A Proofs for Section 3

A. 1 Proof of Theorem 1

In the proof, we ignore the superscripts η and B. We first show the sufficiency. Assume (17) holds. For any distribution of \tilde{W}_{0}, obviously we have $\mathbb{E} \tilde{W}_{0}^{\otimes k} \in \mathcal{M}_{k}$. Hence, if k is odd, linear stability comes directly from (17). If k is even, for any vector $\boldsymbol{v} \in \mathbb{R}^{w}$, we have

$$
\mathbb{E} \tilde{W}_{0}^{\otimes k} \cdot \boldsymbol{v}^{\otimes k}=\mathbb{E}\left(\tilde{W}_{0}^{T} \boldsymbol{v}\right)^{k} \geq 0
$$

which means $\mathbb{E} \tilde{W}_{0}^{\otimes k} \in \mathcal{M}_{k}^{+}$. Thus, the $k^{\text {th }}$-order linear stability also holds for this distribution of \tilde{W}_{0}.
Next, we show the necessity. Let $A \in \mathcal{M}_{k}$, then A has the following decomposition

$$
A=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{v}_{i}^{\otimes k}
$$

where $r \in \mathbb{N}^{*}, \lambda_{i}$ are real numbers and $\boldsymbol{v}_{i} \in \mathbb{R}^{w}$. Then,

$$
\begin{equation*}
T_{k} A=\sum_{i=1}^{r} \lambda_{i} T_{k}\left(\boldsymbol{v}_{i}^{\otimes k}\right)=\frac{1}{\binom{n}{B}} \sum_{\mathfrak{J} \in \mathcal{I}} \sum_{i=1}^{r} \lambda_{i}\left(\left(I-\frac{\eta}{B} \sum_{j=1}^{B} H_{i_{j}}\right) \boldsymbol{v}_{i}\right)^{\otimes k} \tag{28}
\end{equation*}
$$

Hence, $T_{k} A$ is still symmetric, i.e. $T_{k} A \in \mathcal{M}_{k}$. Therefore, T_{k} induces a linear transform from \mathcal{M}_{k} to \mathcal{M}_{k}. Let \mathcal{T}_{k} be this linear transform. Since H_{i} is symmetric for all $i=1,2, \ldots, n$, if we understand $T_{\mathfrak{I}}$ as a matrix in $\mathbb{R}^{w^{k} \times w^{k}}$, then $T_{\mathfrak{I}}$ is symmetric for any batch \mathfrak{I}. Therefore, T_{k} is symmetric, which means \mathcal{T}_{k} is also a symmetric linear transform. Then, we can easily show the following lemma by eigen-decomposition of \mathcal{T}_{k} :

Lemma 1. For any $A \in \mathcal{M}_{k}$ and $A \neq 0$, if $\left\|\mathcal{T}_{k} A\right\|_{F}>\|A\|_{F}$, then $\lim _{m \rightarrow \infty}\left\|\left(\mathcal{T}_{k}\right)^{m} A\right\|_{F}=\infty$.
The lemma is proven in Section D. With the lemma, the necessity follows by showing that we can find a distribution of \tilde{W}_{0} such that $\mathbb{E} \tilde{W}_{0}^{\otimes k}=A$ for any $A \in \mathcal{M}_{k}^{+}$if k is even and $A \in \mathcal{M}_{k}$ if k is odd. First consider an even k. For any $A \in \mathcal{M}_{k}^{+}$, we have the decomposition

$$
\begin{equation*}
A=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{v}_{i}^{\otimes k} \tag{29}
\end{equation*}
$$

where $\lambda_{i} \geq 0$ for $i=1,2, \ldots, r$. Let the probability distribution of \tilde{W}_{0} be given by the density function

$$
p(W):=\sum_{i=1}^{r} \frac{\lambda_{i}}{\sum_{j=1}^{r} \lambda_{j}} \delta\left(W-\left(\sum_{j=1}^{r} \lambda_{j}\right)^{\frac{1}{k}} \boldsymbol{v}_{i}\right)
$$

Then, we have $\mathbb{E} \tilde{W}_{0}^{\otimes k}=A$. Next, if k is odd, for any $A \in \mathcal{M}_{k}$, we still have decomposition (29), but some λ_{i} may be negative. However, since now k is an odd number, we can write the decomposition as

$$
A=\sum_{i=1}^{r}\left|\lambda_{i}\right|\left(\operatorname{sign}\left(\lambda_{i}\right) \boldsymbol{v}_{i}\right)^{\otimes k}
$$

Then, a similar construction as in the even case completes the proof.

A. 2 Corollary 3 and the proof

Corollary 3. The global minimum W^{*} is $2^{\text {nd }}$-order linearly stable for $S G D$ with learning rate η and batch size B if

$$
\begin{equation*}
\max \left|\lambda\left((I-\eta H)^{\otimes 2}+\frac{(n-B)}{B(n-1)} \frac{\eta^{2}}{n} \sum_{i=1}^{n}\left(H_{i}^{\otimes 2}-H^{\otimes 2}\right)\right)\right| \leq 1 \tag{30}
\end{equation*}
$$

Proof:
When $k=2$ we have

$$
\begin{align*}
T_{2}^{\eta, B} & =\mathbb{E}_{\mathfrak{I}}\left(I-\frac{\eta}{B} \sum_{j=1}^{B} H_{i_{j}}\right)^{\otimes 2} \\
& =\mathbb{E}_{\mathfrak{I}}\left(I^{\otimes 2}-\frac{\eta}{B} \sum_{j=1}^{B}\left(I \otimes H_{i_{j}}+H_{i_{j}} \otimes I\right)+\frac{\eta^{2}}{B^{2}} \sum_{j_{1}, j_{2}=1}^{B} H_{i_{j_{1}}} \otimes H_{i_{j_{2}}}\right) \\
& =I^{\otimes 2}-\eta(I \otimes H+H \otimes I)+\frac{\eta^{2}}{B^{2}} \sum_{j_{1}, j_{2}=1}^{B} \mathbb{E}_{\mathfrak{I}}\left(H_{i_{j_{1}}} \otimes H_{i_{j_{2}}}\right) . \tag{31}
\end{align*}
$$

For each $i \in\{1,2, \ldots, n\}, H_{i}$ appears in $\binom{n-1}{B-1}$ batches, and for each $(i, j), i, j \in\{1,2, \ldots, n\}, H_{i}$ and H_{j} appears in $\binom{n-2}{B-2}$ batches simultaneously. Hence,

$$
\begin{aligned}
& \mathbb{E}_{\mathfrak{I}} \sum_{j=1}^{B} H_{i_{j}} \otimes H_{i_{j}}=\sum_{i=1}^{n} \frac{\binom{n-1}{B-1}}{\binom{n}{B}} H_{i} \otimes H_{i}=\frac{B}{n} \sum_{i=1}^{n} H_{i} \otimes H_{i} \\
& \mathbb{E}_{\mathfrak{J}} \sum_{j_{1} \neq j_{2}} H_{i_{j_{1}}} \otimes H_{i_{j_{2}}}=\sum_{i \neq j} \frac{\binom{n-2}{B-2}}{\binom{n}{B}} H_{i} \otimes H_{j}=\frac{B(B-1)}{n(n-1)} \sum_{i \neq j} H_{i} \otimes H_{j} .
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
\frac{\eta^{2}}{B^{2}} \sum_{j_{1}, j_{2}=1}^{B} \mathbb{E}_{\mathfrak{J}}\left(H_{i_{j_{1}}} \otimes H_{i_{j_{2}}}\right) & =\frac{\eta^{2}}{n B} \sum_{i=1}^{n} H_{i} \otimes H_{i}+\frac{\eta^{2}(B-1)}{B n(n-1)} \sum_{i \neq j} H_{i} \otimes H_{j} \\
& =\frac{\eta^{2}(B-1)}{B n(n-1)} \sum_{i, j=1}^{n} H_{i} \otimes H_{j}+\left(\frac{\eta^{2}}{n B}-\frac{\eta^{2}(B-1)}{B n(n-1)}\right) \sum_{i=1}^{n} H_{i} \otimes H_{i} \\
& =\frac{\eta^{2} n(B-1)}{B(n-1)} H \otimes H+\frac{\eta^{2}(n-B)}{B n(n-1)} \sum_{i=1}^{n} H_{i} \otimes H_{i} \\
& =\eta^{2} H \otimes H+\frac{(n-B)}{B(n-1)} \frac{\eta^{2}}{n} \sum_{i=1}^{n}\left(H_{i}^{\otimes 2}-H^{\otimes 2}\right) \tag{32}
\end{align*}
$$

Plug (32) into (31), we have

$$
\begin{equation*}
T_{2}^{\eta, B}=(I-\eta H)^{\otimes 2}+\frac{(n-B)}{B(n-1)} \frac{\eta^{2}}{n} \sum_{i=1}^{n}\left(H_{i}^{\otimes 2}-H^{\otimes 2}\right) \tag{33}
\end{equation*}
$$

Then, the result is a direct application of Theorem 1.

A. 3 Proof of Theorem 2

By Theorem 1, for any $A \in \mathcal{M}_{k}^{+}$we have $\left\|T_{k}^{\eta, B} A\right\|_{F} \leq\|A\|_{F}$. For any $j \in\{1,2, \ldots, w\}$, let $\boldsymbol{e}_{j} \in \mathbb{R}^{w}$ be the $j^{\text {th }}$ unit coordinate vector, and let $A_{j}=\boldsymbol{e}_{j}^{\otimes k}$. Then $\|A\|_{F}=1$. On the other hand,

$$
\begin{aligned}
\left(T_{k}^{\eta, B} A_{j}\right)_{j, j, \ldots, j} & =\frac{1}{\binom{n}{B}} \sum_{\mathfrak{I}}\left(T_{\mathfrak{I}, k}^{\eta, B} A_{j}\right)_{j, j, \ldots, j} \\
& =\frac{1}{\binom{n}{B}} \sum_{\mathfrak{I}}\left(1-\frac{\eta}{B} \sum_{k=1}^{B} \boldsymbol{a}_{i_{k}, j}^{2}\right)^{k}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left|\frac{1}{\binom{n}{B}} \sum_{\mathfrak{I}}\left(1-\frac{\eta}{B} \sum_{k=1}^{B} \boldsymbol{a}_{i_{k}, j}^{2}\right)^{k}\right| \leq\left\|T_{k}^{\eta, B} A_{j}\right\|_{F} \leq 1 \tag{34}
\end{equation*}
$$

Next, we will use the following lemma, whose proof is also provided in the appendix.

Lemma 2. For any $t \geq 0$ and $k \in \mathbb{N}^{*}$, we have

$$
t^{k} \leq 2^{k-1}\left((t-1)^{k}+1\right)
$$

For any batch $\mathfrak{I}=\left\{i_{1}, i_{2}, \ldots, i_{B}\right\}$, let $t=\eta / B \sum_{k=1}^{B} \boldsymbol{a}_{i_{k}, j}^{2}$, we obtain

$$
\left(\frac{\eta}{B} \sum_{k=1}^{B} \boldsymbol{a}_{i_{k}, j}^{2}\right)^{k} \leq 2^{k-1}\left(\left(\frac{\eta}{B} \sum_{k=1}^{B} \boldsymbol{a}_{i_{k}, j}^{2}-1\right)^{k}+1\right)
$$

Together with

$$
\frac{\eta^{k}}{B^{k}} \sum_{k=1}^{B} \boldsymbol{a}_{i_{k}, j}^{2 k} \leq\left(\frac{\eta}{B} \sum_{k=1}^{B} \boldsymbol{a}_{i_{k}, j}^{2}\right)^{k}
$$

we have

$$
\begin{equation*}
\frac{1}{B} \sum_{k=1}^{B} \boldsymbol{a}_{i_{k}, j}^{2 k} \leq \frac{2^{k-1} B^{k-1}}{\eta^{k}}\left(\left(\frac{\eta}{B} \sum_{k=1}^{B} \boldsymbol{a}_{i_{k}, j}^{2}-1\right)^{k}+1\right) \tag{35}
\end{equation*}
$$

Taking expectation over batches, by (34) we have

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{a}_{i, j}^{2 k} \leq \frac{(2 B)^{k-1}}{\eta^{k}}\left(\frac{1}{\binom{n}{B}} \sum_{\mathfrak{I}}\left(\frac{\eta}{B} \sum_{k=1}^{B} \boldsymbol{a}_{i_{k}, j}^{2}-1\right)^{k}+1\right) \leq \frac{2(2 B)^{k-1}}{\eta^{k}} \tag{36}
\end{equation*}
$$

B Proofs for Section 4

B. 1 Proof of Proposition 2

In this proof, $\|\cdot\|_{2 k}$ always means the vector or matrix $2 k$-norm, not the function norm. Then, we have

$$
\left\|\nabla_{\mathbf{x}} \tilde{f}\left(W_{1} \mathbf{x}, W_{2}\right)\right\|_{2 k}^{2 k}=\left\|W_{1}^{T} \frac{\partial \tilde{f}\left(W_{1} \mathbf{x}, W_{2}\right)}{\partial\left(W_{1} \mathbf{x}\right)}\right\|_{2 k}^{2 k} \leq\left\|W_{1}^{T}\right\|_{2 k}^{2 k}\left\|\frac{\partial \tilde{f}\left(W_{1} \mathbf{x}, W_{2}\right)}{\partial\left(W_{1} \mathbf{x}\right)}\right\|_{2 k}^{2 k}
$$

On the other hand,

$$
\sum_{j=1}^{m} \sum_{l=1}^{d}\left[\nabla_{W_{1}} \tilde{f}\left(W_{1} \mathbf{x}, W_{2}\right)\right]_{j l}^{2 k}=\left\|\frac{\partial \tilde{f}\left(W_{1} \mathbf{x}, W_{2}\right)}{\partial\left(W_{1} \mathbf{x}\right)}\right\|_{2 k}^{2 k}\|\mathbf{x}\|_{2 k}^{2 k}
$$

Hence,

$$
\sum_{j=1}^{d}\left[\nabla_{\mathbf{x}} \tilde{f}\left(W_{1} \mathbf{x}, W_{2}\right)\right]_{j}^{2 k} \leq \frac{\left\|W_{1}^{T}\right\|_{2 k}^{2 k}}{\|\mathbf{x}\|_{2 k}^{2 k}} \sum_{j=1}^{m} \sum_{l=1}^{d}\left[\nabla_{W_{1}} \tilde{f}\left(W_{1} \mathbf{x}, W_{2}\right)\right]_{j l}^{2 k}
$$

Since W_{1} is a subset of W, obviously we have

$$
\sum_{j=1}^{m} \sum_{l=1}^{d}\left[\nabla_{W_{1}} \tilde{f}\left(W_{1} \mathbf{x}, W_{2}\right)\right]_{j l}^{2 k} \leq\left\|\nabla_{W} \tilde{f}\left(W_{1} \mathbf{x}, W_{2}\right)\right\|_{2 k}^{2 k}
$$

which completes the proof.

B. 2 Proof of Proposition 3

Recall that $f(\mathbf{x}, W)=\tilde{f}\left(W_{1} \mathbf{x}, W_{2}\right)$. First, we find a W_{1} such that $W_{1} \mathbf{x}_{*}=W_{1}^{*} \mathbf{x}$. Let $V=$ $W_{1}-W_{1}^{*}$, this is equivalent with solving the linear system

$$
V \mathbf{x}_{*}=W_{1}^{*}\left(\mathbf{x}-\mathbf{x}_{*}\right)
$$

for V. The linear system above is under-determined, hence solutions exist. We take the minimal norm solution

$$
V=\frac{1}{\left\|\mathbf{x}_{*}\right\|_{2}^{2}}\left(W_{1}^{*}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{*}\right) \mathbf{x}_{*}^{T}
$$

Especially, we have

$$
\left\|W_{1}-W_{1}^{*}\right\|_{F}=\|V\|_{F}=\frac{\left\|\left(W_{1}^{*}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{*}\right)\right\|_{2}}{\left\|\mathbf{x}_{*}\right\|_{2}} \leq \frac{\left\|W_{1}^{*}\right\|_{2}}{\left\|\mathbf{x}_{*}\right\|_{2}}\left\|\mathbf{x}-\mathbf{x}_{*}\right\|_{2} \leq \delta_{\text {approx }}
$$

Next, since $W_{1} \mathbf{x}_{*}=W_{1}^{*} \mathbf{x}$, we have $\tilde{f}\left(W_{1}^{*} \mathbf{x}, W_{2}^{*}\right)=\tilde{f}\left(W_{1} \mathbf{x}_{*}, W_{2}^{*}\right)$, and for gradient we have

$$
\begin{align*}
\left\|\nabla_{\mathbf{x}} \tilde{f}\left(W_{1}^{*} \mathbf{x}, W_{2}^{*}\right)\right\|_{2 k} & \leq \frac{\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}}{\|\mathbf{x}\|_{2 k}}\left\|\nabla_{W_{1}} \tilde{f}\left(W_{1}^{*} \mathbf{x}, W_{2}^{*}\right)\right\|_{2 k} \\
& =\frac{\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}}{\|\mathbf{x}\|_{2 k}}\left\|\frac{\partial \tilde{f}\left(W_{1}^{*} \mathbf{x}, W_{2}^{*}\right)}{\partial\left(W_{1}^{*} \mathbf{x}\right)}\right\|_{2 k}\|\mathbf{x}\|_{2 k} \\
& =\frac{\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}}{\|\mathbf{x}\|_{2 k}}\left\|\frac{\partial \tilde{f}\left(W_{1} \mathbf{x}_{*}, W_{2}^{*}\right)}{\partial\left(W_{1}^{*} \mathbf{x}\right)}\right\|_{2 k}\|\mathbf{x}\|_{2 k} \frac{\left\|\mathbf{x}_{*}\right\|_{2 k}}{\left\|\mathbf{x}_{*}\right\|_{2 k}} \\
& =\frac{\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}}{\left\|\mathbf{x}_{*}\right\|_{2 k}}\left\|\nabla_{W_{1}} \tilde{f}\left(W_{1} \mathbf{x}_{*}, W_{2}^{*}\right)\right\|_{2 k} \tag{37}
\end{align*}
$$

Let $W=\left(W_{1}, W_{2}^{*}\right)$, then $\left\|W-W^{*}\right\|_{2}=\left\|W_{1}-W_{1}^{*}\right\|_{F} \leq \delta_{\text {approx }}$. Hence, by (8) we have

$$
\left\|\nabla_{W_{1}} \tilde{f}\left(W_{1} \mathbf{x}_{*}, W_{2}^{*}\right)\right\|_{2 k} \leq\left\|\nabla_{W} \tilde{f}\left(W_{1} \mathbf{x}_{*}, W_{2}^{*}\right)\right\|_{2 k} \leq C\left(\left\|\nabla_{W} \tilde{f}\left(W_{1}^{*} \mathbf{x}_{*}, W_{2}^{*}\right)\right\|_{2 k}+1\right)
$$

This together with (37) completes the proof of (23).

B. 3 Proof of Theorem 4

Let $B\left(\mathbf{x}_{i} \delta\right)$ be the ball in \mathbb{R}^{d} centered at \mathbf{x}_{i} with radius δ. Then, for any $\mathbf{x} \in B\left(\mathbf{x}_{i}, \delta\right)$, by Proposition 3 we have

$$
\left\|\nabla_{\mathbf{x}} f\left(\mathbf{x}, W^{*}\right)\right\|_{2 k} \leq \frac{C\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}}{\left\|\mathbf{x}_{i}\right\|_{2 k}}\left(\left\|\nabla_{W} f\left(\mathbf{x}_{i}, W^{*}\right)\right\|_{2 k}+1\right)
$$

Hence,

$$
\begin{aligned}
\int_{B\left(\mathbf{x}_{i}, \delta\right)}\left\|\nabla_{\mathbf{x}} f\left(\mathbf{x}, W^{*}\right)\right\|_{2 k}^{2 k} \mathbf{x} & \leq V_{B_{\delta}} \frac{C^{2 k}\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}^{2 k}}{\left\|\mathbf{x}_{i}\right\|_{2 k}^{2 k}}\left(\left\|\nabla_{W} f\left(\mathbf{x}_{i}, W^{*}\right)\right\|_{2 k}+1\right)^{2 k} \\
& \leq V_{B_{\delta}} \frac{2^{2 k} C^{2 k}\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}^{2 k}}{\left\|\mathbf{x}_{i}\right\|_{2 k}^{2 k}}\left(\left\|\nabla_{W} f\left(\mathbf{x}_{i}, W^{*}\right)\right\|_{2 k}^{2 k}+1\right)
\end{aligned}
$$

where $V_{B_{\delta}}$ is the volume of $B\left(\mathbf{x}_{i}, \delta\right)$, which does not depend on \mathbf{x}_{i}. Sum the above integral up for all training data, we have

$$
\begin{align*}
\int_{\mathcal{X}_{\delta}}\left\|\nabla_{\mathbf{x}} f\left(\mathbf{x}, W^{*}\right)\right\|_{2 k}^{2 k} \kappa(\mathbf{x}) d \mathbf{x} & =\sum_{i=1}^{n} \int_{B\left(\mathbf{x}_{i}, \delta\right)}\left\|\nabla_{\mathbf{x}} f\left(\mathbf{x}, W^{*}\right)\right\|_{2 k}^{2 k} d \mathbf{x} \\
& \leq V_{B_{\delta}} \frac{2^{2 k} C^{2 k}\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}^{2 k}}{\min _{i}\left\|\mathbf{x}_{i}\right\|_{2 k}^{2 k}}\left(\sum_{i=1}^{n}\left\|\nabla_{W} f\left(\mathbf{x}_{i}, W^{*}\right)\right\|_{2 k}^{2 k}+n\right) \\
& \leq n V_{B_{\delta}} \frac{2^{2 k} C^{2 k}\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}^{2 k}}{\min _{i}\left\|\mathbf{x}_{i}\right\|_{2 k}^{2 k}}\left(\frac{2 w(2 B)^{k-1}}{\eta^{k}}+1\right) \tag{38}
\end{align*}
$$

On the other hand,

$$
\int_{\mathcal{X}_{\delta}}\left\|\nabla_{\mathbf{x}} f\left(\mathbf{x}, W^{*}\right)\right\|_{2 k}^{2 k} \kappa(\mathbf{x}) d \mathbf{x} \geq \int_{\mathcal{X}_{\delta}}\left\|\nabla_{\mathbf{x}} f\left(\mathbf{x}, W^{*}\right)\right\|_{2 k}^{2 k} d \mathbf{x}
$$

Therefore,

$$
\begin{align*}
\frac{1}{V_{\mathcal{X}_{\delta}}} \int_{\mathcal{X}_{\delta}}\left\|\nabla_{\mathbf{x}} f\left(\mathbf{x}, W^{*}\right)\right\|_{2 k}^{2 k} d \mathbf{x} & \leq \frac{n V_{B_{\delta}}}{V_{\mathcal{X}_{\delta}}} \frac{2^{2 k} C^{2 k}\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}^{2 k}}{\min _{i}\left\|\mathbf{x}_{i}\right\|_{2 k}^{2 k}}\left(\frac{2 w\left(2 B^{k-1}\right)}{\eta^{k}}+1\right) \\
& =\frac{1}{V_{\mathcal{X}_{\delta}}} \int_{\mathcal{X}_{\delta}} \kappa(\mathbf{x}) d \mathbf{x} \frac{2^{2 k} C^{2 k}\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}^{2 k}}{\min _{i}\left\|\mathbf{x}_{i}\right\|_{2 k}^{2 k}}\left(\frac{2 w(2 B)^{k-1}}{\eta^{k}}+1\right) \\
& \leq \frac{K 2^{2 k} C^{2 k}\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}^{2 k}}{\min _{i}\left\|\mathbf{x}_{i}\right\|_{2 k}^{2 k}}\left(\frac{2 w(2 B)^{k-1}}{\eta^{k}}+1\right) \tag{39}
\end{align*}
$$

Finally, we have

$$
\begin{equation*}
\left|f\left(\mathbf{x}, W^{*}\right)\right|_{1,2 k, \mathcal{X}_{\delta}} \leq \frac{\left(K V_{\mathcal{X}_{\delta}}\right)^{\frac{1}{2 k}} 2 C\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}}{\min _{i}\left\|\mathbf{x}_{i}\right\|_{2 k}}\left(\left(\frac{w}{B}\right)^{\frac{1}{2 k}} \sqrt{\frac{2 B}{\eta}}+1\right) \tag{40}
\end{equation*}
$$

C Proofs for Section 5

C. 1 Proof of Theorem 5

Recall we let $\boldsymbol{a}_{i}=\nabla_{W} f\left(\mathbf{x}_{i}, W^{*}\right) \in \mathbb{R}^{w}$. By Theorem 2, we have

$$
\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{a}_{i, j}^{2 k} \leq \frac{2^{k} B^{k-1}}{\eta^{k}}
$$

for any $j=1,2, \ldots, w$. Therefore, for any j,

$$
\max _{1 \leq i \leq n} \boldsymbol{a}_{i j}^{2 k} \leq \frac{2^{k} B^{k-1} n}{\eta^{k}}
$$

Sum j from 1 to w, we obtain

$$
\max _{1 \leq i \leq n}\left\|\boldsymbol{a}_{i}\right\|_{2 k}^{2 k} \leq \sum_{j=1}^{w} \max _{1 \leq i \leq n} \boldsymbol{a}_{i j}^{2 k} \leq \frac{2^{k} B^{k-1} n w}{\eta^{k}}
$$

Hence, for any $i=1,2, \ldots, n,\left\|\nabla_{W} f\left(\mathbf{x}_{i}, W^{*}\right)\right\|_{2 k} \leq\left(\frac{2 n w}{B}\right)^{\frac{1}{2 k}} \sqrt{\frac{2 B}{\eta}}$, which together with Proposition 3 finishes the proof.

C. 2 Proof of Theorem 6

Let $\mathcal{X}_{\delta}=\bigcup_{i=1}^{n}\left\{\mathbf{x}:\left\|\mathbf{x}-\mathbf{x}_{i}\right\|_{2} \leq \delta\right\}$. Then, we have

$$
\begin{align*}
\mathbb{E}\left\|f\left(\mathbf{x}, W^{*}\right)-f^{*}(\mathbf{x})\right\|_{2}^{2} & =\mathbb{E}\left[\left\|f\left(\mathbf{x}, W^{*}\right)-f^{*}(\mathbf{x})\right\|_{2}^{2} \mid \mathbf{x} \in \mathcal{X}_{\delta}\right]+\mathbb{E}\left[\left\|f\left(\mathbf{x}, W^{*}\right)-f^{*}(\mathbf{x})\right\|_{2}^{2} \mid \mathbf{x} \notin \mathcal{X}_{\delta}\right] \\
& \leq \mathbb{E}\left[\left\|f\left(\mathbf{x}, W^{*}\right)-f^{*}(\mathbf{x})\right\|_{2}^{2} \mid \mathbf{x} \in \mathcal{X}_{\delta}\right]+\varepsilon_{2}\left(2 M_{1}^{2}\right) \tag{41}
\end{align*}
$$

where to be short we ignored the subscript $\mathbf{x} \sim \mu$ for the expectations. For any $\mathbf{x} \in \mathcal{X}_{\delta}$, let \mathbf{x}_{*} be a training data that satisfies $\left\|\mathbf{x}-\mathbf{x}_{*}\right\| \leq \delta$. By Theorem 5, for any $\mathbf{x} \in \mathcal{X}_{\delta}$ we have

$$
\begin{equation*}
\left\|\nabla_{\mathbf{x}} f\left(\mathbf{x}, W^{*}\right)\right\|_{2 k} \leq \frac{C\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}}{\min _{i}\left\|\mathbf{x}_{i}\right\|_{2 k}}\left(\left(\frac{2 n w}{B}\right)^{\frac{1}{2 k}} \sqrt{\frac{2 B}{\eta}}+1\right) \tag{42}
\end{equation*}
$$

Therefore, by Hölder inequality,

$$
\begin{align*}
\left|f\left(\mathbf{x}, W^{*}\right)-f^{*}(\mathbf{x})\right| \leq & \left|f\left(\mathbf{x}_{*}, W^{*}\right)-f^{*}\left(\mathbf{x}_{*}\right)\right|+\max _{\mathbf{x}^{\prime} \in \mathcal{X}_{\delta}}\left\|\nabla_{\mathbf{x}} f\left(\mathbf{x}^{\prime}, W^{*}\right)\right\|_{2 k}\left\|\mathbf{x}-\mathbf{x}_{*}\right\|_{\frac{2 k}{2 k-1}} \\
& +\max _{\mathbf{x}^{\prime} \in \mathcal{X}_{\delta}}\left\|\nabla_{\mathbf{x}} f^{*}\left(\mathbf{x}^{\prime}\right)\right\|_{2}\left\|\mathbf{x}-\mathbf{x}_{*}\right\|_{2} \\
\leq & \frac{C\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}}{\min _{i}\left\|\mathbf{x}_{i}\right\|_{2 k}}\left(\left(\frac{2 n w}{B}\right)^{\frac{1}{2 k}} \sqrt{\frac{2 B}{\eta}}+1\right) \sqrt{d} \delta+M_{2} \delta . \tag{43}
\end{align*}
$$

In the last line, the $\sqrt{d} \delta$ term comes from

$$
\left\|\mathbf{x}-\mathbf{x}_{*}\right\|_{\frac{2 k}{2 k-1}} \leq\left\|\mathbf{x}-\mathbf{x}_{*}\right\|_{2} d^{\frac{k-1}{2 k-1}} \leq \sqrt{d} \delta
$$

Hence, we have

$$
\begin{align*}
\mathbb{E}\left[\left\|f\left(\mathbf{x}, W^{*}\right)-f^{*}(\mathbf{x})\right\|_{2}^{2} \mid \mathbf{x} \in \mathcal{X}_{\delta}\right] & \leq\left[\frac{C\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}}{\min _{i}\left\|\mathbf{x}_{i}\right\|_{2 k}}\left(\left(\frac{2 n w}{B}\right)^{\frac{1}{2 k}} \sqrt{\frac{2 B}{\eta}}+1\right) \delta+M_{2} \delta\right]^{2} \\
& \leq \frac{2 d C^{2}\left\|\left(W_{1}^{*}\right)^{T}\right\|_{2 k}^{2}}{\min _{i}\left\|\mathbf{x}_{i}\right\|_{2 k}^{2}}\left(\left(\frac{2 n w}{B}\right)^{\frac{1}{2 k}} \sqrt{\frac{2 B}{\eta}}+1\right)^{2} \delta^{2}+2 M_{2}^{2} \delta^{2} \tag{44}
\end{align*}
$$

Inserting (44) to (41) yields the result.

D Additional proofs

D. 1 Proof of Lemma 1

We show the following more general result.
Lemma 3. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, and $\mathbf{x} \in \mathbb{R}^{n}$ be a vector. Then, if $\|A \mathbf{x}\|_{2}>\|\mathbf{x}\|_{2}$, we have

$$
\lim _{m \rightarrow \infty}\left\|A^{m} \mathbf{x}\right\|_{2}=\infty
$$

The proof is a simple practice for linear algebra. Let $A=Q \Sigma Q^{T}$ be the eigenvalue decomposition of A, and let $\boldsymbol{y}=Q^{T} \mathbf{x}$. Then, for any $m \in \mathbb{N}^{*}$ we have

$$
\left\|A^{m} \mathbf{x}\right\|_{2}^{2}=\left\|\Sigma^{m} \boldsymbol{y}\right\|_{2}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2 m} y_{i}^{2}
$$

where σ_{i} are eigenvalues of A. Hence, $\|A \mathbf{x}\|_{2}>\|\mathbf{x}\|_{2}$ means

$$
\sum_{i=1}^{n} \sigma_{i}^{2} y_{i}^{2}>\sum_{i=1}^{n} y_{i}^{2}
$$

which means there exists $j \in\{1,2, \ldots, n\}$ such that $y_{j} \neq 0$ and $\sigma_{i}^{2}>1$. Then,

$$
\lim _{m \rightarrow \infty}\left\|A^{m} \mathbf{x}\right\|_{2}^{2}=\lim _{m \rightarrow \infty} \sum_{i=1}^{n} \sigma_{i}^{2 m} y_{i}^{2} \geq \lim _{m \rightarrow \infty} \sigma_{j}^{2 m} y_{j}^{2}=\infty
$$

D. 2 Proof of Lemma 2

When $t \in[0,1)$, we have $t^{k}+(1-t)^{k} \leq(t+1-t)^{k}=1$. Hence,

$$
t^{k} \leq 1-(1-t)^{k} \leq 1+(t-1)^{k} \leq 2^{k-1}\left((t-1)^{k}+1\right)
$$

When $t \geq 1$, by the Hölder inequality,

$$
t=(t-1)+1 \leq\left((t-1)^{k}+1\right)^{\frac{1}{k}}(1+1)^{1-\frac{1}{k}}
$$

Taking k-th order on both sides, we have

$$
t^{k} \leq 2^{k-1}\left((t-1)^{k}+1\right)
$$

Figure 2: Results for g_{W}^{k} and $g_{\mathbf{x}}^{k}$ with $k=2$, on a fully-connected neural network trained on FashionMNIST (shown in (a)) and a VGG-11 network trained on CIFAR10 (shown in (b)). For both (a) and (b), the left panel shows g_{W}^{k} and $g_{\mathbf{x}}^{k}$ of the solutions found by SGD with different learning rate, while batch size fixed at 20 . The right panel shows solutions found by SGD with different batch size, with learning rate fixed at 0.1 .

(a)

(b)

Figure 3: Results for g_{W}^{k} and $g_{\mathbf{x}}^{k}$ with $k=3$, on a fully-connected neural network trained on FashionMNIST (shown in (a)) and a VGG-11 network trained on CIFAR10 (shown in (b)). For both (a) and (b), the left panel shows g_{W}^{k} and $g_{\mathbf{x}}^{k}$ of the solutions found by SGD with different learning rate, while batch size fixed at 20 . The right panel shows solutions found by SGD with different batch size, with learning rate fixed at 0.1 .

E Additional Experiments

Except the g_{W} and $g_{\mathbf{x}}$ in (5), we also checked the gradient norms with higher k in the same experiment settings. We consider

$$
\begin{equation*}
g_{W}^{k}:=\left(\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla_{W} f\left(\mathbf{x}_{i}, W\right)\right\|_{2 k}^{2 k}\right)^{\frac{1}{2 k}}, \quad g_{\mathbf{x}}^{k}:=\left(\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla_{\mathbf{x}} f\left(\mathbf{x}_{i}, W\right)\right\|_{2 k}^{2 k}\right)^{\frac{1}{2 k}} \tag{45}
\end{equation*}
$$

Figures 2 and 3 show the scatter plot for $k=2$ and $k=3$, respectively. The figures shows that in most cases there is still a strong correlation between the gradient norm with respect to W and the gradient norm with respect to \mathbf{x}.
The next figure (Figure 4) shows experiment results on more complicated dataset and network architectures, where we trained a 14-layer Resnet on a subset of the CIFAR100 dataset. The scattered plots show similar results as in Figrue 1, which further justifies our theoretical predictions.

Figure 4: Results for a Resnet trained on CIFAR100 dataset. (Left) g_{W} and $g_{\mathbf{x}}$ of the solutions found by SGD with different learning rate, while batch size fixed at 20 . (Right) g_{W} and $g_{\mathbf{x}}$ of the solutions found by SGD with different batch size, with learning rate fixed at 0.05.

F Experiment details

General settings In the numerical experiments shown by Figure 1, 2 and 3, we train fully-connected deep neural networks and VGG-like networks on FashionMNIST and CIFAR10, respectively. As shown in the figures, for each network, different learning rates and bacth sizes are chosen. 5 repetitions are conducted for each learning rate and batch size. In each experiment, SGD is used to optimize the network from a random initialization. The SGD is run for 100000 iterations to make sure finally the iterator is close to a global minimum. then, g_{x} and g_{W} in (5) are evaluated at the parameters given by the last iteration. In the experiments shown in Figure 4, we train a residual network on CIFAR100. Experiments are still repeated by 5 times in each combination of learning rate and batch size. In each experiment, SGD is run for 50000 iterations. All experiments are conducted on a MacBook pro 13" only using CPU. See the code at https://github.com/ChaoMa93/Sobolev-Reg-of-SGD.

Dataset For the FashionMNIST dataset, 5 out of the 10 classes are picked, and 1000 images are taken for each class. For the CIFAR10 dataset, the first 2 classes are picked with 1000 images per class. For the CIFAR100 dataset, the first 10 classes for picked with 500 images in each class.

Network structures The fully-connected network has 3 hidden layers, with 500 hidden neurons in each layer. The ReLU activation function is used. The VGG-like network consists of a series of convolution layers and max pooling layers. Each convolution layer has kernel size 3×3, and is followed by a ReLU activation function. The max poolings have stride 2 . The order of the layers are

$$
16->M->16->M->32->M->64->M->64->M
$$

where each number means a convolutional layer with the number being the number of channels, and "M" means a max pooling layer. A fully-connected layer with width 128 follows the last max pooling.
The residual network takes conventional architecture of Resnet. It consists of 6 residual blocks. The number of channels in the blocks are $32,32,64,64,128,128$, from the input block to the output block.

