
A Related work

Properly choosing an evaluation measure is a significant problem that attracted much attention in
recent and long-standing research. In this section, we cover some related papers. In summary, while
there are many related studies, the field lacks systematic approaches. Some papers focus on particular
advantages and flaws of particular measures, while others suggest some informal properties. Our
paper suggests a unified analysis that generalizes and extends the existing research.

A work conceptually related to ours is [26]. In this paper, the authors define a list of properties
(they refer to them as axioms). Some properties are similar to ours: MON is our monotonicity,
FIX is somewhat similar (but not the same) to our maximal and minimal agreement, CHA is the
constant baseline, and SYM is our class-symmetry. The properties CON and SDE/WDE are related
to singularities. In the current paper, we do not focus on singularities since measures are naturally
extended to such cases, as we discuss in Section B. Another property is called Robustness to Imbalance
(IMB). This property requires a constant classifier that classifies all elements to either the positive
or the negative class to get a constant similarity score k1 or k2, respectively. One can see that our
constant baseline thus implies IMB with k1 = k2. On the other hand, having k1 6= k2 may lead to
bias towards a particular class, which does not seem to be desired. The authors show that several
known measures do not satisfy some of the properties and propose K measure, which is a shifted
version of Balanced Accuracy with singularities properly resolved. Let us also note that the authors
advocate against CC largely because they do not use this same straightforward resolution to the
singularities for this measure. Our work differs in the following aspects. First, we consider more
comprehensive lists of measures and properties and check each property for each popular measure.
In particular, our properties include symmetry (in terms of interchanging labelings), distance, and
approximate constant baseline. We show that in terms of the extended list of properties, there are
better variants than the K measure (which we refer to as Balanced Accuracy). We also provide a
deep theoretical analysis of properties and propose a new family of ‘good’ measures. In addition, we
rigorously analyze the multiclass scenario, including the properties of aggregation schemes. To sum
up, while there are methodological similarities, there are significant differences in the analysis and
outcomes.

With some similarities to our research, the authors of [13] formulate a list of (informal) properties
that are argued to be desirable for an evaluation measure. These properties include having a nat-
ural extension to the multiclass case, low complexity and computational cost, distinctiveness and
discriminability, informativeness, and favoring the minority class. While informativeness seems to
be an informal analog of our constant baseline, the properties are not formally defined, and thus no
systematic analysis of measures with respect to the properties can be given.

Another work related to our research [28] defines a list of properties by describing several transfor-
mations of the confusion matrix that should not change the measure value. As a result, the authors
provide a table listing which measures are invariant under which transformations. This analysis
includes our symmetry and also scale invariance which we discuss further in Appendix D. However,
the discussed properties are quite simple, and the work does not cover the most important and complex
ones like constant baseline, monotonicity, or distance.

There are papers focusing on properties of a particular measure, for instance, Cohen’s Kappa [8, 22],
Confusion Entropy [7], or Balanced Accuracy [2]. Some papers go beyond the threshold measures
considered in our paper. For instance, [6] theoretically analyzes how the area under the ROC curve
(AUC) relates to accuracy. Another work focusing on AUC and accuracy is [14]. This paper formally
defines two properties: degree of consistency and degree of discriminancy. The degree of consistency
is not a property of a measure but rather a property of a pair of measures. In our experiments on
synthetic and real data, we compute such degrees of (in)consistency. The degree of discriminancy, in
turn, can be reformulated as the number of different values that a measure has (in a given domain).

There are studies advocating using the Matthews correlation instead of some other popular measures.
For instance, the authors of [8] compare CC to Cohen’s Kappa and show that the latter may have
undesirable behavior in some scenarios. Essentially, these scenarios show that Cohen’s Kappa does
not satisfy our strong monotonicity requirement. A recent paper [3] advocates using CC over F1 and
accuracy based on several intuitive use cases, where it is clear that the performance is poor, but only
CC can correctly detect that in all cases. We note that all the use cases are related to our constant
baseline property. Similarly to the above research, we conclude that CC should be preferred over F1,
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Table 7: Notation

Variable Definition

n number of elements
m number of classes
cij number of elements of class i that are predicted as j
Ai elements with true label i
Bi elements with predicted label i

C = (cij) m×m confusion matrix

ai =
∑m−1
j=0 cij size of i-th class in the true labeling

bi =
∑m−1
j=0 cji size of i-th class in the predicted labeling

pA = a1
n , pB = b1

n fraction of positive entries (for binary classification)
pAB = c11

n fraction of agreeing positives (for binary classification)
M(C), M(A,B), M(pAB , pA, pB) classification validation measure

accuracy, and Cohen’s kappa. Importantly, our conclusion is based on a rigorous analysis and formal
properties.

Numerous studies empirically compare different classification measures [4, 10]; some of them
specifically focus on imbalanced data [20]. Going beyond particular measures, some studies compare
the properties of micro- and macro- averagings [29]. However, to the best of our knowledge, our
work is the first one giving a formal approach to the problem.

Finally, as we discuss in the main text in more detail, our work is motivated by a recent study [12]
that analyzes properties of cluster validation measures. We refer to this paper for an overview of
related work in cluster analysis.

B More on classification validation measures

Notation For convenience, Table 7 lists notation frequently used throughout the text.

Resolving singularities When some of the classes are not present in the predicted (or, more rarely,
true) labelings, some measures from Table 1 may not be defined. Let us discuss how to resolve such
singularities appropriately.

For some measures, singularities can only occur when the measures maximally or minimally agree
with each other. For example, the denominator of Jaccard is only zero if a1 = b1 = 0, in which
case A = B must hold so that the singularity is easily resolved by maximal agreement, leading to
J(A,B) = 1.

For measures such as Matthews Coefficient, singularities can be resolved using constant baseline. For
CC, a singularity can only occur whenever either n2 =

∑n
m=1 a

2
i or n2 =

∑n
m=1 b

2
i . This implies

that either A or B classifies all elements to the same class. If both A and B classify all elements to
the same class, then the singularity can be resolved by maximal agreement (if they classify to the
same class) or minimal agreement (otherwise). If one of A and B classifies all elements to the same
class, then the constant baseline tells us that M(A,B) = 0 should hold.

Similarly, some measures, e.g., BA and SBA, contain terms cii/ai (or cii/bi) that may have singulari-
ties. In cases where ai = 0, these singularities can be algebraically resolved by cii = 0 = aibi

n . This
leads to cii

ai
= bi

n and ensures that such singularities will not lead to violations of constant baseline.

Correspondence with pair-counting cluster validation measures As discussed in the main text,
there is a correspondence between pair-counting cluster validation measures and binary classification
validation measures. We refer to Table 8 for some corresponding pairs.
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Table 8: Correspondence of binary classification measures and pair-counting clustering measures

Classification Clustering

F1 Dice
Jaccard Jaccard
Matthews Correlation Coefficient Pearson Correlation Coefficient
Accuracy Rand
Cohen’s Kappa Adjusted Rand

Symmetric Balanced Accuracy Sokal&Sneath
Correlation Distance Correlation Distance

C Checking the properties

Table 2 lists which measures satisfy the discussed properties and which averaging schemes preserve
them. In this section, we formally prove all the results. Recall that if a measure does not have a
natural extension to the multiclass case, then we analyze its binary variant. Additionally, if a property
is violated in the binary case, then we do not check it in the multiclass case.

Using existing analysis of cluster validation indices As discussed in the previous section, there is
a correspondence between some pair-counting clustering evaluation measures and classification ones.
Recall that a pair-counting clustering measure is a function of N11, N10, N01, and N00, where N11

is the number of element-pairs belonging to the same cluster in both partitions, N00 is the number
of pairs belonging to different clusters in both partitions, N10 is the number of pairs belonging to
the same cluster in the true partition but to different clusters in the predicted partition, and N01 is
the number of pairs belonging to different clusters in the true partition but to the same cluster in
the predicted partition. Thus, pair-counting clustering measures are functions of TP, TN, FP, and
FN defined for classifying element-pairs into “intra-cluster” and “inter-cluster” pairs. So, replacing
Nij by cij we naturally get a binary classification measure. Some classification evaluation indices
have been theoretically analyzed in [12]. Using Table 8, we can adopt some of these results for
classification measures.

C.1 Maximal and minimal agreement

To check whether a measure has the maximal or minimal agreement properties, we substitute the
entries of a diagonal matrix or a matrix with zero diagonal into the expression: we need either a strict
upper or a strict lower bound for the measure values. Note that for measures having the monotonicity
property (i.e., for all considered measures except CE and multiclass κ, CC, CD), it is sufficient to
check that we obtain constant values for diagonal and non-diagonal matrices. Indeed, each confusion
matrix can be monotonically transformed to a diagonal (or a zero-diagonal) one.

By substituting a diagonal confusion matrix, we get the maximal agreement for F1, J, CC, Acc, BA,
κ, SBA, and GMr with cmax = 1. For −CD, the maximal agreement holds with cmax = 0. Finally,
CE = 0 if C is diagonal and otherwise there exists a pair (i, j) such that cij > 0, ai > 0, bj > 0, so
we get −CE < 0.

The minimal agreement for accuracy, Balanced Accuracy, and Symmetric Balanced Accuracy clearly
holds with cmin = 0. Substituting a zero-diagonal confusion matrix into GMr, we get cmin = −1.

For binary measures F1 and Jaccard, the minimal agreement does not hold: these measures equal
zero not only for zero-diagonal matrices, but also when c11 = 0 and c00 > 0.

In the binary case, the minimal agreement of CC is satisfied with cmin = −1. However, this property
is violated if m > 2. For instance, consider the confusion matrices C1 =

(
0 1 0
0 0 1
2 0 0

)
and C2 =

(
0 1 0
1 0 1
0 1 0

)
.

We have CC(C1) 6= CC(C2) (-0.5 and -0.6, respectively), while C1 and C2 are both zero-diagonal.
Note that CD is a monotone transformation of CC, so CD inherits the same properties.
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For CE, the minimal agreement does not hold even in the binary case [7]: let C1 = ( 0 6
6 0 ) and

C2 = ( 1 5
5 1 ) . Then, we have CE(C1) = 1 and CE(C2) > 1. This contradicts both the minimal

agreement and monotonicity properties.

Finally, substituting a zero-diagonal matrix into Cohen’s Kappa, we get −
∑

i aibi
n2−

∑
i aibi

which is clearly
non-constant.

C.2 Symmetry

Class-symmetry Almost all considered measures are class-symmetric: they do not change after
interchanging class labels. The only exceptions are F1 and Jaccard. Class-symmetry of GM follows

from the fact that it can be rewritten as (c11c00 − c01c10) /
(

r

√
1
2 (ar1a

r
0 + br1b

r
0)
)

.

Symmetry This property is easily verified by swapping ai with bi and cij with cji. Thus, all
measures except BA are symmetric.

C.3 Distance

We refer to [16] for the proof that Jaccard satisfies this requirement. To show that accuracy has this
property, we need to show that 1−Acc is a distance, which is true since n(1−Acc) is the Hamming
distance.

Now, we need to prove that CD is a distance since it was previously known only for the binary case.

Lemma 1. The Correlation Distance CD = 1
π arccos(CC) is a distance for any m ≥ 2.

Proof. Let us represent a classification by a matrix via one-hot encoding, i.e., A = (aij)i∈[n],j∈[m],
where aij = 1{A(i) = j}, and define aj =

∑
i aij . Note that for two labelings A and B, the

Frobenius inner product is given by

〈A,B〉 =
∑
j

cjj ,

where cjj is the j-th diagonal entry of the confusion matrix for A and B. Next, we define

Ā :=
(
aij − aj

n

)
i∈[n],j∈[m]

.

Then, for two labelings A and B, the Frobenius inner product of these mappings is given by

〈Ā, B̄〉 =
∑
j

(
cjj −

ajbj
n

)
.

And the squared length equals

‖Ā‖2 = n−
∑
j a

2
j

n
.

Therefore, we get

CC(C) =
〈Ā, B̄〉
‖Ā‖ · ‖B̄‖

,

so that its arccosine is indeed the angle between Ā and B̄, which is a metric distance.

Let us now prove that the remaining measures cannot be linearly transformed to metric distances.
According to Theorem 1, a measure that satisfies monotonicity and constant baseline cannot have
the distance property. This proves that CC, BA, κ, SBA, and GMr cannot be linearly transformed
to a distance (note that BA is also not symmetric). To show that CE does not have this property,
we take A = (1, 1, 0), B = (1, 1, 1), C = (1, 0, 1). Note that CE (A,C) = 1 and CE (A,B) =
CE (B,C) ≈ 0.387. Hence, CE (A,C) > CE (A,B) + CE (B,C) that disproves the distance
property. Finally, the counter-example for F1 is given in [12] since F1 is equivalent to the Dice index.
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C.4 Monotonicity

Strong monotonicity F1 and Jaccard are constant w.r.t. c00, so they are not strongly monotone.
Cohen’s Kappa also violates this property [12]: we have κ ( 1 2

1 0 ) < κ ( 1 3
1 0 ). Then, CE is not strongly

monotone since it is not monotone (see below).

The fact that CC is strongly monotone in the binary case is proven in [12] (for general binary vectors).
In contrast to the binary case, CC is not strongly monotone if m ≥ 3 since it is not monotone. CD
inherits monotonicity properties from CC.

To prove that accuracy is strongly monotone, we use the inequality (a + x)/(b + x) > a/b for
b > a > 0 and x > 0. So, accuracy increases if we simultaneously increment cii (for some i) and
n. If we increment n and cij for i 6= j, then accuracy decreases, which proves strong monotonicity.
Similar reasoning works for BA and SBA.

Finally, let us prove that GMr is strongly monotone for any r.
Lemma 2. GMr is strongly monotone.

Proof. Note that r → 0 corresponds to CC. Since this measure is considered above, we may assume
that r 6= 0.

Due to the symmetry of GM, we only need to prove that the measure is strongly monotone w.r.t. c11
and c10. Moreover, GM flips the sign if we invert the labels in one classification. Hence, we only
need to prove that it is increasing in c11. Considering GM as a function of independent variables
c11, c00, c01, c10, we calculate

∂GMr

∂c11
= (n+ c11 − b1 − a1)

(
1

2
(ar1a

r
0 + br1b

r
0)

)−1/r
− 1

2r

(
ar−11 ar0r + br−11 br0r

)
(nc11 − a1b1)

(
1

2
(ar1a

r
0 + br1b

r
0)

)−1/r−1
.

Simplifying the expression, we note that it has the same sign as the following sum

(n+ c11 − b1 − a1) (ar1a
r
0 + br1b

r
0)−

(
ar−11 ar0 + br−11 br0

)
(nc11 − a1b1)

= ar0a
r−1
1

(
−nc11 + a1b1 + a1n+ a1c11 − b1a1 − a21

)
+ br0b

r−1
1

(
−nc11 + a1b1 + b1n+ b1c11 − b1a1 − b21

)
= ar0a

r−1
1 · a0c10 + br0b

r−1
1 · b0c01 ≥ 0.

Note that the last expression is strictly positive if the classifications A and B do not coincide and are
not constant.

Monotonicity First, we note that monotonicity of Acc, BA, SBA, and GM follows from their strong
monotonicity. Monotonicity of F1 and Jaccard follows from their definitions, see also [12].

Monotonicity of CC in the binary case follows from its strong monotonicity. However, form ≥ 3, CC
is not monotone. Indeed, consider C1 =

(
1 0 0
6 1 0
0 0 1

)
, C2 =

(
1 0 0
7 0 0
0 0 1

)
and note that CC(C2) > CC(C1).

The fact that Cohen’s Kappa is monotone follows from [12] (the proof for Adjusted Rand applies to
general binary vectors). Similarly to CC, for m ≥ 3, monotonicity is violated. Consider, for example,
C1 =

(
0 1 2
0 0 0
1 0 0

)
, C2 =

(
1 0 2
0 0 0
1 0 0

)
and note that κ(C1) > κ(C2).

Finally, the example from Section C.1 disproves the monotonicity of CE.

C.5 Constant baseline

Approximate constant baseline Substituting cij = aibj/n into CC, CD, BA, κ, SBA, and GM,
we get values that do not depend on ai, bi. Thus, these measures have the approximate constant
baseline property.

Substituting cij = aibj/n into CE, we get that the result depends on ai and bj . For instance, taking
(a0, a1) = (2, 1), (b0, b1) = (1, 2) and (a0, a1) = (0, 3), (b0, b1) = (1, 2) we get different values of
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CE that disproves approximate constant baseline. Similarly, F1, Jaccard, and accuracy do not have
this property.

Exact constant baseline We will use the following lemma.
Lemma 3. Suppose that the fixed true labeling A has class-sizes a1, . . . , am, while the predicted
labeling B ∼ U(b1, . . . , bm) is random. Then, EB∼U(b1,...,bm)cij = aibj/n.

Proof. To prove this equality, we simply note that

EB∼U(b1,...,bm)cij =
∑
x∈Ai

E 1{x ∈ Bj} = ai P (x̃ ∈ Bj) = ai E
∑
y∈Bj

1{x̃ = y} =
aibj
n
,

where x̃ is an arbitrary element of Ai.

Now, let us prove that all measures that have the exact constant baseline property also have the
approximate constant baseline.
Lemma 4. If a measure M (C) is scale-invariant (see Definition 11), continuous, and has the
constant baseline property, then it also has the approximate constant baseline.

Proof. Let us fix non-negative numbers {ai}m−1i=0 , {bi}
m−1
i=0 such that

∑m−1
i=0 ai =

∑m−1
i=0 bi = n.

Then, consider a fixed classification AN with class sizes Na1, . . . , Nam and a random classification
BN taken from U(Nb1, . . . , Nbm).

Let cNij denote entries of the confusion matrix for AN and BN . Let us prove that for any i, j ∈
{1, . . .m}, the random variable cNij/N converges to aibj/n in L2 as N →∞. From Lemma 3, we
have E (cij/N) = aibj/n. Let us compute Var (cij). Recall that cij =

∑
x∈AN

i
1{x ∈ BNj }, then

Var (cij) =
∑

x,y∈AN
i

Cov
(
1{x ∈ BNj },1{y ∈ BNj }

)
.

It remains to compute Cov
(
1{x ∈ BNj },1{y ∈ BNj }

)
for x = y and x 6= y. For this, note that

P
(
x ∈ BNj

)
= bj/n and P

(
x, y ∈ BNj

)
=
Nbj(Nbj − 1)

Nn(Nn− 1)
for x 6= y.

Then,

Cov
(
1{x ∈ BNj },1{y ∈ BNj }

)
= P

(
x, y ∈ BNj

)
−
(
P
(
x ∈ BNj

))2
= O(1/N).

Thus, we get that Var (cij/N) = O(N)/N2 = O(1/N) and prove L2-convergence.

Now we are ready to prove the lemma. Let M be a scale-invariant, continuous measure that has
constant baseline. Then,

cbase = EBN∼U(Nb1,...,Nbm)M (CN ) = EM
(
CN

N

)
−−−−→
N→∞

M (C) ,

where CN is the confusion matrix for AN and BN and C is the confusion matrix for A and B. Here
EM

(
CN/N

)
→ M (C) holds since the L2-convergence of cNij to aibj/n implies convergence in

distribution.

From this lemma, we get that F1, Jaccard, Acc, and CE do not have constant baseline since they
violate the approximate constant baseline property.

Assume that a measure M (C) is linear in cii for fixed ai and bj . Then, using the linearity of
expectation, we note that approximate constant baseline implies exact constant baseline for such
measures. This observation gives that CC, BA, κ, SBA, and GMr have the constant baseline property.

Finally, we note that CD violates the constant baseline property as it has both monotonicity and
distance properties (in binary case), while Theorem 1 states that all three properties cannot be
simultaneously satisfied.
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C.6 Preserving properties by averagings

Micro averaging Recall that for micro averaging, we sum up the binary confusion matrices
corresponding to m one-vs-all classifications. Formally, we set TP :=

∑m−1
i=0 cii, FN := FP =

n−
∑m−1
i=0 cii, TN := (m− 2)n+

∑m−1
i=0 cii. Then, we compute the binary measure.

First, it is easy to see that this averaging preserves symmetry and class-symmetry.

Let us prove that micro averaging preserves the maximal agreement property. If a confusion matrix
C is diagonal, then n −

∑m−1
i=0 cii = 0 and FP = FN = 0. Substituting these values in a binary

measure M , we get cmax. If C is not diagonal, then FP = FN = n−
∑m−1
i=0 cii > 0 and the result of

the averaging will be strictly lower than cmax. On the other hand, minimal agreement is not preserved
since TN = (m− 2)n > 0 for zero-diagonal confusion matrices. As a simple example, consider a
measure 1{TP + TN > 0} satisfying the minimal agreement property. Then, after micro averaging,
this measure is constant, thus violating minimal agreement.

Also, micro averaging preserves monotonicity: increasing cii for fixed n leads to increased TP and
TN, leaving TP+FP,TP+FN,TN+FP,TN+FN unchanged. On the other hand, strong monotonicity
can be violated: incrementing cij for i 6= j we increase n, so TN = (m − 2)n +

∑m−1
i=0 cii also

increases and the averaged measure may increase. For example, consider a strongly monotone binary
measure TP + TN− FP− FN. Then, after micro averaging, it reduces to nm, which violates strong
monotonicity.

To prove that micro averaging preserves the distance property, we first note that it preserves maximal
agreement and symmetry. To show that the triangle inequality is also preserved, we consider micro
averaging as a result of the following procedure. First, we use one-hot encoding to map each class
to a binary vector. Then, we map a classification vector A of size n to the binary vector Â of size
nm consisting of one-hot encoded binary vectors. Finally, for two classifications A and B, we
compute the binary measure for Â and B̂. It is easy to see that this procedure is equivalent to micro
averaging. Thus, for any multiclass labelings A,B,C, there exist binary labelings Â, B̂, Ĉ with
confusion matrices corresponding to the result of micro averaging. Hence, the triangle inequality for
micro averaged matrices follows from the binary property.

Finally, approximate constant baseline can be violated after micro averaging. Indeed, let us take
cii = aibi/n. Then, after the averaging, we get TP =

∑m−1
i=0 aibi/n, which is not necessary equal

to (TP + FN)(TP + FP)/(mn) = n/m. As an example, we can consider a measure TP − (TP +
FP)(TP + FN)/(TP + FP + FN + TN) having constant baseline. Thus, the averaged measure is∑m−1
i=0 cii−n/m, which does not have an approximate constant baseline. Consequently, the constant

baseline property is also violated.

Macro averaging As for the micro averaging, symmetry and class-symmetry are clearly satisfied.

Let us check the maximal agreement. Consider a binary measure M having this property. If C is
diagonal, then the result of the averaging is 1

m

∑
iM(cii, 0, 0, n− cii) = cmax. If C is not diagonal,

then one of ai − cii > 0 and the averaged measure is strictly lower than cmax. In contrast, the
minimal agreement property can be violated, since for a zero-diagonal confusion matrix the result of
the averaging is 1

m

∑
iM(0, ai, bi, n− ai − bi). Since we may have n− ai − bi > 0, the minimal

agreement can be violated. For instance, consider the measure 1{TP + TN > 0} satisfying the
minimal agreement property in the binary case. Then, taking C1 =

(
0 1 0
0 0 1
1 1 0

)
and C2 =

(
0 0 1
0 0 1
1 1 0

)
we get

that the averaging has different values on these matrices (1 and 2/3, respectively), thus the minimal
agreement property does not hold.

It is easy to see that monotonicity is preserved by macro averaging. However, strong monotonicity
can be violated. Indeed, assume that cij increases. Then, for k /∈ {i, j}, the values ckk, ak, bk do
not change while n increases. To show that this can break strong monotonicity, consider the same
counterexample as for the micro averaging: TP + TN− FP− FN. Then, after macro averaging, we
get the measure

(
n(m− 4) + 4

∑m−1
i=0 cii

)
/m that is not strongly monotone.

Let us prove that macro averaging preserves the distance property. As for the micro averaging,
it remains to check the triangle inequality. Let A, B, and C be multiclass classifications with n
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elements and m classes. Then, for all i ∈ {1, . . . ,m}, we can build the binary labelings Ai, Bi, Ci
corresponding to one-vs-all binary classifications. Triangle inequality holds for each Ai, Bi, Ci.
Thus, summing up these inequalities over all i ∈ {1, . . . ,m}, we prove the triangle inequality for the
macro-averaged measure.

Finally, approximate and exact constant baseline are preserved by the macro averaging due to the
linearity of expectation.

Weighted averaging Similar reasoning as above, allows one to show that weighted averaging
preserves the maximal agreement, class-symmetry, monotonicity, exact and approximate constant
baseline.

For the minimal agreement, the counterexample used for macro averaging also works in this case.

Clearly, weighted averaging is not symmetric: we normalize by the class sizes ai. Therefore, the
distance property is not preserved as it requires symmetry.

Finally, as a counterexample to strong monotonicity, we can take M = TP + TN − FP − FN and
C1 =

(
0 1 1
1 0 0
1 0 0

)
, C2 =

(
0 1 1
1 0 1
1 0 0

)
, Then, M(C1) = −2 < −9/5 = C2).

D Theoretical analysis

In this section, we perform a theoretical analysis of binary classification measures. First, we
generalize the definition of constant baseline and theoretically compare the two non-linear distance-
transformations of the Matthews Correlation Coefficient. Then, we derive the class of measures that
satisfy all properties except distance.

D.1 Higher-order approximate constant baseline

Before we generalize our definition of constant baseline, let us introduce some additional properties.
These properties differ from the properties introduced in the main text in the sense that they are not
desirable in themselves but are rather instrumental for the analysis of other desirable properties.
Definition 11. A measure M is scale-invariant if, for any scalar α > 0 and confusion matrix C,
M(αC) = M(C).

We remark that all measures of Table 1 are scale-invariant.

Note that any binary classification measure can be written as a function of the four variables c11, a1,
b1, n as c10 = a1− c11, c01 = b1− c11, and c00 = n− a1− b1 + c11. Therefore, any scale-invariant
binary classification measure can be written as a function of the three fractions pAB = c11/n,
pA = a1/n, and pB = b1/n. Hence, we will use the shorthand notation M(C) = M(pAB , pA, pB)
for the remainder of this analysis. We will write PAB instead of pAB wheneverB is random. Note that
for B ∼ U(pBn, (1− pB)n), it holds that EB∼U(pBn,(1−pB)n)[PAB ] = pApB . Thus, it can readily
be seen that the approximate constant baseline is satisfied whenever M(pApB , pA, pB) = cbase. We
introduce one additional property that ensures that the measure is a well-behaved function in terms of
these variables.
Definition 12. A scale-invariant measure M is smooth if, for any pA, pB ∈ (0, 1), the Taylor
series of M(pAB , pA, pB) around the point pAB = pApB converges absolutely on the interval
pAB ∈ [0,min{pA, pB}]. That is, for all pA, pB ∈ (0, 1) and pAB ∈ [0,min{pA, pB}], we have

∞∑
k=0

∣∣∣∣ (pAB − pApB)k

k!

∂k

∂pkAB
M(pApB , pA, pB)

∣∣∣∣ <∞.
Note that such absolute convergence implies that the Taylor series converges to M(pAB , pA, pB).
We remark that all constant-baseline measures of Table 1 are linear functions in pAB for fixed pA, pB .
Thus, each of these is smooth. Furthermore, because CC is linear in pAB , we have that for any
transformation f(CC), the Taylor expansion of f(CC) is given by substituting CC in the Taylor
expansion of f . Thus, since the Taylor expansion of f1(x) = 1

π arccos(x) and f2(x) =
√

2(1− x)
around x = 0 converges for x ∈ [−1, 1], we have that CD= f1(CC) and CD′ = f2(CC) are also
smooth measures.
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This allows us to express the expected value of a measure in terms of the central moments of PAB :

E[M(PAB , pA, pB)] = E

[ ∞∑
k=0

(PAB − pApB)k

k!

∂k

∂pkAB
M(pApB , pA, pB)

]

=

∞∑
k=0

E[(PAB − pApB)k]

k!

∂k

∂pkAB
M(pApB , pA, pB).

Here, the absolute convergence helps bound the term inside the expectation so that the Dominated
Convergence Theorem allows us to interchange summation and expectation. In this expression, the
first-order term vanishes as E[PAB ] = pApB . Thus, we have

E[M(PAB , pA, pB)] = M(pApB , pA, pB) +

∞∑
k=2

E[(PAB − pApB)k]

k!

∂k

∂pkAB
M(pApB , pA, pB).

Note that for large numbers of items, PAB is highly concentrated around pApB . Thus, the contribution
of the higher-order central moments is relatively small. This leads to the following generalization of
the constant baseline.

Definition 13. A smooth measure M has a k-th order approximate constant baseline, if there exists a
constant cbase such that M(pApB , pA, pB) = cbase, while for all ` ∈ {2, . . . , k}, it holds that

∂`

∂p`AB
M(pApB , pA, pB) = 0.

Thus, first-order constant baseline is equivalent to the approximate constant baseline. Furthermore,
note that∞-th order approximate constant baseline implies exact constant baseline since then

E[M(PAB , pA, pB)] = M(pApB , pA, pB) = cbase.

While it seems likely that the exact constant baseline also implies∞-th order constant baseline, we
were not able to formally prove this. However, all constant-baseline measures of Table 1 also satisfy
∞-th order constant baseline. For this reason, we will use∞-th order constant baseline as a substitute
for the exact constant baseline when deriving measures from properties.

D.2 Constant baseline order of distance transformations

We now show that the constant baseline of CD = 1
π arccos(CC) is one order higher than CD′ =√

2(1− CC).

Statement 6. CD = 1
π arccos(CC) has a second-order approximate constant baseline while CD′ =√

2(1− CC) only has a first-order approximate constant baseline.

Proof. The Matthews Correlation Coefficient is given by

CC(pAB , pA, pB) =
pAB − pApB√

pA(1− pA)pB(1− pB)
,

so that it is indeed a linear function in pAB for fixed pA, pB . Therefore, the Taylor expansions of
CD and CD′ are obtained by simply substituting CC into the Taylor expansions of 1

π arccos(x) and√
2(1− x) respectively. We have

1
π arccos(x) =

π

2
−
∞∑
k=0

(2k)!x2k+1

4k(k!)2(2k + 1)
and

√
2(1− x) =

√
2−
√

2

∞∑
k=0

2

k + 1

(
2k

k

)(x
4

)k+1

.

Thus, we see that
√

2(1− x) we have a quadratic term, which we do not have for 1
π arccos(x).

This shows that CD has a second-order constant baseline while CD′ only has a first-order constant
baseline.
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D.3 Deriving measures satisfying all properties except distance

Let us derive a class of measures satisfying all properties from Table 2 except distance. We will
use∞-th order constant baseline instead of the exact constant baseline as this property is easier to
analyze while it implies exact constant baseline and coincides with it for all measures of Table 1.

Theorem 3. Let M be a smooth binary classification measure that satisfies the following properties:

1. ∞-th order constant baseline with constant 0;

2. symmetry;

3. class-symmetry;

4. maximal agreement with constant 1;

5. minimal agreement with constant −1;

6. strong monotonicity.

Then, it is of the following form:

M(pAB , pA, pB) = s(pA, pB)(pAB − pApB),

where s satisfies the following properties:

1. s(pB , pA) = s(pA, pB) = s(1− pA, 1− pB);

2. s(pA, pA) = s(pA, 1− pA) = 1
pA(1−pA) ;

3. s(pA, pB) < max
{

1
pApB

, 1
(1−pA)(1−pB)

}
for pB 6= 1− pA;

4. s(pA, pB) < max
{

1
pA(1−pB) ,

1
(1−pA)pB

}
for pB 6= pA;

5. 1
s

(
pA

∂
∂pA

+ pB
∂
∂pB

)
s ∈

[
min

{
−2,−1− pApB

(1−pA)(1−pB)

}
,max

{
2pB−1
1−pB , 2pA−11−pA

}]
;

6. 1
s

(
(1− pA) ∂

∂pA
− pB ∂

∂pB

)
s ∈

[
min

{
2− 1

pA
, 2− 1

1−pB

}
,max

{
1 + pB(1−pA)

pA(1−pB) , 2
}]

.

Proof. From the definition of∞-th order constant baseline, we have that M(pAB , pA, pB) must be a
linear function in pAB for fixed pA, pB . Thus, it must be of the form

M(pAB , pA, pB) = cbase + (pAB − pApB)s(pA, pB) = (pAB − pApB)s(pA, pB)

for some function s(·, ·).

Now, symmetry requires M(pAB , pB , pA) = M(pAB , pA, pB) which leads to s(pB , pA) =
s(pA, pB). Then, class-symmetry requiresM(pAB , pA, pB) = M(1−pA−pB+pAB , 1−pA, 1−pB),
leading to s(1− pA, 1− pB) = s(pA, pB).

For maximal agreement, we have M(pAB , pA, pB) ≤ 1 with equality only if pAB = pA = pB ,
i.e., M(pA, pA, pA) = 1, leading to s(pA, pA) = 1

pA(1−pA) . Furthermore, M(pAB , pA, pB) ≤
M(min{pA, pB}, pA, pB) < 1 for pA 6= pB is satisfied by

s(pA, pB) <
1

min{pA, pB} − pApB
=

1

min{pA(1− pB), (1− pA)pB}

= max

{
1

pA(1− pB)
,

1

(1− pA)pB

}
.

Minimal agreement requires M(pAB , pA, pB) ≥ −1 with equality only if pAB = 0, pB = 1− pA.
For equality, we need

s(pA, 1− pA) =
1

pA(1− pA)
.
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While for pB 6= 1 − pA, we need M(pAB , pA, pB) ≥ M(max{0, pA + pB − 1}, pA, pB) > −1,
leading to

s(pA, pB) <
1

min{pApB , (1− pA)(1− pB)}
= max

{
1

pApB
,

1

(1− pA)(1− pB)

}
.

For the remainder of the proof, we will derive that strong monotonicity is satisfied when the last
two conditions of Theorem 3 hold. The first one will be derived from the increasingness of M in
N00 while the second one will be derived from decreasingness in N10. Increasingness in N11 and
decreasingness in N01 will then follow from class-symmetry and symmetry, respectively.

We rewrite the condition d
dN00

M to

d

dN00
M

(
N11

N11 +N10 +N01 +N00
,

N11 +N10

N11 +N10 +N01 +N00
,

N11 +N01

N11 +N10 +N01 +N00

)
=− 1

N

[
pAB

∂

∂pAB
+ pA

∂

∂pA
+ pB

∂

∂pB

]
M(pAB , pA, pB).

Since we want d
dN00

M > 0, we need[
pAB

∂

∂pAB
+ pA

∂

∂pA
+ pB

∂

∂pB

]
M(pAB , pA, pB) < 0.

We compute the partial derivatives of M :
∂

∂pAB
M = s,

∂

∂pA
M = −pBs+ (pAB − pApB)

∂

∂pA
s,

∂

∂pB
M = −pAs+ (pAB − pApB)

∂

∂pB
s.

(3)

Thus, we need

(pAB − 2pApB) · s+ (pAB − pApB)

[
pA

∂

∂pA
+ pB

∂

∂pB

]
s < 0

for all pAB ∈ [max{pA + pB − 1, 0},min{pA, pB}]. Since the left-hand side is linear in pAB , we
only need to check the upper and lower limit. Substituting pAB = min{pA, pB} leads to[

pA
∂

∂pA
+ pB

∂

∂pB

]
s <

2pApB −min{pA, pB}
min{pA, pB} − pApB

s

=

(
pApB

min{pA(1− pB), pB(1− pA)}
− 1

)
s

= max

{
pB

1− pB
− 1,

pA
1− pA

− 1

}
s

= max

{
2pB − 1

1− pB
,

2pA − 1

1− pA

}
s.

Substituting pAB = max{0, pA + pB − 1} gives a lower bound[
pA

∂

∂pA
+ pB

∂

∂pB

]
s > −2pApB −max{0, pA + pB − 1}

pApB −max{0, pA + pB − 1}
s

= −
(

1 +
pApB

min{pApB , (1− pA)(1− pB)}

)
s

= −max

{
2, 1 +

pApB
(1− pA)(1− pB)

}
s.

Combining this, we conclude that increasingness in N00 is satisfied whenever it holds that

1

s

(
pA

∂

∂pA
+ pB

∂

∂pB

)
s ∈

[
min

{
−2,−1− pApB

(1− pA)(1− pB)

}
,max

{
2pB − 1

1− pB
,

2pA − 1

1− pA

}]
,
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as required.

The condition for decreasingness in N10 is obtained similarly. The condition d
dN10

M < 0 can be
rewritten to [

−pAB
∂

∂pAB
+ (1− pA)

∂

∂pA
− pB

∂

∂pB

]
M(pAB , pA, pB) < 0.

Substituting the partial derivatives from (3) gives

s · (−pAB − (1− pA)pB + pApB) + (pAB − pApB)

(
(1− pA)

∂

∂pA
− pB

∂

∂pB

)
s < 0.

Again, this linear inequality should hold for all pAB ∈ [max{pA + pB − 1, 0},min{pA, pB}] and
we only need to test the extremes. For pAB = min{pA, pB}, we find the upper bound

1

s

(
(1− pA)

∂

∂pA
− pB

∂

∂pB

)
s <

min{pA, pB}+ (1− pA)pB − pApB)

min{pA, pB} − pApB

=
min{pA(1− pB) + pB(1− pA), 2pB(1− pA)}

min{pA(1− pB), pB(1− pA)}

= max

{
1 +

pB(1− pA)

pA(1− pB)
, 2

}
.

Substituting pAB = max{0, pA + pB − 1}, we get the following upper bound

1

s

(
(1− pA)

∂

∂pA
− pB

∂

∂pB

)
s >

max{0, pA + pB − 1}+ (1− pA)pB − pApB)

max{0, pA + pB − 1} − pApB

= −max{pB(1− 2pA), pA + 2pB − 1− 2pApB}
min{pApB , (1− pA)(1− pB)}

= min

{
2− 1

pA
, 2− 1

1− pB

}
.

Combined, we obtain the desired condition

1

s

(
(1− pA)

∂

∂pA
− pB

∂

∂pB

)
s ∈

[
min

{
2− 1

pA
, 2− 1

1− pB

}
,max

{
1 +

pB(1− pA)

pA(1− pB)
, 2

}]
.

D.4 Generalized Means measure

The Generalized Means measure GMr corresponds to s(pA, pB) = Mr(pA(1−pA), pB(1−pB))−1,
where Mr is the generalized mean with exponent r.

Lemma 5. s(pA, pB) = Mr(pA(1− pA), pB(1− pB))−1 satisfies all the conditions of Theorem 3.

Proof. The proof follows from Section C, where it is shown that GMr indeed satisfies all the required
properties. Let us also demonstrate the conditions explicitly.

The first four conditions can be easily verified by substituting this s(pA, pB). Verifying the last two
conditions require a bit more work. The partial derivatives of s(pA, pB) are given by

∂

∂pA

[
1

2
(pA(1− pA))

r
+

1

2
(pB(1− pB))

r

]− 1
r

=− 1

r

r
2 (pA(1− pA))

r−1
(1− 2pA)[

1
2 (pA(1− pA))

r
+ 1

2 (pB(1− pB))
r] r+1

r

=
2pA − 1

pA(1− pA)
· (pA(1− pA))

r

(pA(1− pA))
r

+ (pB(1− pB))
r · s,
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and similarly
∂

∂pB
s =

2pB − 1

pB(1− pB)
· (pB(1− pB))

r

(pA(1− pA))
r

+ (pB(1− pB))
r · s.

Substituting this into the condition for N00-monotonicity, we get

1

s

(
pA

∂

∂pA
+ pB ·

∂

∂pB

)
s

=
2pA − 1

1− pA
· (pA(1− pA))

r

(pA(1− pA))
r

+ (pB(1− pB))
r +

2pB − 1

1− pB
· (pB(1− pB))

r

(pA(1− pA))
r

+ (pB(1− pB))
r .

Note that the two large fractions sum to 1, so that we recognize this as the weighted average of
(2pA − 1)/(1− pA) and (2pB − 1)/(1− pB), which are exactly the two terms in the maximum of
the upper bound of the N00-monotonicity condition. Furthermore, note that both these terms are
larger than −1, so that the lower bound is also satisfied.

Similarly, for the condition corresponding to N10-monotonicity, we get

1

s

(
(1− pA)

∂

∂pA
− pB

∂

∂pB

)
s

=

(
2− 1

pA

)
(pA(1− pA))

r

(pA(1−pA))
r

+ 1
2 (pB(1−pB))

r+

(
2− 1

1−pB

)
(pB(1− pB))

r

(pA(1−pA))
r

+ (pB(1−pB))
r .

Again, we recognize this as the weighted average of 2−p−1A and 2− (1−pB)−1, which are the terms
in the minimum of the required lower bound, so that this is always satisfied. Finally, the corresponding
upper bound is always satisfied since 2− p−1A and 2− (1− pB)−1 can both be upper-bounded by 1.
We thus conclude that GMr indeed lies inside this class of measures for all r.

Proof of Statement 2 Finally, let us show that Generalized Means generalizes both CC and SBA.
Recall that

GMr =
nc11 − a1b1(

1
2 (ar1a

r
0 + br1b

r
0)
) 1

r

.

Taking r = −1, we obtain:

1 + GM−1 = 1 +
1

2

(
nc11
a0a1

+
nc11
b0b1

− b1
a0
− a1
b0

)
=

1

2

(
c11(a0 + a1)

a0a1
+
c11(b0 + b1)

b0b1
− b1
a0
− a1
b0

+ 2

)
=

1

2

(
c11
a1

+
c11
b1

+
n− a1 − b1 + c11

a0
+
n− a1 − b1 + c11

b0

)
= 2 · SBA .

Now, let us confirm that taking r → 0 we get CC. Let X := b0b1/(a0a1), then
(
1
2 (ar1a

r
0 + br1b

r
0)
) 1

r

can be rewritten to

a0a1

(
1

2
(1 +Xr)

) 1
r

= a0a1 exp

(
1

r
ln

(
1

2
(1 +Xr)

))
.

We take the limit of the exponent and use l’Hôpital to find that

lim
r→0

ln
(
1
2 (1 +Xr)

)
r

= lim
r→0

ln(X)Xr

1 +Xr
=

1

2
lnX.

Hence, as r → 0, the denominator of GMr converges to

a0a1 · exp

(
1

2
lnX

)
= a0a1

√
X =

√
a0a1b0b1

and we obtain CC.
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Table 9: Examples of triplets discriminating all pairs of different measures: the upper table lists the
triplets, the lower table specifies which triplet discriminates a particular pair

A B1 B2

Triplet 1 (1, 1, 1, 0, 1, 1, 0, 1, 1, 0) (1, 1, 1, 0, 1, 0, 1, 1, 1, 1) (1, 0, 0, 1, 0, 1, 0, 1, 1, 0)
Triplet 2 (0, 1, 1, 1, 1, 0, 1, 1, 0, 1) (1, 0, 0, 1, 0, 1, 0, 1, 1, 0) (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
Triplet 3 (0, 0, 0, 0, 1, 1, 1, 0, 1, 0) (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) (0, 1, 1, 1, 1, 0, 1, 1, 0, 1)
Triplet 4 (0, 1, 1, 1, 1, 0, 1, 1, 0, 1) (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) (0, 1, 0, 1, 1, 1, 1, 1, 0, 1)
Triplet 5 (0, 0, 0, 0, 1, 1, 1, 0, 1, 0) (0, 1, 1, 0, 0, 1, 0, 0, 0, 1) (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
Triplet 6 (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) (1, 1, 1, 0, 1, 1, 0, 1, 1, 0) (0, 1, 1, 0, 0, 1, 0, 0, 0, 1)

Acc BA F1 κ CE GM1 CC SBA

Acc — 1 2 6 6 1 5 5
BA 1 — 1 1 1 3 3 1
F1 2 1 — 2 2 1 2 2
κ 6 1 2 — 4 1 3 3
CE 6 1 2 4 — 1 3 3
GM1 1 3 1 1 1 — 5 1
CC 5 3 2 3 3 5 — 4
SBA 5 1 2 3 3 1 4 —

E Additional experimental results

E.1 Binary measures

Distinguishing binary measures Let us show triplets of labelings (A,B1, B2) discriminating all
pairs of measures in the binary classification case. Each triplet consists of the true labeling A and two
predicted labelings B1 and B2. We say that two measures are strictly inconsistent if, according to the
first one, B1 is closer to A, while, according to the second one, B2 is closer to A (comparing to the
main text, here we consider only strict inequalities). Table 9 lists six triplets, where all labelings are
of size n = 10. It also specifies which triplet discriminates each pair of measures.

Experiment within a weather forecasting service In this section, we provide a detailed analysis
of the precipitation prediction task discussed in Section 5.1.

In Figure 1, we show the dependence of measures on the threshold that is used to convert soft
predictions to binary labels. This is done separately for two prediction horizons: ten minutes and two
hours. We make the following observations. For the ten-minute horizon, most of the measures agree
that the optimal threshold is 0.9. However, Confusion Entropy favors the largest threshold, while
Balanced Accuracy favors the smallest one. Interestingly, the behavior of measures significantly
differs for the two-hour prediction interval. In this case, many of the measures favor either 0.6, 0.7, or
0.77. However, accuracy and CE prefer the largest threshold, while BA and SBA prefer the smallest
one. Interestingly, this is the only experiment where we observe that SBA has such a noticeable
disagreement with GM1 and CC.

To better understand the differences between the measures, let us list average confusion matrices for
the ten-minute and two-hour prediction horizons depending on a threshold (in increasing order). Here
we show the relative values in percentages.

For ten minutes:

( 93.55 1.12
0.22 5.11 ) ( 93.76 0.91

0.29 5.04 ) ( 93.84 0.83
0.33 5.01 ) ( 93.91 0.76

0.36 4.97 ) ( 94.10 0.57
0.49 4.85 ) ( 94.33 0.34

0.75 4.59 )

For two hours:

( 90.41 4.25
1.47 3.87 ) ( 91.32 3.34

1.74 3.60 ) ( 91.67 2.99
1.87 3.47 ) ( 91.96 2.70

1.99 3.35 ) ( 92.94 1.72
2.51 2.83 ) ( 93.98 0.68

3.43 1.91 )

Consider, for instance, the two smallest thresholds for the ten-minute horizon. It is easy to see that
accuracy grows from 98.66% to 98.80%. In contrast, for Balanced Accuracy, the difference between

26



 98.65

 98.7

 98.75

 98.8

 98.85

 98.9

 98.95

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 94.2
 94.4
 94.6
 94.8
 95
 95.2
 95.4
 95.6
 95.8
 96

Ac
c,

 1
0 

m
in

Ac
c,

 2
 h

threshold

10 min
2 h

 92.5
 93

 93.5
 94

 94.5
 95

 95.5
 96

 96.5
 97

 97.5

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 66
 68
 70
 72
 74
 76
 78
 80
 82
 84

BA
, 
10

 m
in

BA
, 
2 

h

threshold

10 min
2 h

 88.2
 88.4
 88.6
 88.8

 89
 89.2
 89.4
 89.6
 89.8

 90
 90.2

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 46

 48

 50

 52

 54

 56

 58

 60

F 1
, 
10

 m
in

F 1
, 
2 

h

threshold

10 min
2 h

 87.4
 87.6
 87.8

 88
 88.2
 88.4
 88.6
 88.8

 89
 89.2
 89.4
 89.6

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 44

 46

 48

 50

 52

 54

 56

κ,
 1

0 
m

in

κ,
 2

 h

threshold

10 min
2 h

 92.2
 92.3
 92.4
 92.5
 92.6
 92.7
 92.8
 92.9

 93
 93.1
 93.2
 93.3

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 77

 78

 79

 80

 81

 82

 83

 84

 85

1-
CE

, 
10

 m
in

1-
CE

, 
2 

h

threshold

10 min
2 h

 87.4
 87.6
 87.8

 88
 88.2
 88.4
 88.6
 88.8

 89
 89.2
 89.4
 89.6

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56

G
M

1,
 1

0 
m

in

G
M

1,
 2

 h
threshold

10 min
2 h

 87.8
 88

 88.2
 88.4
 88.6
 88.8

 89
 89.2
 89.4
 89.6

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 48

 49

 50

 51

 52

 53

 54

 55

 56

CC
, 
10

 m
in

CC
, 
2 

h

threshold

10 min
2 h

 94

 94.1

 94.2

 94.3

 94.4

 94.5

 94.6

 94.7

 94.8

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 76

 76.5

 77

 77.5

 78

 78.5

SB
A,

 1
0 

m
in

SB
A,

 2
 h

threshold

10 min
2 h

Figure 1: Dependence of measures on thresholds, for ten-minute and two-hour prediction horizons,
the values are multiplied by 100
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Table 10: Inconsistency of binary measures for rain prediction, horizon 10 minutes, %

Acc BA F1 κ CE GM1 CC SBA

Acc — 93.3 14.4 14.4 3.3 14.4 15.0 15.0
BA 93.3 — 78.9 78.9 96.7 78.9 78.3 78.3
F1 14.4 78.9 — 0.0 17.8 0.0 0.6 0.6
κ 14.4 78.9 0.0 — 17.8 0.0 0.6 0.6
CE 3.3 96.7 17.8 17.8 — 17.8 18.3 18.3
GM1 14.4 78.9 0.0 0.0 17.8 — 0.6 0.6
CC 15.0 78.3 0.6 0.6 18.3 0.6 — 0.0
SBA 15.0 78.3 0.6 0.6 18.3 0.6 0.0 —

Table 11: Inconsistency of binary measures for rain prediction, horizon 2 hours, %

Acc BA F1 κ CE GM1 CC SBA

Acc — 98.3 63.3 58.3 1.7 61.1 72.2 91.7
BA 98.3 — 35.0 39.4 100 37.2 25.6 6.1
F1 63.3 35.0 — 4.4 65.0 2.2 8.9 28.3
κ 58.3 39.4 4.4 — 60.0 2.2 13.3 32.8
CE 1.7 100 65.0 60.0 — 62.8 73.9 93.3
GM1 61.1 37.2 2.2 2.2 62.8 — 11.1 30.6
CC 72.2 25.6 8.9 13.3 73.9 11.1 — 18.9
SBA 91.7 6.1 28.3 32.8 93.3 30.6 18.9 —

the values can be written as:

∆BA =
∆c00
a0

+
∆c11
a1
≈ 0.21

94.67
+
−0.07

5.33
< 0.

So, Balanced Accuracy favors the smallest threshold. This can be explained by the fact that BA
normalizes true positives (c11) by a much smaller value, so that the impact of c11 is much higher.

More interesting is the fact that for the ten-minute horizon, SBA agrees with most of the measures and
strongly disagrees with BA. This can be explained by the fact that SBA also takes into account the
distribution of predicted labels. For instance, for the two smallest thresholds, the difference becomes:

∆SBA ≈ 0.21

94.67
+
−0.07

5.33
+

(
93.76

94.05
− 93.55

93.77

)
+

(
5.04

5.95
− 5.11

6.23

)
> 0.

Here the difference between the last two terms is positive and dominates all other differences. This
happens because the false positive rate becomes significantly smaller.

Tables 10 and 11 summarize inconsistency between different measures for the ten-minute and two-
hour horizons. In particular, we can see that SBA and CC always agree for the ten-minute horizon,
while they have almost 20% disagreement for two hours.

E.2 Multiclass measures

Image classification The extended results are shown in Table 12. The models are the following:7

1. tf_efficientnet_l2_ns
2. tf_efficientnet_l2_ns_475
3. swin_large_patch4_window12_384
4. tf_efficientnet_b7_ns
5. tf_efficientnet_b6_ns
6. swin_base_patch4_window12_384
7. swin_large_patch4_window7_224

7https://github.com/rwightman/pytorch-image-models/blob/master/results/results-imagenet.csv
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Table 12: Extended results for ImageNet, the values are multiplied by 100, inconsistencies are
highlighted

Acc/BA F1 J κ 1−CE GM1 CC CCmac SBA

1 88.33 88.21 80.43 88.32 94.42 88.19 88.32 88.31 88.44
2 88.23 88.08 80.25 88.21 94.38 88.07 88.22 88.20 88.35
3 87.15 87.01 78.63 87.13 93.86 87.00 87.13 87.14 87.30
4 86.83 86.64 78.08 86.82 93.64 86.63 86.82 86.78 86.95
5 86.46 86.30 77.525 86.44 93.41 86.28 86.44 86.419 86.57
6 86.43 86.27 77.531 86.42 93.51 86.26 86.42 86.423 86.60
7 86.32 86.17 77.311 86.30 93.37 86.16 86.30 86.31 86.48
8 86.31 86.12 77.314 86.29 93.41 86.10 86.30 86.28 86.47
9 86.08 85.89 76.97 86.06 93.21 85.87 86.07 86.02 86.19
10 85.72 85.55 76.51 85.70 93.05 85.53 85.70 85.70 85.89

Table 13: Inconsistency of multiclass measures on the Yeast dataset, %

Acc BA F1 J κ CE GM1 CC SBA

Acc — 11.8 13.7 11.1 4.6 47.7 11.1 3.3 17.0
BA 11.8 — 9.8 8.5 7.2 52.9 7.2 8.5 11.8
F1 13.7 9.8 — 2.6 10.5 48.4 5.2 10.5 4.6
J 11.1 8.5 2.6 — 9.2 49.7 6.5 9.2 7.2
κ 4.6 7.2 10.5 9.2 — 49.7 7.8 1.3 13.7
CE 47.7 52.9 48.4 49.7 49.7 — 51.0 48.4 45.1
GM1 11.1 7.2 5.2 6.5 7.8 51.0 — 7.8 8.5
CC 3.3 8.5 10.5 9.2 1.3 48.4 7.8 — 13.7
SBA 17.0 11.8 4.6 7.2 13.7 45.1 8.5 13.7 —

8. dm_nfnet_f6
9. tf_efficientnet_b5_ns

10. dm_nfnet_f5

Note that the dataset is balanced, so accuracy coincides with BA, and weighted average coincides
with macro average.

Inconsistency for Yeast dataset In this experiment, we consider the Yeast dataset8 from the UCI
repository [9]. The task is to predict protein localization sites among ten possible variants. The class
sizes are {463, 429, 244, 163, 51, 44, 35, 30, 20, 5}, so the dataset is highly unbalanced.

To this dataset, we apply the following algorithms from the scikit-learn library [25]: DecisionTree,
ExtraTree, ExtraTreesEnsemble, NearestNeighbors, RadiusNeighbors, RandomForest, BernoulliNB,
GaussianNB, LabelSpreading, QuadraticDiscriminantAnalysis, LinearDiscriminantAnalysis, Near-
estCentroid, MLPClassifier, LogisticRegression, LogisticRegressionCV, RidgeClassifier, RidgeClas-
sifierCV, LinearSVC. Thus, there are 18 algorithms giving 153 possible pairs. For each pair of
measures and each pair of algorithms, we check whether the measures are consistent. Aggregating
the results over all pairs of algorithms, we obtain Table 13.

We can see that for some measures the disagreement can be significant. For example, inconsistency is
particularly high for Confusion Entropy, which does not satisfy most of the properties. Interestingly,
the best agreement is achieved by CC and κ.

Finally, Table 14 shows inconsistency of different averagings.

8https://archive.ics.uci.edu/ml/datasets/Yeast
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Table 14: Inconsistency of averagings on the Yeast dataset

Fmic1 Fmac1 Fwgt1

Fmic1 — 13.73 3.27
Fmac1 13.73 — 10.46
Fwgt1 3.27 10.46 —

Jmic Jmac Jwgt

Jmic — 11.11 2.61
Jmac 11.11 — 8.50
Jwgt 2.61 8.50 —

CC CCmic CCmac CCwgt

CC — 3.27 0.00 0.65
CCmic 3.27 — 0.00 0.65
CCmac 0.00 0.00 — 0.65
CCwgt 0.65 0.65 0.65 —

CD CDmic CDmac CDwgt

CD — 3.27 0.00 0.65
CDmic 3.27 — 0.00 0.65
CDmac 0.00 0.00 — 0.65
CDwgt 0.65 0.65 0.65 —

GMmic
1 GMmac

1 GMwgt
1

GMmic
1 — 11.76 7.19

GMmac
1 11.76 — 7.19

GMwgt
1 7.19 7.19 —
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