
A Proofs for Section 3

A.1 Proof of Theorem 1

In the proof, we ignore the superscripts ⌘ and B. We first show the sufficiency. Assume (17) holds.
For any distribution of W̃0, obviously we have EW̃⌦k

0 2 Mk. Hence, if k is odd, linear stability
comes directly from (17). If k is even, for any vector v 2 Rw, we have

EW̃⌦k
0 · v⌦k = E(W̃T

0 v)k � 0,

which means EW̃⌦k
0 2 M+

k . Thus, the k
th-order linear stability also holds for this distribution of

W̃0.

Next, we show the necessity. Let A 2 Mk, then A has the following decomposition
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Hence, TkA is still symmetric, i.e. TkA 2 Mk. Therefore, Tk induces a linear transform from Mk

to Mk. Let Tk be this linear transform. Since Hi is symmetric for all i = 1, 2, ..., n, if we understand
TI as a matrix in Rwk⇥wk

, then TI is symmetric for any batch I. Therefore, Tk is symmetric, which
means Tk is also a symmetric linear transform. Then, we can easily show the following lemma by
eigen-decomposition of Tk:

Lemma 1. For any A 2 Mk and A 6= 0, if kTkAkF > kAkF , then lim
m!1

k(Tk)mAkF = 1.

The lemma is proven in Section D. With the lemma, the necessity follows by showing that we can
find a distribution of W̃0 such that EW̃⌦k

0 = A for any A 2 M+
k if k is even and A 2 Mk if k is

odd. First consider an even k. For any A 2 M+
k , we have the decomposition

A =
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where �i � 0 for i = 1, 2, ..., r. Let the probability distribution of W̃0 be given by the density
function

p(W ) :=
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Then, we have EW̃⌦k
0 = A. Next, if k is odd, for any A 2 Mk, we still have decomposition (29), but

some �i may be negative. However, since now k is an odd number, we can write the decomposition
as

A =
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.

Then, a similar construction as in the even case completes the proof.

A.2 Corollary 3 and the proof

Corollary 3. The global minimum W
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is 2nd
-order linearly stable for SGD with learning rate ⌘ and
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Proof:

When k = 2 we have
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For each i 2 {1, 2, ..., n}, Hi appears in
�n�1
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�
batches, and for each (i, j), i, j 2 {1, 2, ..., n}, Hi

and Hj appears in
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EI

BX

j=1

Hij ⌦Hij =
nX

i=1

�n�1
B�1

�
�n
B

� Hi ⌦Hi =
B

n

nX

i=1

Hi ⌦Hi

EI

X

j1 6=j2

Hij1
⌦Hij2

=
X

i 6=j

�n�2
B�2

�
�n
B

� Hi ⌦Hj =
B(B � 1)

n(n� 1)

X

i 6=j

Hi ⌦Hj .

Therefore, we have
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Plug (32) into (31), we have
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Then, the result is a direct application of Theorem 1.

A.3 Proof of Theorem 2

By Theorem 1, for any A 2 M+
k we have kT ⌘,B

k AkF  kAkF . For any j 2 {1, 2, ..., w}, let
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th unit coordinate vector, and let Aj = e⌦k
j . Then kAkF = 1. On the other hand,
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Next, we will use the following lemma, whose proof is also provided in the appendix.
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Lemma 2. For any t � 0 and k 2 N⇤
, we have

t
k  2k�1((t� 1)k + 1).
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Taking expectation over batches, by (34) we have
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B Proofs for Section 4

B.1 Proof of Proposition 2

In this proof, k · k2k always means the vector or matrix 2k-norm, not the function norm. Then, we
have

krxf̃(W1x,W2)k2k2k =

�����W
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On the other hand,
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Since W1 is a subset of W , obviously we have
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which completes the proof.

B.2 Proof of Proposition 3

Recall that f(x,W ) = f̃(W1x,W2). First, we find a W1 such that W1x⇤ = W
⇤
1 x. Let V =

W1 �W
⇤
1 , this is equivalent with solving the linear system

V x⇤ = W
⇤
1 (x� x⇤)
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for V . The linear system above is under-determined, hence solutions exist. We take the minimal
norm solution
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Let W = (W1,W
⇤
2 ), then kW �W

⇤k2 = kW1 �W
⇤
1 kF  �approx. Hence, by (8) we have
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This together with (37) completes the proof of (23).

B.3 Proof of Theorem 4

Let B(xi�) be the ball in Rd centered at xi with radius �. Then, for any x 2 B(xi, �), by Proposition 3
we have
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where VB� is the volume of B(xi, �), which does not depend on xi. Sum the above integral up for all
training data, we have
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On the other hand,
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Therefore,
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Finally, we have
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C Proofs for Section 5

C.1 Proof of Theorem 5

Recall we let ai = rW f(xi,W
⇤) 2 Rw. By Theorem 2, we have
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Sum j from 1 to w, we obtain

max
1in

kaik2k2k 
wX

j=1

max
1in

a2k
ij  2kBk�1

nw

⌘k
.

Hence, for any i = 1, 2, ..., n, krW f(xi,W
⇤)k2k 

�
2nw
B

� 1
2k

q
2B
⌘ , which together with Proposi-
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C.2 Proof of Theorem 6

Let X� =
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{x : kx� xik2  �}. Then, we have
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⇤
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⇥
kf(x,W ⇤)� f
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where to be short we ignored the subscript x ⇠ µ for the expectations. For any x 2 X�, let x⇤ be a
training data that satisfies kx� x⇤k  �. By Theorem 5, for any x 2 X� we have
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Therefore, by Hölder inequality,
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In the last line, the
p
d� term comes from
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d�.

Hence, we have
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Inserting (44) to (41) yields the result.

D Additional proofs

D.1 Proof of Lemma 1

We show the following more general result.

Lemma 3. Let A 2 Rn⇥n
be a symmetric matrix, and x 2 Rn

be a vector. Then, if kAxk2 > kxk2,

we have

lim
m!1

kAmxk2 = 1.

The proof is a simple practice for linear algebra. Let A = Q⌃QT be the eigenvalue decomposition
of A, and let y = Q

Tx. Then, for any m 2 N⇤ we have
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which means there exists j 2 {1, 2, ..., n} such that yj 6= 0 and �
2
i > 1. Then,
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D.2 Proof of Lemma 2

When t 2 [0, 1), we have t
k + (1� t)k  (t+ 1� t)k = 1. Hence,

t
k  1� (1� t)k  1 + (t� 1)k  2k�1((t� 1)k + 1).

When t � 1, by the Hölder inequality,
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�
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Taking k-th order on both sides, we have

t
k  2k�1((t� 1)k + 1).
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(a) (b)
Figure 2: Results for g

k
W and g

k
x with k = 2, on a fully-connected neural network trained on

FashionMNIST (shown in (a)) and a VGG-11 network trained on CIFAR10 (shown in (b)). For both
(a) and (b), the left panel shows gkW and g

k
x of the solutions found by SGD with different learning

rate, while batch size fixed at 20. The right panel shows solutions found by SGD with different batch
size, with learning rate fixed at 0.1.

(a) (b)
Figure 3: Results for g

k
W and g

k
x with k = 3, on a fully-connected neural network trained on

FashionMNIST (shown in (a)) and a VGG-11 network trained on CIFAR10 (shown in (b)). For both
(a) and (b), the left panel shows gkW and g

k
x of the solutions found by SGD with different learning

rate, while batch size fixed at 20. The right panel shows solutions found by SGD with different batch
size, with learning rate fixed at 0.1.

E Additional Experiments

Except the gW and gx in (5), we also checked the gradient norms with higher k in the same experiment
settings. We consider

g
k
W :=

 
1

n

nX

i=1

krW f(xi,W )k2k2k

! 1
2k

, g
k
x :=

 
1

n

nX

i=1

krxf(xi,W )k2k2k

! 1
2k

. (45)

Figures 2 and 3 show the scatter plot for k = 2 and k = 3, respectively. The figures shows that in
most cases there is still a strong correlation between the gradient norm with respect to W and the
gradient norm with respect to x.

The next figure (Figure 4) shows experiment results on more complicated dataset and network
architectures, where we trained a 14-layer Resnet on a subset of the CIFAR100 dataset. The scattered
plots show similar results as in Figrue 1, which further justifies our theoretical predictions.

Figure 4: Results for a Resnet trained on CIFAR100 dataset. (Left) gW and gx of the solutions found
by SGD with different learning rate, while batch size fixed at 20. (Right) gW and gx of the solutions
found by SGD with different batch size, with learning rate fixed at 0.05.
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F Experiment details

General settings In the numerical experiments shown by Figure 1, 2 and 3, we train fully-connected
deep neural networks and VGG-like networks on FashionMNIST and CIFAR10, respectively. As
shown in the figures, for each network, different learning rates and bacth sizes are chosen. 5 repetitions
are conducted for each learning rate and batch size. In each experiment, SGD is used to optimize the
network from a random initialization. The SGD is run for 100000 iterations to make sure finally the
iterator is close to a global minimum. then, gx and gW in (5) are evaluated at the parameters given by
the last iteration. In the experiments shown in Figure 4, we train a residual network on CIFAR100.
Experiments are still repeated by 5 times in each combination of learning rate and batch size. In each
experiment, SGD is run for 50000 iterations. All experiments are conducted on a MacBook pro 13"
only using CPU. See the code at https://github.com/ChaoMa93/Sobolev-Reg-of-SGD.

Dataset For the FashionMNIST dataset, 5 out of the 10 classes are picked, and 1000 images are
taken for each class. For the CIFAR10 dataset, the first 2 classes are picked with 1000 images per
class. For the CIFAR100 dataset, the first 10 classes for picked with 500 images in each class.

Network structures The fully-connected network has 3 hidden layers, with 500 hidden neurons
in each layer. The ReLU activation function is used. The VGG-like network consists of a series
of convolution layers and max pooling layers. Each convolution layer has kernel size 3⇥ 3, and is
followed by a ReLU activation function. The max poolings have stride 2. The order of the layers are

16� > M� > 16� > M� > 32� > M� > 64� > M� > 64� > M,

where each number means a convolutional layer with the number being the number of channels, and
“M” means a max pooling layer. A fully-connected layer with width 128 follows the last max pooling.

The residual network takes conventional architecture of Resnet. It consists of 6 residual blocks. The
number of channels in the blocks are 32, 32, 64, 64, 128, 128, from the input block to the output
block.
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