarial approach of [53]
learns generative models with moment matching in pretrained models; however, the results remain
far from competitive to standard GANs. An established method is the combination of adversarial and
perceptual losses [21]. Commonly, the losses are combined additively [10,14,32,52,64]. Additive
combination, however, is only possible if a reconstruction target is available, e.g., in paired image-to-
image translation settings [74]. Instead of providing the pretrained network with a reconstruction
target, Sungatullina et al. [59] propose to optimize an adversarial loss on frozen VGG features [58].
They show that their approach improves CycleGAN [74] on image translation tasks. In a similar vein,
[49] recently proposed a different perceptual discriminator. They utilize a pretrained VGG and connect
its features with the prediction of a pretrained segmentation network. The combined features are fed
into multiple discriminators at different scales. The two last approaches are speci�c to the image-to-
image translation task. We demonstrate that these methods do not work well for the more challenging
unconditional setting where the entire image content is synthesized from a random latent code.

Discriminator Design. Much work on GANs focuses on novel generator architectures [4,26,27,69],
while the discriminator often remains close to a vanilla convolutional neural network or mirrors the
generator. Notable exceptions are [55,70] which utilize an encoder-decoder discriminator architecture.
However, in contrast to us, they neither use pretrained features nor random projections. A different
line of work considers a setup with multiple discriminators, applied to either the generated RGB
image [8, 13] or low-dimensional projections thereof [1, 40]. The use of several discriminators
promises improved sample diversity, training speed, and training stability. However, these approaches
are not utilized in current state-of-the-art systems because of diminishing returns compared to the
increased computational effort. Providing multi-scale feedback with one or multiple discriminators
has been helpful for both image synthesis [23,24] and image-to-image translation [43,64]. While
these works interpolate the RGB image at different resolutions, our �ndings indicate the importance
of multi-scalefeature maps, showing parallels to the success of pyramid networks for object detection
[34]. Lastly, to prevent over�tting of the discriminator, differentiable augmentation methods have
recently been proposed [25,63,72,73]. We �nd that adopting these strategies helps exploit the full
potential of pretrained representations for GAN training.
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3 Projected GANs

GANs aim to model the distribution of a given training dataset. A generatorG maps latent vectorsz
sampled from a simple distributionPz (typically a normal distribution) to corresponding generated
samplesG(z). The discriminatorD then aims to distinguish real samplesx � Px from the generated
samplesG(z) � PG(z) . This basic idea results in the following minimax objective

min
G

max
D

�
Ex [logD(x)] + Ez [log(1 � D (G(z)))]

�
(1)

We introduce a set of feature projectorsf Pl g which map real and generated images to the discrimina-
tor's input space. Projected GAN training can thus be formulated as follows

min
G

max
f D l g

X

l 2L

�
Ex [logD l (Pl (x))] + Ez [log(1 � D l (Pl (G(z)))))]

�
(2)

wheref D l g is a set of independent discriminators operating on different feature projections. Note that
we keepf Pl g �xed in (2) and only optimize the parameters ofG andf D l g. The feature projectors
f Pl g should satisfy two necessary conditions: they should be differentiable and provide suf�cient
statistics of their inputs, i.e., they should preserve important information. Moreover, we aim to �nd
feature projectorsf Pl g which turn the (dif�cult to optimize) objective in(1) into an objective more
amenable to gradient-based optimization. We now show that a projected GAN indeed matches the
distribution in the projected feature space, before specifying the details of our feature projectors.

3.1 Consistency

The projected GAN objective in (2) no longer optimizes directly to match the true distributionPT .
To understand the training properties under ideal conditions, we consider a more generalized form of
the consistency theorem of [40]:

Theorem 1. Let PT denote the density of the true data distribution andPG the density of the
distribution the GeneratorG produces. LetPl � T andPl � G be the functional composition of the
differentiable and �xed functionPl and the true/generated data distribution, andy be the transformed
input to the discriminator. For a �xedG, the optimal discriminators are given by

D �
l;G (y ) =

PP l � T (y )
PP l � T (y ) + PP l � G (y )

for all l 2 L . In this case, the optimal G under (2) is achieved iffPP l � T = PP l � G for all l 2 L .

A proof of the theorem is provided in the appendix. From the theorem, we conclude that a feature
projectorPl with its associated discriminatorD l encourages the generator to match the true distribu-
tion along the marginal throughPl . Therefore, at convergence,G matches the generated and true
distributions in feature space. The theorem also holds when using stochastic data augmentations [25]
before the deterministic projectionsPl .

3.2 Model Overview

Projecting to and training in pretrained feature spaces opens up a realm of new questions which
we address below. This section will provide an overview of the general system and is followed by
extensive ablations of each design choice. As our feature projections affect the discriminator, we
focus onPl andD l in this section and postpone the discussion of generator architectures to Section 5.

Multi-Scale Discriminators. We obtain features from four layersL l of a pretrained feature network
F at resolutions (L 1 = 642; L 2 = 322; L 3 = 162; L 4 = 8 2). We associate a separate discriminator
D l with the features at layerL l , respectively. Each discriminatorD l uses a simple convolutional
architecture with spectral normalization [37] at each convolutional layer. We observe better perfor-
mance if all discriminators output logits at the same resolution (42). Accordingly, we use fewer
down-sampling blocks for lower resolution inputs. Following common practice, we sum all logits for
computing the overall loss. For the generator pass, we sum the losses of all discriminators. More
complex strategies [1,13] did not improve performance in our experiments.

Random Projections. We observe that features at deeper layers are signi�cantly harder to cover,
as evidenced by our experiments in Section 4. We hypothesize that a discriminator can focus on a
subset of the feature space while wholly disregarding other parts. This problem might be especially
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prominent in the deeper, more semantic layers. Therefore, we propose two different strategies to
dilute prominent features, encouraging the discriminator to utilize all available information equally.
Common to both strategies is that they mix features using differentiable random projections which
are �xed, i.e., after random initialization, the parameters of these layers are not trained.

Figure 2:CCM (dashed blue
arrows) employs 1� 1 convo-
lutions with random weights.

Cross-Channel Mixing (CCM).Empirically, we found two proper-
ties to be desirable: (i) the random projection should be information
preserving to leverage the full representational power ofF , and (ii)
it should not be trivially invertible. The easiest way to mix across
channels is a 1� 1 convolution. A 1� 1 convolution with an equal
number of output and input channels is a generalization of a permu-
tation [28] and consequently preserves information about its input.
In practice, we �nd that more output channels lead to better perfor-
mance as the mapping remains injective and therefore information
preserving. Kingma et al. [28] initialize their convolutional layers
as a random rotation matrix as a good starting point for optimization.
We do not �nd this to improve GAN performance (see Appendix),
arguably since it violates (ii). We therefore randomly initialize the
weights of the convolutional layer via Kaiming initialization [16].
Note that we do not add any activation functions. We apply this ran-
dom projection at each of the four scales and feed the transformed
feature to the discriminator as depicted in Fig. 2.

Figure 3:CSM (dashed red ar-
rows) adds random 3� 3 con-
volutions and bilinear upsam-
pling, yielding a U-Network.

Cross-Scale Mixing (CSM).To encourage feature mixingacross
scales, CSM extends CCM with random 3� 3 convolutions and
bilinear upsampling, yielding a U-Net [50] architecture, see Fig. 3.
However, our CSM block is simpler than a vanilla U-Net [50]: we
only use a single convolutional layer at each scale. As for CCM, we
utilize Kaiming initialization for all weights.

Pretrained Feature Networks.We ablate over varying feature net-
works. First, we investigate different versions of Ef�cientNets, which
allow for direct control over model size versus performance. Ef�-
cientNets are image classi�cation models trained on ImageNet [7]
and designed to provide favorable accuracy-compute tradeoffs. Sec-
ond, we use ResNets of varying sizes. To analyze the dependency on
ImageNet features (Section 4.3), we also consider R50-CLIP [46], a
ResNet optimized with a contrastive language-image objective on a
dataset of 400 million (image, text) pairs. Lastly, we utilize a vision transformer architecture (ViT-
Base) [9] and its ef�cient follow-up (DeiT-small distilled) [62]. We do not choose an inception
network [60] to avoid strong correlations with the evaluation metric FID [17]. In the appendix, we
also evaluate several other neural and non-neural metrics to rule out correlations. These additional
metrics re�ect the rankings obtained by FID.

In the following, we conduct a systematic ablation study to analyze the importance and best con�gu-
ration of each component in our Projected GAN model, before comparing it to the state-of-the-art.

4 Ablation Study

To determine the best con�guration of discriminators, mixing strategy, and pretrained feature network,
we conduct experiments on LSUN-Church [67], which is medium-sized (126k images) and reasonably
visually complex, using a resolution of2562 pixels. For the generatorG we use the generator
architecture of FastGAN [35], consisting of several upsampling blocks, with additional skip-layer-
excitation blocks. Using a hinge loss [33], we train with a batch size of 64 until 1 million real images
have been shown to the discriminator, a suf�cient amount forG to reach values close to convergence.
If not speci�ed otherwise, we use an Ef�cientNet-Lite1 [61] feature network in this section. We found
that discriminator augmentation [25,63,72,73] consistently improves the performance of all methods,
and is required to reach state-of-the-art performance. We leverage differentiable data-augmentation
[72] which we found to yield the best results in combination with the FastGAN generator.
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Discriminator(s) rel -F D 1 # rel -F D 2 # rel -F D 3 # rel -F D 4 # rel � F ID #

No Projection

onL 1 0.56 0.32 0.31 0.55 0.66
onL 1 ; L 2 0.35 0.21 0.23 0.47 0.53
onL 1 ; L 2 ; L 3 0.42 0.26 0.28 0.64 0.90
onL 1 ; L 2 ; L 3 ; L 4 0.46 0.34 0.38 0.79 1.15
onL 2 ; L 3 ; L 4 0.95 0.67 0.71 1.19 1.99
onL 3 ; L 4 2.14 1.41 1.18 1.99 3.46
onL 4 10.92 5.74 2.56 2.79 5.08

PerceptualD 2.98 1.76 1.20 1.89 2.73

CCM

onL 1 0.27 0.21 0.26 0.50 0.59
onL 1 ; L 2 0.27 0.18 0.21 0.41 0.48
onL 1 ; L 2 ; L 3 0.31 0.25 0.24 0.54 0.67
onL 1 ; L 2 ; L 3 ; L 4 0.53 0.34 0.34 0.59 0.77

PerceptualD 5.33 3.06 2.14 1.09 4.77

CCM + CSM

onL 1 0.34 0.25 0.19 0.35 0.44
onL 1 ; L 2 0.21 0.18 0.16 0.27 0.31
onL 1 ; L 2 ; L 3 0.41 0.26 0.17 0.23 0.29
onL 1 ; L 2 ; L 3 ; L 4 0.26 0.16 0.13 0.16 0.24

PerceptualD 2.53 1.37 0.89 0.43 2.13

Table 1:Feature Space Fréchet Distances.We aim to �nd the best combination of discriminators
and random projections to �t the distributions in feature networkF . We show the relative FD at
different layers ofF (rel -FD i ) between 50k generated and real images on LSUN-Church.rel -FD i
is normalized using the baseline Fréchet Distances for a model with a standard single RGB image
discriminator. Hence, values> 1 indicate worse performance than the RGB baseline. We report
rel -FD for four layers of an Ef�cientNet (L 1; L 2; L 3 andL 4 from shallow to deep), as well as
relative Fréchet Inception Distance (FID) [17]. Note thatrel -FD i should not be compared between
different feature spaces, i.e., only within-column comparisons are meaningful.Blue boxeshighlight
the layers which we supervise via independent discriminators. Thegreen boxcorresponds to a
perceptual discriminator [59], which takes in all feature maps at once.

4.1 Which feature network layers are most informative?

We �rst investigate the relevance of independent multi-scale discriminators. For this experiment, we
do not use feature mixing. To measure how wellG �ts a particular feature space, we employ the
Fréchet Distance (FD) [12] on the spatially pooled features denoted asFD i for layeri . FDs across
different feature spaces are not directly comparable. Therefore, we train a GAN baseline with a
standard RGB discriminator, recordFD RGB

i at each layer and quantify the relative improvement via
the fractionrel -FD i = FD i =FDRGB

i . We also investigate a perceptual discriminator [59], where
feature maps are fed into different layers of thesamediscriminator to predict a single logit.

The results in Table 1 (No Projection) show that two discriminators are better than one and improve
over the vanilla RGB baseline. Surprisingly, adding discriminators at deep layers hurts performance.
We conclude that these more semantic features do not respond well to direct adversarial losses. We
also experimented with discriminators at resized versions of the original image, but could not �nd a
setting of hyperparameters and architectures that improves over the single image baseline. Omitting
the discriminators on the shallow features decreases performance, which is anticipated, as these layers
contain most of the information about the original image. A similar effect has been observed for
feature inversion [11] – the deeper the layer, the harder it is to reconstruct its input. Lastly, we observe
that independent discriminators outperform the perceptual discriminator by a signi�cant margin.
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Ef�cientNet ResNet Transformer

lite0 lite1 lite2 lite3 lite4 R18 R50 R50-CLIP DeiT ViT

Params (M)# 2.96 3.72 4.36 6.42 11.15 11.18 23.51 23.53 92.36 317.52
IN top-1 " 75.48 76.64 77.47 79.82 81.54 69.75 79.04 N/A 85.42 85.16

FID # 2.53 1.65 1.69 1.79 2.35 4.16 4.40 3.80 2.46 12.38

Table 2:Pretrained Feature Networks Study. We train the projected GAN with different pretrained
feature networks. We �nd that compact Ef�cientNets outperform both ResNets and Transformers.

4.2 How can we best utilize the pretrained features?

Given the insights from the previous section, we aim to improve the utilization of deep features. For
this experiment, we only investigate con�gurations that include discriminators at high resolutions.
Table 1 (CCM and CCM + CSM) presents the results for both mixing strategies. CCM moderately
decreases the FDs across all settings, con�rming our hypothesis that mixing channels results in better
feedback for the generator. When adding CSM, we achieve another notable improvement across all
con�gurations. Especiallyrel -FD i at deeper layers are signi�cantly decreased, demonstrating CSM's
usefulness to leverage deep semantic features. Interestingly, we observe that the best performance
is now obtained by combining all four discriminators. A perceptual discriminator is again inferior
to multiple discriminators. We remark that integrating the original image, via an independent
discriminator or CCM or CSM always resulted in worse performance. This failure suggests that
naïvely combining non-projected with projected adversarial optimization impairs training dynamics.

4.3 Which feature network architecture is most effective?

Using the best setting determined by the experiments above (CCM + CSM with four discriminators),
we study the effectiveness of various perceptual feature network architectures for Projected GAN
training. To ensure convergence, also for larger architectures, we train for 10 million images. Table
2 reports the FIDs achieved on LSUN-Church. Surprisingly, we �nd that there is no correlation with
ImageNet accuracy. On the contrary, we observe lower FIDs for smaller models (e.g., Ef�cientNets-
lite). This observation indicates that a morecompactrepresentation is bene�cial while at the same
time reducing computational overhead and consequently training time. R50-CLIP slightly outper-
forms its R50 counterpart, indicating that ImageNet features are not required to achieve low FID. For
the sake of completeness, we also train with randomly initialized feature networks, which, however,
converge to much higher FID values (see Appendix). In the following, we thus use Ef�cientNet-Lite1
as our feature network.

5 Comparison to State-of-the-Art

This section conducts a comprehensive analysis demonstrating the advantages of Projected GANs
with respect to state-of-the-art models. Our experiments are structured into three sections: evaluation
of convergence speed and data ef�ciency (5.1), and comparisons on large (5.2) and small (5.3)
benchmark datasets. We cover a wide variety of datasets in terms of size (hundreds to millions of
samples), resolution (2562 to 10242), and visual complexity (clip-art, paintings, and photographs).

Evaluation Protocol. We measure image quality using the Fréchet Inception Distance (FID) [17].
Following [26, 27], we report the FID between 50k generated and all real images. We select the
snapshot with the best FID for each method. In addition to image quality, we include a metric to
evaluate convergence. As in [25], we measure training progress based on the number of real im-
ages shown to the discriminator (Imgs). We report the number of images required by the model for
the FID to reach values within 5% of the best FID over training. In the appendix, we also report
other metrics that are less benchmarked in GAN literature: KID [3], SwAV-FID [39], precision and
recall [51]. Unless otherwise speci�ed, we follow the evaluation protocol of [20] to facilitate fair
comparisons. Speci�cally, we compare all approaches given the same �xed number of images (10
million). With this setting, each experiment takes roughly 100-200 GPU hours on a NVIDIA V100,
for more details we refer to the appendix.

Baselines.We use StyleGAN2-ADA [25] and FastGAN [35] as baselines. StyleGAN2-ADA is the
strongest model on most datasets in terms of sample quality, whereas FastGAN excels in training
speed. We implement these baselines and our Projected GANs within the codebase provided by
the authors of StyleGAN2-ADA [25]. For each model, we ran two kinds of data augmentation:
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Figure 4: Training Properties. Left: Projected FastGAN surpasses the best FID of StyleGAN2
(at 88 M images) after just 1.1 M images on LSUN-Church. Right: Projected FastGAN yields
signi�cantly improved FID scores, even when using subsets of CLEVR with 1k and 10k samples.

Figure 5:Training progress on LSUN church at2562 pixels. Shown are samples for a �xed noise
vectorz over k images. From top to bottom: FastGAN, StyleGAN2-ADA, Projected GAN.

differentiable data-augmentation [72] and adaptive discriminator augmentation [25]. We select the
better performing augmentation strategy per model. For all baselines and datasets, we perform data
ampli�cation through x-�ips. Projected GANs use the same generator and discriminator architecture
and training hyperparameters (learning rate and batch size) for all experiments. For high-resolution
image generation, additional upsampling blocks are included in the generator to match the desired
output resolution. We carefully tune all hyper-parameters for both baselines for best results: we �nd
that FastGAN is sensitive to the choice of batch size, and StyleGAN2-ADA to the learning rate and R1
penalty. The appendix documents additional implementation details used in each of our experiments.

5.1 Convergence Speed and Data Ef�ciency

Following [20] and [68], we analyze the training properties of Projected GANs on LSUN-Church at
an image resolution of2562 pixels and on the 70k CLEVR dataset [22]. In this section, we also train
longer than 10 M images if necessary, as we are interested in convergence properties.

Convergence Speed.We apply projected GAN training for both the style-based generator of Style-
GAN2 and the standard generator with a single input noise vector of FastGAN. As shown in Fig. 4
(left), FastGAN converges quickly but saturates at a high FID. StyleGAN2 converges more slowly
(88 M images) but reaches a lower FID. Projected GAN training improves both generators. Par-
ticularly for FastGAN, improvements in both convergence speed and �nal FID are signi�cant while
improvements for StyleGAN2 are less pronounced. Remarkably,Projected FastGANreaches the
previously best FID of StyleGAN2 after experiencing only 1.1 M images as compared to 88 M of
StyleGAN2. In wall clock time, this corresponds to less than 3 hours instead of 5 days. Hence, from
now on, we utilize the FastGAN generator and refer to this model simply asProjected GAN.

Fig. 5 shows samples for a �xed noise vectorz during training on LSUN-Church. For both FastGAN
and StyleGAN, patches of texture gradually morph into a global structure. For Projected GAN, we
directly observe the emergence of structure which becomes more detailed over time. Interestingly,
the Projected GAN latent space appears to be very volatile, i.e., for �xedz the images undergo
signi�cant perceptual changes during training. In the non-projected cases, these changes are more
gradual. We hypothesize that this induced volatility might be due to the discriminator providing more
semanticfeedback compared to conventional RGB losses. Such semantic feedback could introduce
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more stochasticity during training which in turn improves convergence and performance. We also
observed that the signed real logits of the discriminator remain at the same level throughout training
(see Appendix). Stable signed logits indicate that the discriminator does not suffer from over�tting.

Sample Ef�ciency. The use of pretrained models is generally linked to improved sample ef�ciency.
To evaluate this property, we also created two subsets of the 70k CLEVR dataset by randomly sub-
sampling 10k and 1k images from it, respectively. As depicted in Fig. 4 (right), our Projected GAN
signi�cantly improves over both baselines across all dataset splits.

5.2 Large Datasets

Besides CLEVR and LSUN-Church, we benchmark Projected GANs against various state-of-the-art
models on three other large datasets: LSUN-Bedroom [67] (3M indoor bedroom scenes), FFHQ [26]
(70k images of faces) and Cityscapes [6] (25k driving scenes captured from a vehicle). For all
datasets, we use an image resolution of2562 pixels. As Cityscapes and CLEVR images are not of
aspect ratio 1:1 we resize them to2562 for training. Besides StyleGAN2-ADA and FastGAN, we
compare against SAGAN [69] and GANsformers [20]. All models were trained for 10 M images.
For the large datasets, we also report numbers for StyleGAN2 trained for more than 10 M images
to report the lowest FID values achieved in previous literature (denoted as StyleGAN2*). In the
appendix, we report results on nine more large datasets.

Table 3 shows that the Projected GAN outperforms all state-of-the-art models in terms of FID values
on all datasets by a large margin. For example, on LSUN-Bedroom, it achieves an FID value of
1.52 compared to 6.15 by GANsformer, the previously best model in this setting. Projected GAN
achieves state-of-the-art FID values remarkably fast, e.g., on LSUN-church, it achieves an FID value
of 3.18 after 1.1 MImgs. StyleGAN2 has obtained the previously lowest FID value of 3.39 after 88
M Imgs, 80 times as many as needed by Projected GAN. Similar speed-ups are also realized for all
other large datasets as shown in Table 3. Interestingly, when training longer on FFHQ (39 MImgs),
we observe further improvements of Projected GAN to an FID of 2.2. Note that all �ve datasets
represent very different objects in various scenes. This demonstrates that the performance gain is
robust to the choice of the dataset, although the feature network is trained only on ImageNet. It is
important to note that the main improvements are based on improved sample diversity as indicated
by recall which we report in the appendix. The improvement in diversity is most notable on large
datasets, e.g., LSUN church, where the image �delity appears to be similar to StyleGAN.

5.3 Small Datasets

To further evaluate our method in the few-shot setting, we compare against StyleGAN2-ADA and
FastGAN on art paintings from WikiArt (1000 images; wikiart.org), Oxford Flowers (1360 images)
[42], photographs of landscapes (4319 images; �ickr.com), AnimalFace-Dog (389 images) [57] and
Pokemon (833 images; pokemon.com). Further, we report results on high-resolution versions of
Pokemon and Art-Painting (10242). Lastly, we evaluate on AFHQ-Cat, -Dog and -Wild at5122 [5].
The AFHQ datasets contain� 5k closeups per category cat, dog, or wildlife. We do not have a license
to re-distribute these datasets, but we provide the URLs to enable reproducibility, similar to [35].

Projected GAN outperforms all baselines in terms of FID values by a signi�cant margin on all datasets
and all resolutions as shown in Table 3. Remarkably, our model beats the prior state-of-the-art on all
datasets (2562) after observing fewer than 600k images. For AnimalFace-Dog, the Projected GAN
surpasses the previously best FID after only 20k images. One might argue that the Ef�cientNet used
as feature network facilitates data generation for the animal datasets as Ef�cientNet is trained on
ImageNet which contains many animal classes (e.g., 120 classes for dog breeds). However, it is
interesting to observe that Projected GANs also achieve state-of-the-art FID on Pokemon and Art
Painting though these datasets differ signi�cantly from ImageNet. This evidences the generality of
ImageNet features. For the high-resolution datasets, Projected GANs achieve the same FID value
many times faster than the best baselines, e.g., ten times faster than StyleGAN2-ADA on AFHQ-
Cat or four times faster than FastGAN on Pokemon. We remark thatF andD l generalize to any
resolution as they are fully convolutional.
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Figure 6:Real samples (top rows) vs. samples by Projected GAN (bottom rows).Datasets (top
left to bottom right): CLEVR (2562), LSUN church (2562), Art Painting (2562), Landscapes (2562),
AFHQ-wild (5122), Pokemon (2562), AFHQ-dog (5122), AFHQ-cat (5122).

FID Imgs FID Imgs FID Imgs FID Imgs FID Imgs

Large Datasets (2562)

CLEVR FFHQ Cityscapes Bedroom Church

SAGAN [69] 26.04 10 M 16.21 10 M 12.81 10 M 14.06 10 M 6.15 10 M
STYLEGAN2-ADA [25] 10.17 10 M 7.32 10 M 8.35 10 M 11.53 10 M 5.85 10 M
GANSFORMERS[20] 9.24 10 M 7.42 10 M 5.23 10 M 6.15 10 M 5.47 10 M
FASTGAN [35] 3.24 10 M 12.69 10 M 8.78 1.8 M 8.24 4.8 M 8.43 8.9 M
PROJECTEDGAN 0.89 4.5 M 3.39 7.1 M 3.41 1.7 M 1.52 5.2 M 1.59 9.2 M

PROJECTEDGAN* 3.39 0.5 M 3.56 7.0 M 4.60 1.1 M 2.58 1.5 M 3.18 1.1 M
STYLEGAN2* [25,26,68] 5.05 25 M 3.62 25 M - - 2.65 70 M 3.39 88 M

Small Datasets (2562)

Art Painting Landscape AnimalFace Flowers Pokemon

STYLEGAN2-ADA [25] 43.07 3.2 M 15.99 6.3 M 60.90 2.2 M 21.66 3.8 M 40.38 3.4 M
FASTGAN [35] 44.02 0.7 M 16.44 1.8 M 62.11 0.2 M 26.23 0.8 M 81.86 2.5 M
PROJECTEDGAN 27.96 0.8 M 6.92 3.5 M 17.88 10 M 13.86 1.8 M 26.36 0.8 M

PROJECTEDGAN* 40.22 0.2 M 14.99 0.6 M 58.07 0.02 M 21.60 0.2 M 36.57 0.3 M

10242 5122

Art Painting Pokemon AFHQ-Cat AFHQ-Dog AFHQ-Wild

STYLEGAN2-ADA [25] 41.69 1.0 M 56.76 0.6 M 3.55 10 M 7.40 10 M 3.05 10 M
FASTGAN [35] 46.71 0.8 M 56.46 0.8 M 4.69 1.1 M 13.09 1.6 M 3.141.6 M
PROJECTEDGAN 32.07 0.9 M 33.96 1.3 M 2.16 3.7 M 4.52 3.8 M 2.17 5.4 M

PROJECTEDGAN* 40.33 0.2 M 53.74 0.2 M 3.53 1.0 M 7.10 0.9 M 3.03 1.6 M

Table 3:Quantitative Results.Projected GAN* reports the point where our approach surpasses the
state-of-the-art. StyleGAN2* obtains the lowest FID in previous literature if trained long enough.
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