
Appendix
This Appendix is organised as follows: A) using the formalism of cross-covariance operators we
define an Hilbert-Schmidt conditional independence criterion for stochastic processes, and provide
further details on the construction of the estimator for the 2nd order MMD; B) we outline algorithms
and their complexities for computing higher order MMDs; C) we provide further experimental details;
D) we prove the theorems from the main paper.

A Cross-covariance operators

Covariance and cross-covariance operators on RKHSs are important concepts for modern applications
of conditional KMEs [50, 10]. In this section we will use this formalism (adapted to the case of
path-valued random variables) to firstly derive a criterion for conditional independence of stochastic
processes and secondly provide more details on the derivation of our estimator of the 2nd order MMD.

Let X,Y ∈ P(X (V )) be two stochastic processes and their joint process (X,Y ) ∈ P(X (V ⊕ V )).
Define the cross-covariance operator CY,X as the following point in the tensor product of RKHSs
HS(V )⊗HS(V )

CY,X = E(X,Y )[kS(·, Y )⊗ kS(X, ·)] (28)

or equivalently as the Hilbert-Schmidt operator CY,X : HS(V )→ HS(V ) defined for any function
f ∈ HS(V ) as follows

CY,X(f)(·) =

∫

(x,y)∈X (V⊕V )

kS(·, y)f(x)P(X,Y )(d(x, y)) (29)

The equivalence between tensor product of RKHSs and Hilbert-Schmidt operators is given by the
isomorphism Φ : HS(V )⊗HS(V )→ HS (HS(V ),HS(V )) defined as follows

ΦS


∑

k,k′

αk,k′S(k) ⊗ S(k
′)


 =

∑

k,k′

αk,k′

〈
·,S(k)

〉
HS(V )

S(k′) (30)

where S(k) denotes the kth element of an orthogonal basis of HS(V ) and HS (HS(V ),HS(V )) is
the space of Hilbert-Schmidt operators fromHS(V ) to itself. An example of such basis is given by
the signature basis defined for any path x ∈ X (V ) and any coordinate k = (k1, ..., kj) as

Sk(x) =

∫
. . .

∫

0<s1<...<sj<T

dx(k1)s1 . . . dx(kj)sj (31)

The centered version C̃Y,X ∈ HS(V )⊗HS(V ) of the operator CY,X is defined as

C̃Y,X = CY,X − µ1
X ⊗ µ1

Y (32)

Similarly let CX,X ∈ HS(V )⊗HS(V ) be the following covariance operator

CX,X = EX [kS(X, ·)⊗ kS(X, ·)] (33)

or equivalently CX,X ∈ HS (HS(V ),HS(V ))

CX,X(f)(·) =

∫

x∈X (V )

kS(·, x)f(x)PX(dx) (34)

Under the assumption that for any f ∈ HS(V ) the function x 7→ µ1
f(Y )|X=x from X (V ) to R is in

HS(V ), the authors in [10, 50] showed that

µ1
Y |X = CY,XC−1X,X (35)

However, this assumption might not hold in general [10, 50]. This technical issue can be circumvented
by resorting to a regularized version of eq. (35): this yields to

µ1
Y |X ≈ CY,X(CX,X + λIHS(V ))

−1, λ > 0 (36)
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where IHS(V ) is the identity map fromHS(V ) to itself. Under some mild conditions the empirical
estimator of eq. (36) is equal to the empirical estimator of eq. (35) [9, Thm. 8]. In particular, one has

µ̂1
Y |X=x = kx>(Kx,x +mλIm)−1ky(·) (37)

based on sample paths {(xi, yi)}mi=1 from the joint (X,Y ) where kx, Kx,x and ky(·) are such that

[kx]i = kS(xi, x) [Kx,x]i,j = kS(xi, xj) ky(·) = [kS(y1, ·), . . . , kS(ym, ·)]>

Cross-covariance operators have been used to define kernel-based measures of conditional dependence,
as we shall discuss in the next section.

A.1 Hilbert-Schmidt Conditional Independence Criterion for stochastic processes

Multiple measures of conditional dependence have been proposed in the literature [14, 13, 12]. In
this section, we follow [12] to define a nonparametric conditional dependence measure for stochastic
processes, based on the conditional cross-covariance operator C̃Y,X|Z : HS(V )→ HS(V ),

C̃Y,X|Z = C̃Y,X − C̃Y,Z C̃−1Z,Z C̃Z,X (38)

The squared Hilbert-Schmidt normHY X|Z := ||C̃(Y,Z),X|Z ||2HS can be used as measure of conditional
dependence of stochastic processes. Since the signature kernel kS is characteristic, it follows that
X ⊥⊥ Y | Z ⇐⇒ HY X|Z = 0 [12].

Given m sample paths {(xi, yi, zi)}mi=1 from the joint distribution of (X,Y, Z), let Kx,Ky and Kz

be the Gram matrices with entries,

[Kx]i,j = kS(xi, xj) [Ky]i,j = kS(yi, yj) [Kz]i,j = kS(zi, zj)

An empirical estimator of the kernel conditional dependence measure HY X|Z is then given by,

ĤY X|Z = 1
m2

{
tr(K̃xK̃y)− 2tr(K̃xK̃z(K̃z

ε )−2K̃zK̃y) + tr(K̃xK̃z(K̃z
ε )−2K̃zK̃yK̃z(K̃z

ε )−2K̃z)
}

where K̃z
ε = K̃z + εIm and K̃x, K̃y ,K̃z are the centered versions of the matrices Kx,Ky and Kz ,

K̃x = HKxH K̃y = HKyH K̃z = HKzH

with H = Im −m−11m and 1m the m ×m matrix with all entries set to 1. This estimator can
be used as a test statistic for testing whether X and Y are independent given Z. However, it is not
known how to analytically compute the null distribution of the test statistic, and permutation tests
are typically used. In Sec. 4.3 we use this measure of conditional dependence as part of the kPC
algorithm to infer causal relationships between multidimensional stochastic processes. We provide
more details in Appendix C.

A.2 Construction of the estimator for the second order MMD D2
S

As discussed in the main paper, the estimation of the 2nd order MMD, required the ability to compute
inner products of the form 〈x̃s, ỹt〉 inHS(V ). Here, we provide more details on the approximation
that we have used in eq. (20), also restated below,

〈
x̃s, ỹt

〉
HS(V )

≈ kxs
>(Kx,x

s,s +mλIm)−1Kx,y
T,T (Ky,y

t,t + nλIn)−1kyt

where x̃ and ỹ are sample paths from the processes µ1
X|FX

and µ1
Y |FY

respectively. In particular,

x̃s = µ1
X|x[0,s]

and ỹt = µ1
Y |y[0,t]

As discussed at the beginning of this section, their empirical estimators are constructed from m
samples {xi}mi=1 from X and n samples {yj}nj=1 from Y respectively

x̃s ≈ kxs
>(Kx,x

s,s +mλIm)−1kx(·) and ỹt ≈ kyt
>

(Ky,y
t,t + nλIn)−1ky(·)
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where kxs , Kx,x
s,s , kx(·) and kyt , Ky,y

t,t and ky(·) are defined by,

[kxs ]i = kS(xi[0,s], x[0,s]) [Kx,x
s,s ]i,j = kS(xi[0,s], x

j
[0,s]) kx(·) = [kS(x1, ·), . . . , kS(xm, ·)]>

[kyt ]i = kS(yi[0,t], y[0,t]) [Ky,y
t,t ]i,j = kS(yi[0,t], y

j
[0,t]) ky(·) = [kS(y1, ·), . . . , kS(yn, ·)]>

Alternatively, we can write x̃s ≈
∑m
i=1 αikS(xi, ·) with α = (Kx,x

s,s +mλIm)−1kxs . Similarly we
have ỹt ≈

∑n
j=1 βjkS(·, yj) with β = (Ky,y

t,t + nλIn)−1kyt . Therefore, the inner product between
x̃s and ỹt can be approximated as follows,

〈x̃s, ỹt〉HS(V ) ≈
m∑

i=1

n∑

j=1

αiβjkS(xi, yj)

= α>Kx,y
T,Tβ

= kxs
>(Kx,x

s,s +mλIm)−1Kx,y
T,T (Ky,y

t,t + nλIn)−1kyt

where Kx,y
T,T ∈ Rm×n with [Kx,y

T,T ]i,j = kS(xi, yj). Next we outline the algorithm to compute D̂2
S .

B Algorithms

In this section, we provide algorithms to compute the empirical estimator D̂kS for the kth order MMD,
which rely on the ability to evaluate the signature kernel kS(x, y) where x and y are two paths
taking their values in the Hilbert spaceHk−1(V ). Following [22, Sec. 3.1.] we use an explicit finite
difference scheme to approximate the PDE solution ux,y on a grid P of size P ×Q,

P = {0 = s1 < s2 < . . . < sP = T} × {0 = t1 < t2 < . . . < tQ = T}
Writing ux,y(si, tj) = ui,j to make the notation more concise, we use an update rule of the form,

ui+1,j+1 = f(ui,j+1, ui+1,j , ui,j ,Mi,j), Mi,j = 〈xsi+1
− xsi , ytj+1

− ytj 〉Hk−1
S (V )

Hence, computing kS(x, y) consists in forming the (P − 1)× (Q− 1) matrix M such that,
[M ]i,j = 〈xsi+1 − xsi , ytj+1 − ytj 〉Hk−1

S (V )

and iteratively applying the update rule as outlined in Alg. 1. Besides, in Alg. 1 we distinguish the
case where the solution u on the entire grid is returned, and the case where only the solution at the
final times (sP , tQ) = (T, T ) is returned, which corresponds to the value of the kernel kS(x, y).
The runtime complexity to solve one PDE is O(PQ). We make use of parallelization strategy to
drastically speed-up the PDE solver on CUDA-enabled GPUs.

B.1 Algorithm for the 1st order MMD

In this section we provide the algorithm to compute an empirical estimator of the 1st order MMD.
This way, we introduce subroutines (Alg. 1 and Alg. 2) for the estimator of the 2nd order MMD. We
assume that m = n and P = Q to simplify the final runtime complexities of the algorithms.

Let {xi}mi=1 ∼ X and {yj}nj=1 ∼ Y . An unbiased estimator of the 1st order MMD [1] reads as,

D̂1
S(X,Y ) =

1

m(m− 1)

m∑

i,j=1
i 6=j

kS(xi, xj)− 2

mn

m,n∑

i,j=1

kS(xi, yj) +
1

n(n− 1)

n∑

i,j=1
i6=j

kS(yi, yj)

Hence, in order to compute this estimator, we need to form the following three Gram matrices
G1
X,X ∈ Rm×m, G1

X,Y ∈ Rm×n and G1
Y,Y ∈ Rn×n such that,

[G1
X,X ]i,j = kS(xi, xj) [G1

X,Y ]i,j = kS(xi, yj) [G1
Y,Y ]i,j = kS(yi, yj)

As explained at the begining of this section (and outlined in Alg. 2), this consists in two steps. Taking
G1
X,Y for example, first one forms m× n matrices of size (P − 1)× (Q− 1) each of the form,

[M ]p,q = 〈xisp+1
− xisp , y

j
tq+1
− yjtq 〉V

and then one solves m× n PDEs with Alg. 1. The full procedure is summarized in Alg. 3, which has
time complexity O(dm2P 2) where d is the number of coordinates of the paths x and y.
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Algorithm 1 PDESolve O(P 2)

1: Input: matrix M ∈ RP×Q, full ∈ {True,False}
2: Output: full solution u ∈ RP×Q with u[p, q] = kS(x[0,sp], y[0,tq ]) or u[−1,−1] = kS(x, y)

3: u[1, :]← 1
4: u[:, 1]← 1
5: for p from 1 to P − 1 do
6: for q from 1 to Q− 1 do
7: u[p+ 1, q + 1]← f(u[p, q + 1], u[p+ 1, q], u[p, q],M [p, q])

8: if full then return u else return u[−1,−1]

Algorithm 2 FirstOrderGram O(dm2P 2)

1: Input: sample paths {xi}mi=1 ∼ X and {yj}nj=1 ∼ Y , full ∈ {True,False}
2: Output: G ∈ Rm×n×P×Q where G[i, j, p, q] = kS(xi[0,sp], y

j
[0,tq ]

) or G[:, :,−1,−1]

3: M [i, j, p, q]← 〈xisp , y
j
tq 〉 ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, p ∈ {1, . . . , P}, q ∈ {1, . . . , Q}

4: M ←M [:, :, 1:, 1:] +M [:, :, :−1, :−1]−M [:, :, 1:, :−1]−M [:, :, :−1, 1:]
5: G[i, j]← PDESolve(M [i, j]), ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}
6: if full then return G else return G[:, :,−1,−1]

B.2 Algorithm for the 2nd order MMD

In the main paper, we derived the following estimator of the 2nd order MMD,

D̂2
S(X,Y ) =

1

m(m− 1)

m∑

i,j=1
i 6=j

kS(x̃i, x̃j)− 2

mn

m,n∑

i,j=1

kS(x̃i, ỹj) +
1

n(n− 1)

n∑

i,j=1
i6=j

kS(ỹi, ỹj)

Compared to the 1st order MMD, in order to compute this estimator, as outlined in Alg. 8, we need to
form the following three Gram matrices G2

X,X ∈ Rm×m, G2
X,Y ∈ Rm×n and G2

Y,Y ∈ Rn×n,

[G2
X,X ]i,j = kS(x̃i, x̃j) [G2

X,Y ]i,j = kS(x̃i, ỹj) [G2
Y,Y ]i,j = kS(ỹi, ỹj)

As outlined in Alg. 7, this consists in two steps. Taking G2
X,Y for example, first one forms m× n

matrices of size (P − 1)× (Q− 1) each of the form,

[M ]p,q = 〈x̃sp+1
− x̃sp , ỹtq+1

− ỹtq 〉HS(V )

(see Alg. 6) and then one solves m× n PDEs with Alg. 1. This is summarized in Alg. 8, which has
time complexity O((d+m)m2P 2) where d is the number of coordinates of the paths x and y.

Algorithm 3 FirstOrderMMD O(dm2P 2)

1: Input: sample paths {xi}mi=1 ∼ X and {yj}nj=1 ∼ Y
2: Output: an empirical estimator of the 1st order MMD between X and Y

3: G1
XX ← FirstOrderGram({xi}mi=1, {xi}mi=1, full = False)

4: G1
XY ← FirstOrderGram({xi}mi=1, {yj}nj=1, full = False)

5: G1
Y Y ← FirstOrderGram({yj}nj=1, {yj}nj=1, , full = False)

6: return avg(G1
XX)− 2 ∗ avg(G1

XY ) + avg(G1
Y Y )
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Algorithm 4 SecondOrderGram O(P 2m3)

1: Input: GXX , GXY , GY Y with GXY [i, j, p, q] = kS(xi[0,sp], y
j
[0,tq ]

) and hyperparameter λ.
2: Output: an empirical estimator of G2

X,Y ∈ Rm×n, where G2
X,Y [i, j] = kS(x̃i, ỹj)

3: M ← InnerProdPredCondKME(GXX , GXY , GY Y , λ)
4: M ←M [:, :, 1:, 1:] +M [:, :, :−1, :−1]−M [:, :, 1:, :−1]−M [:, :, :−1, 1:]
5: G2

XY [i, j]← PDESolve(M [i, j]), ∀i ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , n}
6: return G2

XY

Algorithm 5 SecondOrderMMD O(dm2P 2 + P 2m3)

1: Input: sample paths {xi}mi=1 ∼ X and {yj}nj=1 ∼ Y , hyperparameter λ.
2: Output: an empirical estimator of the 2nd order MMD between X and Y

3: G1
XX ← FirstOrderGram({xi}mi=1, {xi}mi=1, full = True)

4: G1
XY ← FirstOrderGram({xi}mi=1, {yj}nj=1, full = True)

5: G1
Y Y ← FirstOrderGram({yj}nj=1, {yj}nj=1, full = True)

6: G2
XX ← SecondOrderGram(G1

XX , G
1
XX , G

1
XX , λ)

7: G2
XY ← SecondOrderGram(G1

XX , G
1
XY , G

1
Y Y , λ)

8: G2
Y Y ← SecondOrderGram(G1

Y Y , G
1
Y Y , G

1
Y Y , λ)

9: return avg(G2
XX)− 2 ∗ avg(G2

XY ) + avg(G2
Y Y )

Algorithm 6 InnerProdPredCondKME O(P 2m3)

1: Input: three Gram matrices GXX , GXY , GY Y and hyperparameter λ
2: Output: returns an empirical estimator of M ∈ Rm×n×P×Q where M [i, j, p, q] = 〈x̃isp , ỹ

j
tq 〉

3: WX [:, :, p]← (GXX [:, :, p, p] +mλI)−1, ∀p ∈ {1, . . . , P}
4: WY [:, :, q]← (GY Y [:, :, q, q] + nλI)−1, ∀q ∈ {1, . . . , Q}
5: for p from 1 to P do
6: for q from 1 to Q do
7: M [:, :, p, q]← GXX [:, :, p, p]TWX [:, :, p]GXY [:, :,−1,−1]WY [:, :, q]GY Y [:, :, q, q]

B.3 Algorithm for higher order MMDs

Now, we generalize the procedure in Appendix B.2 for computing an estimator of Dk+1
S when k > 1,

D̂k+1
S (X,Y ) =

1

m(m− 1)

m∑

i,j=1
i 6=j

kS(x̃k,i, x̃k,j)− 2

mn

m,n∑

i,j=1

kS(x̃k,i, ỹk,j)+
1

n(n− 1)

n∑

i,j=1
i 6=j

kS(ỹk,i, ỹk,j),

where x̃k,i and ỹk,j denote sample paths from the processes µkX|FX
and µkY |FY

respectively. In order
to compute this estimator, as outlined in Alg. 8, we need to form the following three Gram matrices
Gk+1
X,X ∈ Rm×m, Gk+1

X,Y ∈ Rm×n and Gk+1
Y,Y ∈ Rn×n,

[Gk+1
X,X ]i,j = kS(x̃k,i, x̃k,j) [Gk+1

X,Y ]i,j = kS(x̃k,i, ỹk,j) [Gk+1
Y,Y ]i,j = kS(ỹk,i, ỹk,j)

As outlined in Alg. 7, this consists in two steps. Taking Gk+1
X,Y for example, first one forms m× n

matrices of size (P − 1)× (Q− 1) each of the form,

[M ]p,q = 〈x̃ksp+1
− x̃ksp , ỹktq+1

− ỹktq 〉Hk
S(V )

(see Alg. 6) and then one solves m× n PDEs with Alg. 1. This is summarized in Alg. 8, which has
time complexity O((d+ km)m2P 2) where d is the number of coordinates of the paths x and y.
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Algorithm 7 HigherOrderGram O(P 2m3)

1: Input: GkXX , GkXY , GkY Y with GkXY [i, j, p, q] = kS(x̃k−1,i[0,sp]
, ỹk−1,j[0,tq ]

) and hyperparameter λ.

2: Output: an estimator of Gk+1
X,Y ∈ Rm×n×P×Q, where Gk+1

X,Y [i, j, p, q] = kS(x̃k,i[0,sp]
, ỹk,j[0,tq ]

)

3: M ← InnerProdPredCondKME(GkXX , G
k
XY , G

k
Y Y , λ)

4: M ←M [:, :, 1:, 1:] +M [:, :, :−1, :−1]−M [:, :, 1:, :−1]−M [:, :, :−1, 1:]

5: Gk+1
XY [i, j]← PDESolve(M [i, j], full = True), ∀i ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , n}

6: return Gk+1
XY

Algorithm 8 HigherOrderMMD O(dm2P 2 + (k − 1)P 2m3)

1: Input: sample paths {xi}mi=1 ∼ X and {yj}nj=1 ∼ Y , hyperparameter λ, order k.
2: Output: an empirical estimator of the kth order MMD between X and Y

3: GXX ← FirstOrderGram({xi}mi=1, {xi}mi=1, full = True)
4: GXY ← FirstOrderGram({xi}mi=1, {yj}nj=1, full = True)

5: GY Y ← FirstOrderGram({yj}nj=1, {yj}nj=1, full = True)

6: for order from 2 to k do
7: Gnew

XX ← HigherOrderGram(GXX , GXX , GXX , λ)
8: Gnew

XY ← HigherOrderGram(GXX , GXY , GY Y , λ)
9: Gnew

Y Y ← HigherOrderGram(GY Y , GY Y , GY Y , λ)
10: GXX , GXY , GY Y ← Gnew

XX , G
new
XY , G

new
Y Y

11: return avg(GXX [:, :,−1,−1])− 2 ∗ avg(GXY [:, :,−1,−1]) + avg(GY Y [:, :,−1,−1])

C Experimental details

We start with further experimental details for the applications of higher order distribution regression
to quantitative finance (Sec. 4.2), where we consider the problem of optimally stopping fractional
Brownian motions with different hurst exponents.

C.1 Rough volatility

Rough volatility models constitute a class of models that are empirically well-tailored to fit observed
implied market volatilities in the context of option pricing for short maturity assets. The basic model
for option pricingis called the Black-Scholes model in which the volatility is assumed to be constant.
Stochastic volatility models are extensions of the Black-Scholes model to the case where the volatility
is itself stochastic. The main shortcoming of such stochastic volatility models is that they are able
to capture the true steepness of the implied volatility smile close to maturity (see [36] for extra
details). This is where rough volatility models become useful. Among them, the rough Bergomi
model introduced by [36], stood out for its ability to explain implied volatility and other phenomena
related to European options.

C.2 Higher order distribution regression

Data We use the data generator from https://github.com/HeKrRuTe/OptStopRandNN to sim-
ulate sample paths from X a fractional Brownian motion (fBm) and obtain the solution of the optimal
stopping time problem supτ E[g(Xτ )|X0]. We note that although fBm is not typically used as a stock
price model in quantitative finance, it is nevertheless considered a respected challenging example for
optimal stopping algorithms [51, 52].

Models We use a kernel Ridge regressor with different distribution regression kernels. Each is
of the form K(X,Y ) = exp(−D(X,Y )2/σ2) where D(X,Y ) is a maximum mean discrepancy.
The models K1

S and K2
S correspond to the 1st and 2nd order maximum mean discrepancies D1

S and
D2
S . We consider two other baselines (Matérn and RBF) for which the MMD is computed using the
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Matern 3/2 covariance function kmat32, and the RBF covariance function krbf,

kmat32(x, y) =

(
1 +

√
3

γ2
‖x− y‖

)
exp

(
−
√

3

γ2
‖x− y‖

)
, krbf(x, y) = exp

(
−‖x− y‖

2

γ2

)

All models are run 3 times. The hyperparameters of all models are selected by cross-validation via a
grid search on the training set (70% of the data selected at random) of each run.

C.2.1 Inferring causal graph for interacting bodies

We provide further details for the last application (Sec. 4.3) where the task is to infer whether any
two bodies are connected by a spring from multiple observations of their 2D trajectories.

Data We adapt the Pymunk simulator from [42] publicly available at https://github.com/
pairlab/v-cdn. For each pair of balls, there is a one-half probability that they are connected by
nothing, or a spring. For each graph we run multiple episodes each of 20 time steps. At the beginning
of each episode, we randomly assign the balls in different positions. The stiffness of the spring
relation is set to 20, and we randomly sample the rest length between [20, 120].

Causal discovery algorithm The PC algorithm [53] uses conditional independence tests to gener-
ate a causal graph from a dataset. The PC algorithm consists in two stages. The first stage, referred to
as the skeleton phase, consists in finding the structure of the causal graph. In the second stage, the
edges are oriented by repetitively applying orientation rules. In the multi-body interaction example,
we only need to perform the skeleton phase, which is sketched hereafter,

1. Start with a complete graph
2. For each X and Y which are still connected. If there is a third variable Z1 connected to X

or Y , such that X ⊥⊥ Y | Z1, remove the edge between X and Y .
3. For each X and Y which are still connected, if there is a third and a fourth variable Z1 and
Z2 connected to X or Y such that X ⊥⊥ Y | Z1, Z2, remove the edge between X and Y .

4. Iteratively increase the cardinality of the set of variables on which to condition.

To test for conditional independence we use the Hilbert-Schmidt conditional independence criterion
HXY |Z for stochastic processes (Appendix A.1). The combination of the PC algorithm with a
kernel-based dependence measure has been used in [13] and [12] where it is termed kPC. However,
to our knowledge it has never been used in conjunction with a kernel-based measure of dependence
for multidimensional stochastic processes.

Since the null distribution of the test statistics HY X|Z is not known, one possibility would be to use a
permutation approach as in [12, Sec 2]. However the latter is not computationally efficient. We leave
the development of a faster approach for future work, and adopt the approach [13] for this experiment.
That is we use a threshold α and remove an edge if there is a Z such that HXY |Z < α. We repeat 15
times the causal discovery procedure and use 30% of the runs to fix α.

All experiments in Sec. 4 have been run on a P100 GPU to leverage an efficient dedicated CUDA
implementation of the signature kernel.

D Proofs

Theorem 6. Given two stochastic processes X,Y
D2
S(X,Y ) = 0 ⇐⇒ PX|FX

= PY |FY

Furthermore
D2
S(X,Y ) = 0 =⇒ D1

S(X,Y ) = 0

but the converse is not generally true.

Proof. First we note that by a standard result in signature kernel learning theory. e.g., [31], for
X ∈ X (V ) and every t, the mapping

PX|FXt
7→ µ1

X|FXt
=

∫
kS(·, x)PX|FXt

(dx)
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is a homeomorphism (with respect to weak topology and Hilbert space topology); in particular, we
have

PX|FX
= PY |FY

⇐⇒ Pµ1
X|FX

= Pµ1
Y |FY

.

Then, using the same argument for Pµ1
X|FX

and Pµ1
Y |FY

, we can further deduce that

Pµ1
X|FX

= Pµ1
Y |FY

⇐⇒
∫
kS(·, x)Pµ1

X|FX

(dx)(= µ2
X) =

∫
kS(·, y)Pµ1

Y |FY

(dy)(= µ2
Y ).

Since by definition it holds that D2
S(X,Y ) = ‖µ2

X − µ2
Y ‖H2(V ), we complete the proof of the first

claim in this theorem.

For the second claim, it is easy to see that by definition PX|FX
= PY |FY

ensures that PX = PY ,
and therefore the implication that D2

S(X,Y ) = 0 =⇒ D1
S(X,Y ) = 0 follows immediately from

the fact that PX = PY ⇐⇒ D1
S(X,Y ) = 0. Moreover, we refer readers to [26, Example 3.1]

for a simple example which shows that there exist processes X and Y with D1
S(X,Y ) = 0 but

D2
S(X,Y ) > 0.

Theorem 7. D̂2
S(X,Y ) is a consistent estimator for the 2nd order MMD, i.e.

|D̂2
S(X,Y )−D2

S(X,Y )| p→ 0 as m,n→∞ (39)

with {xi}mi=1 ∼ X , {yi}ni=1 ∼ Y and where convergence is in probability.

Proof. Recall that given m independent sample paths {xi}mi=1 ∼ X , we can use the estimator in
appendix A.2 to approximate sample paths {x̃i}mi=1 from the 1st order predictive KME µ1

X|FX
. Hence,

it suffices to prove the following claim.

Claim: consider m independent sample paths {x̃i}mi=1 ∼ µ1
X|FX

. Then, the estimator given by
µ̂2
X = 1

m

∑m
i=1 kS(x̃i, ·) is consistent for the 2nd order predictive KME µ2

X , i.e.
∥∥µ̂2

X − µ2
X

∥∥2
H2
S(V )

p→ 0, as m→∞ (40)

By the triangular inequality

∥∥µ̂2
X − µ2

X

∥∥2
H2
S(V )

=

∥∥∥∥∥
1

m

m∑

i=1

kS(x̃i, ·)− E[kS(µ1
X|FX

, ·)]
∥∥∥∥∥

2

H2
S(V )

(41)

≤
∥∥∥∥∥

1

m

m∑

i=1

kS(x̃i, ·)− E[kS(µ̂1
X|FX

, ·)]
∥∥∥∥∥

2

H2
S(V )

(42)

+
∥∥∥E[kS(µ̂1

X|FX
, ·)]− E[kS(µ1

X|FX
, ·)]
∥∥∥
2

H2
S(V )

(43)

The term in (42) converges to 0 as m→∞ by the weak law of large numbers. Therefore, it remains
to show that

∥∥∥EX [kS(µ̂1
X|FX

, ·)]− EX [kS(µ1
X|FX

, ·)]
∥∥∥
H2
S(V )

p→ 0, as m→∞ (44)

First note the following upper bound
∥∥∥EX [kS(µ̂1

X|FX
, ·)]− EX [kS(µ1

X|FX
, ·)]
∥∥∥
H2
S(V )

≤ EX
∥∥∥kS(µ̂1

X|FX
, ·)− kS(µ1

X|FX
, ·)
∥∥∥
H2
S(V )

We will show convergence of the right-hand-side. By [54, Theorem 3.4], for every t = 1, . . . , T

EX|FXt

∥∥∥µ̂1
X|FXt

− µ1
X|FXt

∥∥∥
2

HS(V )

p→ 0 as m→∞ (45)

Now let us assume that the above convergences also hold almost surely for every t = 1, . . . , T . Then
by the Egorov’s theorem, for any δ > 0, there is a subset Ωδ with P(Ωδ) > 1 − δ and the above
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convergence (45) holds uniformly on Ωδ. This implies that on Ωδ for every ε > 0 there is an N(ε)
such that for all m ≥ N(ε) and all t = 1, . . . , T , it holds that

EX|FXt

∥∥∥µ̂1
X|FXt

− µ1
X|FXt

∥∥∥
2

HS(V )
≤ ε2 (46)

From this estimate we immediately obtain by the triangle inequality on Ωδ

EX|FXt

∥∥∥µ̂1
X|FXt

∥∥∥
2

HS(V )
≤ 2EX|FXt

∥∥∥µ1
X|FXt

∥∥∥
2

HS(V )
+ 2ε2, (47)

and, by the Chebyshev’s inequality, on Ωδ , ∀t = 1, . . . , T , ∀m ≥ N(ε)

PX|FXt

[∥∥∥µ̂1
X|FXt

− µ1
X|FXt

∥∥∥
HS(V )

>
√
ε

]
≤ 1

ε
EX|FXt

∥∥∥µ̂1
X|FXt

− µ1
X|FXt

∥∥∥
2

HS(V )
≤ 1

ε
ε2 = ε,

which implies that on Ωδ, ∀t = 1, . . . , T , the sequence µ̂1
X|FXt

converges to µ1
X|FXt

in probability
with respect to PX . By a standard result in rough path theory [30] there exists a universal constant
β ∈ R such that ∥∥∥kS(µ̂1

X|FX
, ·)
∥∥∥
H2
S(V )

≤ β
∥∥∥µ̂1

X|FX

∥∥∥
1–var

HS(V )
(48)

where ‖·‖1–var
HS(V ) denotes the total variation norm of paths taking values inHS(V ). Since we are in a

finite discrete time setup, it is easy to see that

∥∥∥µ̂1
X|FX

∥∥∥
1–var

HS(V )
≤ C(T )

T∑

t=1

∥∥∥µ̂1
X|FXt

∥∥∥
HS(V )

(49)

Hence, combining all above arguments, we can conclude that on Ωδ and for all m ≥ N(ε),

EX
∥∥∥kS(µ̂1

X|FX
, ·)
∥∥∥
2

H2
S(V )

≤ β2EX
∥∥∥µ̂1

X|FX

∥∥∥
2

1–var;HS(V )
(50)

≤ β2C(T )
T∑

t=1

EX
∥∥∥µ̂1

X|FXt

∥∥∥
2

HS(V )
(51)

≤ β2C(T )
(

2
T∑

t=1

EX
∥∥∥µ1

X|FXt

∥∥∥
2

HS(V )
+ 2Tε2

)
≤ C <∞ (52)

where in the last line we used (47). As a result, we obtain that on Ωδ ,

sup
m≥N(ε)

EX
∥∥∥kS(µ̂1

X|FX
, ·)− kS(µ1

X|FX
, ·)
∥∥∥
2

H2
S(V )

<∞ (53)

which in turn implies, by the de la Vallée–Poussin theorem, that on Ωδ, the sequence∥∥∥kS(µ̂1
X|FX

, ·)− kS(µ1
X|FX

, ·)
∥∥∥
2

H2
S(V )

, m ≥ N(ε) is uniformly integrable for PX . Then recalling

that we have shown that µ̂1
X|FX

converges to µ1
X|FX

in probability with respect to PX as m→∞, a
standard result in probability theory ensures that (thanks to the uniform integrability of the sequence
and the continuity of the kernel kS which ensures that

∥∥∥kS(µ̂1
X|FX

, ·)− kS(µ1
X|FX

, ·)
∥∥∥
H2
S(V )

→ 0

in probability for PX ) on Ωδ, EX
∥∥∥kS(µ̂1

X|FX
, ·)− kS(µ1

X|FX
, ·)
∥∥∥
H2
S(V )

→ 0, as m→∞, which

implies that
∥∥∥EX [kS(µ̂1

X|FX
, ·)]− EX [kS(µ1

X|FX
, ·)]
∥∥∥
H2
S(V )

→ 0, as m → ∞, on Ωδ. Clearly,

as δ was arbitrary, we have EX|FXt

∥∥∥µ̂1
X|FXt

− µ1
X|FXt

∥∥∥
2

HS(V )
→ 0 as m → ∞ a.s. Finally,

note that the above result holds true for any subsequence of (µ̂1
X|FXt

)m≥1 (because every sequence
converging in probability has a subsequence converging almost surely), which proves the desired
result (40).
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Theorem 8. Given two stochastic processes X,Y

DnS(X,Y ) = 0 =⇒ DkS(X,Y ) = 0 for any 1 < k < n (54)

but the converse is not generally true.

Proof. Let X ∈ X (V ), then we denote PX|FXt
=: X

(1)
t . Then we continue this procedure and

define X(n)
t := PXn−1|FXt

(it is called the rank n prediction process in [29]). Now we can apply the
same argument as in the proof of Theorem 6 together with an induction procedure easily prove that

DnS(X,Y ) = 0 ⇐⇒ PX(n−1) = PY (n−1) (55)

for all n > 1. From the definition of these processes X(n) and Y (n) we can immediately see that
PX(n) = PY (n) ensures that PX(k) = PY (k) for all k < n, which yields the desired result. We refer
readers to [26, Example 3.2] for examples which illustrate that for each n there exist processes X
and Y with DnS(X,Y ) = 0 (equivalently, PX(n−1) = PY (n−1)) but Dn+1

S (X,Y ) > 0 (equivalently,
PX(n) 6= PY (n) ).

Remark. Using terminologies from [26] and [29], PX(n) = PY (n) means that processes X and Y
have the same adapted distribution up to rank n. Therefore Thm. 6 and 8 tell us thatDnS(X,Y ) = 0 if
and only if they ave the same adapted distribution up to rank n. Moreover, using the partial isometry
between RKHS generated by kS and tensor algebra space, see e.g. [31, Theorem E.2], one can use
an induction argument to verify that DnS coincides with the metric dn−1 defined in [29, Definition
14], and therefore by [29, Theorem 4] we can obtain a stronger result that DnS actually metrizes the
so–called rank n− 1 adapted topology (see [29, Definition 5], [26, Definition 2.25]). For more details
regarding adapted topologies we refer to [29].
Theorem 9. Let f : R→ R be a globally analytic function with non-negative coefficients. Define
the family of kernels Kn

S : P(X (V ))× P(X (V ))→ R as follows

Kn
S (X,Y ) = f(DnS(X,Y )), n ∈ N≥1 (56)

Then the RKHS associated to Kn
S is dense in the space of functions from P(X (V )) to R which are

continuous with respect to the kth order MMD for any 1 ≤ k ≤ n.

Proof. By [55, Thm. 2.2] if K is a compact metric space and H is a separable Hilbert space such
that there exists a continuous (w.r.t. a topology τ on K) and injective map ρ : K → H , then for any
globally analytic function with non-negative coefficients f : R → R the kernel k : K ×K → R
given by

k(z, z′) = f (‖ρ(z)− ρ(z′)‖H) (57)
is universal in the sense that its RKHS is τ -dense in the space of τ -continuous functions from K to R.
By assumption, X (V ) is a D1

S -compact metric space, therefore by Thm. 8 it is also DnS -compact for
every n ≥ 1. Hence, by [56, Thm. 10.2] the set of stochastic processes P(X (V )) is alsoDnS -compact.
For showing that ρ : X 7→ µnX is injective and continous with respect to DnS we refer readers to
[29, Proposition 4], one only needs to verify that µnX corresponds to the mapping S̄n used in the
proof of [29, Proposition 4] by the definition of µnX and the fact that DnS metrizes the rank n − 1
adapted topology (cf. the above remark). Furthermore HnS(V ) can be shown by induction to be a
Hilbert space with a countable basis, hence it is separable. Setting K = P(X (V )), H = HnS(V ) and
ρ : X 7→ µnX concludes the proof.
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