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A Experimental Details

A.1 On CIFAR-10

Architectures. The base architectures include a popular variant of VGG-19 [36] with BN for
CIFAR-10, which includes all the sixteen convolutional layers but only one fully connected layer;
a ResNet-110 [21] with base width 16 and two Conv layers in each residual block, as well as its
1202-layer verison with the same depth configurations as FixUp; a 28-layer Wide ResNet [37] with
Widen Factor 10 (WRN-28-10) ; and a DenseNet-100 [38]. To isolate the effect of BN, we also
consider removing the BN layers from these three networks and adding learnable bias parameters
in their place. To compare with a strong initialization scheme that is tailor-made for an architecture
family, we consider a 110-layer FixUpResNet [9]. FixUpResNet removes the BN from ResNet,
replacing it with bias parameters and a learnable scale parameter after the second convolutional layer
of each block. FixUp initializes the weights of the second convolutional layer in each residual block,
and of the final fully connected layer, to zero. It also scales the first convolutional layer in each
residual block by 1/

p
M . This causes the gradient to be zero in the first step for all layers except

for the final FC layer. When testing GradInit on this architecture, we adopt the non-zero Kaiming
initialization to all convolutional and FC layers. The results are given in Table 10.

Additional Training Hyerparameters. We use batch size 128 to train all models, except for
DenseNet-100, where the recommended batch size is 64.2 We use random cropping, random flipping
and cutout [39] for data augmentation. We do not use dropout in any of our experiments. We set
weight decay to 10�4 in all cases.

Configurations for GradInit. As in Algorithm 1, each scale factor is initialized to 1 and we set
lower bounds ↵ = 0.01. For each architecture, we try ⌧ from {10�3

, 2 ⇥ 10�3
, 5 ⇥ 10�3

, 10�2
, 2 ⇥

10�2
, 5⇥10�2

, 10�1}, and report the results of 4 runs with the best ⌧ . We find the best ⌧ for VGG-19
(w/o BN), VGG-19 (w/ BN), ResNet-110 (w/o BN), ResNet-110 (w/ BN), FixUpResNet, DenseNet-
100 (w/o BN), DenseNet-100 (w/ BN) are 10�2

, 10�1
, 5⇥10�2

, 5⇥10�3
, 2⇥10�2

, 5⇥10�3
, 10�2

respectively.

A.2 On ImageNet

We use random cropping and flipping as data augmentation. For experiments without BN, we
additionally apply MixUp [40] with ↵ = 0.7 for all models, for fair comparisons FixUp. We train the
models for 90 epochs and decay the learning rate by a factor of 10 every 30 epochs. To fit into the
memory, we use a batch size of 128 for GradInit.

We simply run GradInit for 2000 iterations, which is less than half an epoch. Considering ImageNet
and CIFAR-10 has 1000 and 10 classes respectively, the cross entropy loss of a random guess on
ImageNet is 3 times as large as the loss on CIFAR-10, so a proper initial gradient norm for ImageNet
may be 3 times as large as that for CIFAR-10. Therefore, we set � = 3 for ImageNet. Since ⌧ = 10�2

worked the best for ResNet-110 (w/ BN) on CIFAR-10, we tried ⌧ 2 {1 ⇥ 10�3
, 3 ⇥ 10�3

, 5 ⇥
10�3

, 10�2} on ImageNet, and chose ⌧ = 3 ⇥ 10�3, which maximizes the test accuracy of first
epoch.

A.3 On Machine Translation

For training with SGD, we fix the momentum to 0.9, and did a grid search fo the prescribed learning
rate ⌘max from 0.05 to 0.2 just to present its best result. During this grid search process, we set the ⌘

of GradInit to ⌘ = ⌘max We find using ⌘max = 0.15 gives the best results, though the model with
⌘max obtained a similar BLEU of 35.4. We also set ⌘ = 0.15, � = 1 for GradInit in this case. We did

2https://github.com/gpleiss/efficient_densenet_pytorch
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a grid search on learning rates from {0.01, 0.025, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1} for Admin. We
find it achieves the best result with learning rate 0.06, and diverges when ⌘max > 0.06. For training
with Adam, we set ⌘ = 5 ⇥ 10�4 for the objective of GradInit, and tried ⌘max and �2 as listed in
Figure 3. We evaluate the BLEU score every epoch, and report the best BLEU scores throughout
training for each method. For GradInit, we set the maximum number of iterations T to 780. By
comparison, the warmup stage usually takes 4000 iterations. As discussed in Section 3.3, we also set
� = 103.

B Mini-batching, continued: Choice of S̃

Model
(#Params) r = |S̃ \ S|/|S| ⌧ kgk2 Acc0 Accbest

VGG-19
w/ BN

(20.04 M)

0.5 4 ⇥ 10�3 8.63 ± 0.20 38.37 ± 1.45 94.78 ± 0.08
1 1 ⇥ 10�4 11.56 ± 0.05 13.81 ± 2.47 94.45 ± 0.07
1 4 ⇥ 10�3 190.62 ± 7.65 10.30 ± 0.15 93.70 ± 0.17

Table 8: Using GradInit without the gradient norm constraint with different overlapping ratios r to
initialize and train a VGG-19 (w/ BN). For both r = 0.5 and r = 1, we tried ⌧ from the range of
1 ⇥ 10�4 to 2 ⇥ 10�2. The first two rows show the results with the best final test accuracy Accbest

among different ⌧ ’s, while the last row shows using a larger ⌧ for r = 1.

The choice of S̃, the minibatch on which the objective L(S̃;✓ � ⌘A[g(S; g)]) is evaluated, has great
influence on the results. We have chosen S̃ to have 50% of its samples from S to reduce the variance
of the objective. If S̃ is a completely new batch, i.e., the overlapping ratio r = |S̃ \ S|/|S| is 0, then
it becomes difficult for GradInit to work with some models with high initial gradient variance. On the
other hand, when we use the same minibatch (S̃ = S), the objective does not capture the stochasticity
of the optimizer A and can cause undesirable results in some cases. We study the effect of different
choices of S̃ through VGG-19 networks on CIFAR-10. We consider two settings.

In the first setting, we evaluate VGG-19 (w/o BN) initialized with GradInit using different overlapping
ratios of S and S̃. The results are given in Table 8. As we have shown in Figure 6, VGG-19 (w/o
BN) has high initial gradient variance. When r = 0, sometimes the test accuracy after the first epoch
is only 10%, which is worse than the baseline without GradInit. This indicates when r = 0, the
high variance of L(S̃;✓ � ⌘A[g(S; g)]) hinders the effectiveness of GradInit. When r = 1, GradInit
does effectively reduce the initial gradient variance, achieving lower variance in the first-epoch test
accuracy (Acc0) and higher final test accuracy (Atest) than the baseline (Kaiming Initialization in
Table 3), but the result is not as ideal as using r = 0.5. We leave more fine-grained evaluation on the
choice of overlapping ratio r as future work.

In the second setting, we consider removing the gradient norm constraint of GradInit (by setting
� to 1) while using overlapping ratios r = 1 and r = 0.5 respectively for a VGG-19 (w/ BN)
model. We remove the gradient norm constraint to highlight the different degrees of reliance of
the two approaches on the gradient constraint. As shown in Table 8, when r = 1, we have to use
the smallest ⌧ , which results in minimum change to the scale factors, to obtain results that are not
significantly worse than the baseline (Kaiming initialization listed in Table 3). It is easy for these
large over-parameterized models to overfit a single minibatch with the scale factors. When r = 1,
GradInit learns a greedy strategy, which increases the gradient as much as possible to enable a steeper
descent that sometimes can reduce the loss on the same minibatch by more than 50% in just one
iteration. The greedy strategy tends to blow up of the gradient norm at initialization, which hinders
convergence and results in a higher dependence on the gradient norm constraint �. However, when
we use ⌧ = 0.5, GradInit is able to improve the baseline without any gradient norm constraint.

C Magnification Effect of BN

Intuitively, if we stop the gradient passing through the mean and bias of the BN layer during
backpropagation, the BN layer will magnify the gradient variance when the variance of its input
features is smaller than 1 in the forward pass. Here we show its magnification effect analytically for
the practical case where the gradient is not stopped for the mean and bias of the BN layer. From
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the input to the output, the layers are usually ordered as Linear, BN, Activation. Without loss of
generality, we assume the linear layer before BN is X = ZW + b, where the output features
X = [x1, ...,xn]T 2 Rn⇥d, the input activations Z 2 Rn⇥k, n is the number of samples and d, k

are the dimension of each feature vector. Batch Normalization normalizes each activation vector xi

as following
yi = �

xi � µp
�2 + ✏

+ �, (3)

where all operators are element-wise, �,� 2 Rd are learnable parameters usually initialized to 1 and
0 respectively, ✏ > 0 is a small constant for numerical stability, and

�2 =
1

n

nX

i=1

(xi � µ)2,µ =
1

n

nX

i=1

xi. (4)

For most initialization schemes, b is initialized to 0. ✏ is often small and ignorable. Under these two
assumptions, each yi is invariant to the rescaling of W . Rescaling W changes the scale of xi, � and
µ homogeneously. Therefore, among all the parameters of the network, if we only change W by
rescaling it into ↵W (↵ > 0), then yi does not change, and consequently, Var[yi],

@L
@yi

and Var[ @L@yi
]

do not change, but �2 becomes ↵
2�2. To see the magnification effect on the gradient variance during

backward propagation, we first find the relation between @L
@yi

and @L
@(↵xi)

under different scales ↵. In
fact,

@L

@(↵xi)
=

�

n
p

↵2�2 + ✏

2

4n
@L

@yi
�

nX

j=1

@L

@yj
� yi � �

�

nX

j=1

@L

@yj
· yj � �

�

3

5 , (5)

where, again, all operations are element-wise. Therefore, when ↵ is larger, the variance of the input
feature ↵

2�2 is larger, and the gradient variance becomes smaller after propagated through this
BN layer. Since Z remains the same, Var

⇥
@L
@W

⇤
becomes smaller. This explains why GradInit

learns to enlarge the weights of Conv layers in the VGG-19 (w/ BN) experiments. Further, to
simplify the analysis and show its magnification effect on gradient variance when ↵

2�2
< 1, let

� = 1,� = 0, and we assume each dimension of @L
@yi

is i.i.d., and yi is independent from @L
@yi

, which
is not necessarily a stronger assumption than [1, 2], then

Var


@L

@(↵xi)

�
=

1

n2(↵2�2 + ✏)
Var

2

4n
@L

@yi
�

nX

j=1

@L

@yj
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3
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�
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� 1
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�
,

(6)

where the inequality comes from the assumption that yi is independent from @L
@yi

and the fact that
Var[(X + a)Y ] � Var[X] + a

2Var[Y ] (a is a constant ) when X, Y are independent, and the last
equality comes from the i.i.d. assumption. Therefore, if ✏ is ignorable and ↵

2�2
<

n(n�1)
n2 , we will

have
Var


@L

@(↵xi)

�
> Var


@L

@yi

�
, (7)

i.e., the BN layer magnifies the gradient variance when ↵
2�2 is small.

D Improved Implementation of MetaInit

MetaInit was originally designed to be task-agnostic, and learns to initialize the network with random
samples as inputs. Here, for fair comparisons, we also feed training data to MetaInit, as this should
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intuitively improve MetaInit for the specific task, and use Adam with the same gradient clipping to
optimize the weight norms for MetaInit. Originally, MetaInit [16] uses signSGD with momentum [41],
but we found using Adam with the hyperparameters above can give better results for MetaInit. Table 9
shows the comparison before and after the changes.

Table 9: Acc1, Accbest for different versions of MetaInit (4 runs). “rand.": using random data. “real":
using real data.

config vgg19 w/o BN vgg19 w/ BN res.110 w/o BN res.110 w/ BN
rand. + signSGD 29.08, 94.36 15.62, 94.53 15.91, 93.91 24.47, 94.93
real + signSGD 30.89, 94.41 16.58, 94.46 16.21, 94.29 26.28, 94.95
real + Adam 30.48, 94.62 35.09, 94.64 14.55, 94.19 29.00, 94.76

E Additional Experimental Results

We give additional results on WRN-28-10, FixUpResNet and DensetNet-100 on CIFAR-10 in
Table 10.

Table 10: First epoch (Acc1) and best test accuracy over all epochs (Accbest) for models on CIFAR-10. We
report the mean and standard error of the test accuracies in 4 experiments with different random seeds. Best
results in each group are in bold. For WRN, we have additionally used MixUp during training to enhance the
results, but we do not consider mixup for GradInit to test its transferability to different training regularizations.
Its result with MetaInit comes from the MetaInit paper.

Model

(# Params)

WRN-28-10
w/ BN

(36.49M)

FixUpResNet
N/A

(1.72M)

DenseNet-100
w/o BN
(0.75M)

DenseNet-100
w/ BN

(0.77M)

Kaiming Acc1 43.1 ± 2.7 38.2 ± 0.8 35.5 ± 0.6 51.2 ± 1.5
Accbest 97.2 ± 0.1 95.4 ± 0.1 94.0 ± 0.1 95.5 ± 0.1

MetaInit Acc1 - 21.5 ± 0.6 35.1 ± 0.2 46.7 ± 4.0
Accbest 97.1 95.0 ± 0.1 94.4 ± 0.1 95.5 ± 0.1

GradInit Acc1 46.3 ± 0.4 35.0 ± 0.7 37.2 ± 1.1 58.2 ± 0.9
Accbest 97.3 ± 0.1 95.4 ± 0.1 94.9 ± 0.1 95.5 ± 0.1

F Weight norms and gradient variances

In this section, we give weight norms and gradient variances before and after GradInit is applied on
various datasets and networks. We consider DenseNet-100 (w/o BN) and DenseNet-100 (w/ BN) on
CIFAR-10 in Figure 7 and Figure 8, as well as ResNet-50 on ImageNet in Figure 2. We also compare
the weight norms and gradient variances of the Post-LN Transformer model initialized using GradInit
with A set to Adam and SGD respectively in Figure 9 and Figure 10.
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Figure 4: Averaged per-dimension weight magnitudes (kWik/di) and standard deviation of their gradient
(�(gi)) for each layer i of the VGG-19 (w/ BN) on CIFAR-10. The ratio between the weight magnitudes of
GradInit and Kaiming Initialization is the learned scale factor of GradInit in each layer. The standard deviation
is computed over the minibatches, with a batch size of 128, with the BN in its training mode. This VGG-19
on CIFAR-10 has only one FC layer, but it has the same number of convolutional layers (16) as its ImageNet
version. All the weights are indexed from shallow to deep, so the first 16 entries of the Linear Weights are of
Conv layers, while the 17th is the FC layer. Due to the magnification effect of BN, �(g1)/�(g16) for the Conv
layers is higher than it is in VGG-19 without BN, shown in Figure 6. GradInit learns to reduce the magnification
effect of BN layers by scaling up all the Conv layers and most of the BN layers, given it has greatly down scaled
the last two BN layers and the final FC layer to reduce the variance in the forward pass.
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Figure 5: Averaged per-dimension weight magnitude (kWik/di) and standard deviation of their gradient
((�(gi))) of the Batch Normalization (BN) layers and the linear layers of the ResNet-110 on CIFAR-10. All the
layers are indexed from shallow to deep. The linear layers include all Conv layers (2 for each of the residual
blocks) and the final FC layer. The ratio between the weight magnitudes of GradInit and Kaiming Initialization
is the learned scale factor of GradInit in each layer. The gradient variance is computed with a batch size of 128.
GradInit finds a combination of weight norms where the gradient variance is reduced for all layers. Specifically,
it learns to further scale down the second BN layer of each residual block in deeper layers, which is a useful
strategy, as deeper layers should have less marginal utility for the feature representations, and scaling down
those layers helps to alleviate the growth in variance in the forward pass [10]. GradInit also learns to scale up
weights of the first BN layer and all the Conv layers in each residual block, which alleviates the magnification
effect of the BN layers on the gradient variance during backpropagation, happening if their input features in
the forward pass have small variances. The jump on the curves occur when the dimension of the convolutional
filters changes.
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Figure 6: Averaged per-dimension weight magnitude (kWik/di) and standard deviation of their gradient
((�(gi))) of the VGG-19 (left two) and ResNet-110 (right two) without BN on CIFAR-10, evaluated with
a batch size of 128. For VGG-19 (w/o BN), �(gi) increases at Conv layers with different input and output
dimensions during backpropagation. For ResNet-110 without GradInit, the gradient variance is very high due
to the cumulative effect of skip connections during the forward pass. In this scenario, to reduce the gradient
variance, there is no reason to increase the weights, so GradInit downscales the weights for all layers in both
architectures, unlike the case with BN.

18



0 15 30 45 60 75 90
Layer

101

||W
i
||

||Wi|| of DensetNet-100 (No BN) Linear weights

Kaiming’s

GradInit

0 15 30 45 60 75 90
Layer

10�3

10�1

101

103

�
(g

i
)

�(gi) of DensetNet-100 (No BN) Linear weights

Kaiming’s

GradInit

Figure 7: Averaged per-dimension weight magnitudes (kWik/di) and standard deviation of their gradient
(�(gi)) for each linear layer i in DenseNet-100 (w/o BN). All the layers are indexed from shallow to deep. The
linear layers include all convolutional layers and the final fully connected layer. Inside each dense block, each
layer concatenates all the preceding features, so their input dimension increases, the weight dimension increases
and the weight norm increases. Compared with Figure 6, DenseNet-100 does not significantly increase the
gradient variance during backpropagation. The standard deviation of the gradient is reduced by around 106 with
GradInit, which explains why it is possible to train DenseNet-100 (w/o BN) without gradient clipping after using
GradInit. The major source of gradient reduction of GradInit comes from reducing the weights in each layer.
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Figure 8: Averaged per-dimension weight magnitudes (kWik/di) and standard deviation of their gradient
(�(gi)) for each (BN or linear) layer i in the DenseNet-100 (w/ BN). All the layers are indexed from shallow to
deep. The linear layers include all convolutional layers and the final fully connected layer. The major source of
variance reduction comes from down-scaling the final FC layer.
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Figure 9: Weight norm and averaged per-dimension standard deviation of each weight of the normalization
layers and linear layers in the Post-LN Transformer. Here, GradInit sets A to Adam. The Transformer has 6
Transformer blocks in its encoder and decoder. In each plot, we first list the values for weights in the encoder,
and then those in the decoder. Inside each encoder, we first list the weights from the self attention layers and
then the those from the FFN layers. Inside each decoder, we first list the weights in the order of self attention,
encoder attention and FFN. In general, GradInit reduces the variance for all the weights, except for some of the
Query-Projection and Key-Projection weights in the decoder, which are inside the softmax operations in the self
attention blocks. The major source of gradient variance reduction comes from downscaling the final LN weights
of the decoder, as well as the linear layers of each residual branch (Out-Projection and Value-Projection weights,
FFN.FC1 and FFN.FC2 weights) in each block.
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Figure 10: Weight norm and averaged per-dimension standard deviation of each weight of the normalization
layers and linear layers in the Post-LN Transformer. Here, GradInit sets A to SGD. The Transformer model and
the way each weight is permuted are the same as in Figure 9. Again, in general, GradInit reduces the variance
for most of the weights, except for some of the Query-Projection and Key-Projection weights in the decoder,
which are inside the softmax operations in the self attention blocks. Different from the patterns in the Adam
version, which downscale all the weights in every layer except for the Query-Projection and Key-Projection
weights, the SGD version of GradInit mostly reduces the weights in the final Transformer block of the decoder.
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