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Abstract

Question answering (QA) models are well-known to exploit data bias, e.g., the
language prior in visual QA and the position bias in reading comprehension. Recent
debiasing methods achieve good out-of-distribution (OOD) generalizability with
a considerable sacrifice of the in-distribution (ID) performance. Therefore, they
are only applicable in domains where the test distribution is known in advance. In
this paper, we present a novel debiasing method called Introspective Distillation
(IntroD) to make the best of both worlds for QA. Our key technical contribution
is to blend the inductive bias of OOD and ID by introspecting whether a training
sample fits in the factual ID world or the counterfactual OOD one. Experiments on
visual QA datasets VQA v2, VQA-CP, and reading comprehension dataset SQuAD
demonstrate that our proposed IntroD maintains the competitive OOD performance
compared to other debiasing methods, while sacrificing little or even achieving
better ID performance compared to the non-debiasing ones.
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Figure 1: Recent debiasing methods
achieve high OOD accuracy with the sacri-
fice of ID accuracy. Our proposed IntroD
makes the best of both worlds.

Question answering (QA), which requires machines to
answer questions given a context, is one of the most
fundamental AI tasks. Popular contexts are vision (e.g.,
image for VQA [5]) and natural language (e.g., pas-
sage for extractive QA [27]). A common observation is
that QA models prefer to over-exploit the training bias,
which bypasses the context comprehension for a short-
cut answer. For example, by only using the linguistic
correlations between questions and answers, VQA mod-
els can answer most questions correctly [16, 2, 5, 20].
Similarly, extractive QA models may use the spurious
positional cues to locate the answer in the passage [22]. As a result, QA models that have already
achieved strong in-distribution (ID) performance may inevitably fail in out-of-distribution (OOD)
test scenarios, regardless of the scale of training data and models [14, 22, 37].

Recently, several debiasing methods aim to close the gap between the ID and OOD performances [6,
11, 7, 25]. However, many of them hold the assumption that the training and test distributions are
very different or even reversed, e.g., if there are more “yes” answers in training, there must be more
“no” answers in testing. As a result, these methods encounter a severe performance drop under the
ID evaluation, although they significantly outperform non-debiasing baselines in terms of OOD
performance. An interesting observation from Figure 1 is that non-debiasing methods (circles) obtain
high ID but low OOD performance, while debiasing methods (squares) achieve high OOD but low
ID performance. This observation motivates us to ask: can we make the best of both worlds?
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Figure 2: Illustration of our proposed introspection. (a) When ID inductive bias dominates the
learning, the student model should listen more to the OOD-aware knowledge. (c) When OOD
inductive bias dominates the learning, the student model listens more to the ID-aware knowledge.
(b) When learning is fair, the student model listens to both teachers equally. The areas in the “ID”
and “OOD” bars represent the proportion of the predicted probability. The areas in the “Ratio” bars
represent the proportion of the introspective weights (Eq. (3)).

In this paper, we take a step forward to building robust QA models that achieve strong performances
in both ID and ODD evaluations. We point out that if the model is over-exploiting the bias in one
world, the performance in the other one would be significantly degraded. Therefore, the “best of both”
model should be fair with the inductive bias in either world. To this end, we present a simple yet
effective training paradigm—Introspective Distillation (IntroD)—to blend the inductive bias of both
worlds fairly. Suppose that we have two expert teacher models: ID-teacher and OOD-teacher, each
of which captures the ID or OOD inductive bias and represents the corresponding world. Figure 2
illustrates three cases about how an introspective student learns from the two very different teachers.

Case 1: if ID-bias > OOD-bias, then ID-teacher < OOD-teacher. ID inductive bias dominates
the learning, and the student should listen more to OOD-teacher. This case occurs when ID-teacher
has a low training loss while OOD-teacher has a high one. As shown in Figure 2 (a), it is hard
for QA models to conclude whether the oven is electric or not without additional context. Due to
the inductive bias in the training data, i.e., most questions starting with “is” are answered by “yes”,
ID-teacher concludes with over-confidence while OOD-teacher does not.

Case 2: if ID-bias < OOD-bias, then ID-teacher > OOD-teacher. OOD inductive bias dominates
the learning, and the student should listen more to ID-teacher. This case occurs when ID-teacher
has a high training loss while OOD-teacher has a low one. As shown in Figure 2 (c), there are at
least two older men, one in a blue shirt selling fruits and one in a white shirt walking in the crowd.
Therefore, both “blue” and “white” should be correct. However, as most training questions starting
with “what color” are labeled by “white” answer, the bias of “OOD should be different from ID”
enforces OOD-teacher to downplay “white” unfairly while ID-teacher does not.

Case 3: if ID ≈ OOD, then ID-teacher ≈ OOD-teacher. Learning is fair and the student should listen
to both teachers equally. This case occurs when the training losses of the two are close. As shown in
Figure 2 (b), the ID-teacher and OOD-teacher produce similar predictions.

The above introspection can be represented as a blended knowledge of the two teachers, which is
distilled to the student model [18]. Yet, an unsolved challenge is how to obtain the “oracle” teachers,
especially the OOD-teacher, because the OOD distribution is unseen in training, not mentioning to
train a teacher model. Thanks to the recent causality-based approach [25], we can approximate the
OOD-teacher using a causal model that imagines the unseen world by counterfactual reasoning.

Without loss of generality, we take visual QA and extractive QA as case studies. Experiments on
VQA-CP [2], VQA v2 [16], and SQuAD [27] validate the effectiveness of our proposed IntroD.
Interestingly, extensive ablations demonstrate that the success of IntroD is indeed from the causal
introspection but not from the simple ensemble.

2 Related Work

Visual Question Answering (VQA) [5, 3, 16] is to answer the question given a visual context, i.e.,
image. Traditional VQA models are found to exploit the language priors in the training data [16,
2, 20]. For example, in the first version of the VQA dataset VQA v1.0, about 40% of the sports-
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related questions are answered as “tennis”. Although utilizing the shortcut bias helps with the
in-distribution (ID) performance, the out-of-distribution (OOD) one is severely hurt [2]. In order
to mitigate the language bias, recent methods proposed to utilize extra annotations for accurate
visual grounding [28, 33], generate synthetic data for data augmentation [7, 1, 14, 30, 31], modifying
language modules [19, 23], or explicitly formulate and exclude the language prior [6, 11, 25]. These
methods obtain significant OOD improvement on the VQA-CP [2] dataset whose answer distributions
in training and testing are reversed. However, the OOD improvement is achieved with the cost of a
severe ID performance drop. Therefore, it is still a challenge to achieve strong performances in both
ID and OOD evaluations.

Extractive Question Answering (extractive QA) is to answer the question given a natural language
context, i.e., passage [27]. Extractive QA assumes that the answer always locates in the passage, and
further reduces the generative QA task to a classification task, i.e., position prediction. Recent years
have witness many influential works [35, 29, 10, 39, 12, 38, 9]. However, directly predicting the
answer positions has a severe side effect, i.e., correlating answers with positions [22]. For example, if
a language model is trained on a biased dataset where answers always locate in the first sentence of
the passage, the model will tend to ground the answer in the first sentence. Recently, a new variant of
the reading comprehensive dataset SQuAD [27] is proposed to evaluate whether language models are
robust to the position bias [22]. Similar to VQA, the answer position distribution is skewed in the
training set. In this paper, we follow Ko et al. [22] to evaluate the robustness for extractive QA.

Ensemble-based methods for debiasing explicitly formulate and exclude the shortcut bias in the
training data [6, 11, 7, 25, 8]. The shortcut bias can be captured by a separate branch [6] or statistical
priors [11]. These methods are further interpreted as causality-based approaches [25]. However, most
of these methods achieve promising performance under the out-of-distribution (OOD) evaluation
but sacrifice the performance under the in-distribution (ID) evaluation. The reason is that these
methods hold an assumption that the training and test distribution are very different or even reversed.
In this paper, we implement our ID-teacher and OOD-teacher using the causality-based methods,
and further achieve a good trade-off between ID and OOD evaluations. Previous OOD-teachers,
i.e., causality-based methods, only generate the OOD-prediction for debiased inference and ignore
the role of ID-prediction. We further point out that the ID-prediction is crucial in introspecting the
training process and achieving a good trade-off between ID performance and OOD performance.

Knowledge Distillation is first proposed for model compression by transfering the teacher’s knowl-
edge to a small student model [18, 15]. The idea of knowledge distillation has been further extended
to establish debiasing models in natural language understanding (NLU) tasks [32, 13] and long-tail
classification [34, 42, 17]. The idea of “introspection” is related to “self distillation”, which considers
a student model itself as the teacher for the next training epoch or stage [24, 41, 21, 36, 40]. Although
our introspection and self distillation both share the similar idea of “self-teaching”, they are funda-
mentally different: the latter is still in-distribution and has no comparative reasoning about the seen
factual and unseen counterfactual. This difference reveals the key reason why introspection introduces
new blended knowledge rather than just an old copy. Also, different from traditional knowledge
distillation methods that use a fixed weight as hyper-parameter, our IntroD weights the models based
on the introspective weights, which does not require a careful selection of hyper-parameters.

3 Introspective Distillation

We present a simple yet effective training paradigm, Introspective Distillation (IntroD), to achieve
a good trade-off between the in-distribution (ID) and out-of-distribution (OOD) performances for
robust QA. Given a visual or natural language context C=c and a question Q=q as input, the QA
model generates an answer A=a. Generally, the model is usually not prototyped as a generation but
a multi-classification for prediction space reduction, i.e., a ∈ A. For VQA [5], the context refers to
an image, and the answers are selected from a pre-defined candidate set. For extractive QA [27], the
context refers to a passage, and the answers are locations in it.

Our IntroD aims to blend the ID and OOD inductive bias fairly. As illustrated in Figure 3, it consists
of three key parts: 1) causal teacher for capturing the ID and OOD inductive bias, 2) introspection for
blending the two different inductive biases, and 3) distillation for a robust student model.
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Figure 3: Our Introspective Distillation training paradigm. Given the input question q and context c,
the causal teacher outputs the ID-aware and OOD-aware predictions. After introspecting whether the
training sample suffers from the inductive bias, the ID and OOD knowledge is adaptively blended.
Finally, the blended knowledge is distilled to a student model.

3.1 ID-Teacher and OOD-Teacher

We expect ID-teacher and OOD-teacher to delineate the ID and OOD worlds, respectively. However,
without access to the OOD distribution, it is difficult to obtain the “oracle” OOD-teacher. Thanks to the
recently proposed causality-based method [25], OOD-teacher can be approximated by counterfactual
reasoning. Also, ID-teacher can be approximated using the same causal model by factual reasoning.
We briefly introduce the key concepts of the causal method below, and encourage readers to refer to
Niu et al. [25] for more details.

The causal QA models formulate the causal relations between the input {Q,C} and the output A.
The ID inductive bias is formulated as the direct effect of inputs on the output, e.g., the language
prior in VQA as Q→A and the position bias in extractive QA as C→A. Compared to traditional
QA models that can only conduct factual reasoning to formulate the seen ID world, the causal QA
models can also imagine the unseen OOD world by counterfactual reasoning. Therefore, we can
implement ID-teacher and OOD-teacher using the same causal model. By factual reasoning, the
causal QA model predicts the answers as P ID that include the ID inductive bias into total causal
effect. By counterfactual reasoning, the causal QA model explicitly estimates the direct causal effect
to exclude the inductive bias, and generate the counterfactual predictions P OOD, i.e., total indirect
effect [25] or natural indirect effect [6, 11], that reflect the unseen OOD world. The training of ID
and OOD teachers strictly follows their corresponding methods. The teacher model is trained with
standard cross-entropy loss on the ID data, and we do not separately train the ID and OOD teachers.

3.2 Introspection of Inductive Bias

Introspection first examines whether the model over-exploits the inductive bias in either ID or OOD
world, and then blends the ID and OOD inductive bias fairly. If the ID inductive bias in one world
dominates the learning, we expect the student model to learn more from the other world for debiasing.
This raises two questions, how to define “dominate” and “more”. In other words, how to introspect
and weight the inductive bias.

Introspecting the bias. We introspect the effect of inductive bias by comparing the predictions of
ID-teacher and OOD-teacher. If the inductive bias dominates the learning of a sample, ID-teacher’s
confidence (i.e., predicted probability) on the ground-truth answers would be much larger than that of
OOD-teacher. We denote the confidence as:

sID =
∑

a∈AGT

P ID(a), sOOD =
∑

a∈AGT

P OOD(a), (1)

where AGT denotes the set of ground-truth answers1. These scores reflect how well the training
sample is matched with the inductive bias. The introspection is realized by comparing sID and sOOD.

1The number of answers can be one for single-label classification or multiple for multi-label classification.
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If sID>sOOD, we think the sample’s learning is dominated by the ID inductive bias (see Figure 2 (a)),
and vice versa (see Figure 2 (c)).

Note that the cross entropy between the ground-truth answers and predictions, XE, is inversely
proportional to the confidence. Therefore, we can also use the standard cross-entropy loss to denote
the matching scores sID and sOOD:

sID =
1

XE(P GT,P ID)
=

1∑
a∈A −P GT(a) logP ID(a)

,

sOOD =
1

XE(P GT,P OOD)
=

1∑
a∈A −P GT(a) logP OOD(a)

,

(2)

where P GT denotes the ground-truth labels. We empirically found that the cross-entropy loss achieves
more stable improvements compared to the confidence in the implementation (see Table 3).

Weighting the bias. We blend the ID and OOD knowledge by a weighted sum of their knowledge.
The purpose of knowledge blending is to mix the ID and OOD inductive bias fairly. If the learning is
biased to one world, the model may suffer from over-exploiting the corresponding inductive bias. As
illustrated in Figure 2 (a), it is difficult to judge whether the oven is electric or not without external
knowledge. However, ID-teacher is over-confident in its prediction due to the over-exploitation of the
training answer distribution, i.e., sID>sOOD. In this case, the model should learn less from ID-teacher.
We realize this by increasing the weight of OOD-knowledge wOOD and decreasing the weight of
ID-knowledge wID, i.e., wID <wOOD. Similarly, for the training samples that is overconfident by
OOD-teacher (see Figure 2 (c)), i.e., sID<sOOD, we set wID>wOOD. We determine the knowledge
weights by setting the weights inversely proportional to the matching scores, i.e., w ∝ s−1. The
weights are normalized by scaling it between 0 and 1:

wID =
(sID)−1

(sID)−1 + (sOOD)−1
=

sOOD

sID + sOOD , wOOD = 1− wID =
sID

sID + sOOD . (3)
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Figure 4: The distribution of wID on VQA-CP
v2 and VQA v2 training sets.

We take VQA as an example to show how the dis-
tribution of knowledge weights reflect the effect of
inductive bias, i.e., language prior. Recall that VQA
v2 [16] is proposed to balance the answer distribu-
tion to remove the language bias, while VQA-CP
v2 [2] is proposed to evaluate whether VQA models
memorize the language priors. As a result, the VQA
v2 train split contains little language bias, while the
bias in VQA-CP v2 is artificially severe. Figure 4
illustrates the distribution of wID on the two training
sets using CF-VQA [25] as the causal teacher. It can
be clearly observed that the distributions of wID are
totally different, which exactly reflects how the data
bias affects the training process. Note that a small
wID indicates a high ID-bias. Here are three interesting observations:

• The wID of most samples is around 0.5 for both of the datasets. This indicates that most of the
samples are learned unbiasedly and predicted fairly (e.g., Figure 2 (b)).

• Both of the distributions are left-skewed. In particular, only 4% of the samples have wID that is
larger than 0.6, while the ratio for wID < 0.4 is 40% on VQA-CP v2 and 25% on VQA v2. The
reason is that ID-teacher is directly optimized on the ID data, while OOD-teacher is indirectly
approximated. Therefore, ID-teacher outperforms OOD-teacher on the seen ID data in most cases,
i.e., wID < 0.5.

• A spike lies at the left side of the VQA-CP v2 distribution. In particular, 9.6% of the samples have
wID that is lower than 0.05, while the ratio is only 0.4% on VQA v2. Also, the difference between
the percentages becomes larger with a decreasing wID and wID < 0.5. This observation indicates
that VQA models tend to exploit the training bias on the imbalanced VQA-CP v2 dataset while not
on the balanced one. Recall that the VQA-CP training set is artificially modified to “encourage”
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the models to learn from the language prior. Without the memorized priors, VQA models cannot
answer the questions confidently or correctly in a few extreme cases (e.g., Figure 2 (a)).

We also define a stochastic hard variant to weigh the bias:

wID =

{
1 , if sID ≤ sOOD,
0 , otherwise.

(4)

The hard weighting forces the student to entirely learn from the OOD teacher for most of the training
samples to maintain its OOD performance. In practice, one may choose soft or hard variants based
on the trade-off between ID and OOD performances. We empirically use the soft variant for strong
OOD-teachers and the hard variant for weak ones that achieve relatively lower OOD performance.

Based on the knowledge weights, the ID-knowledge and OOD-knowledge are blended as:

P T = wID · ID-Knowledge + wOOD · OOD-Knowledge. (5)

Considering that the ID ground-truth labels P GT are more accurate than the ID-predictions P ID, we
use P GT as the “oracle” ID-Knowledge. Since the OOD distribution is unobserved in training, it
is impossible to obtain the oracle OOD-Knowledge. Thanks to the causal teacher, we can use the
OOD-prediction P OOD to approximate the OOD-knowledge.

3.3 Distillation of Fair Knowledge

After obtaining the blended fair knowledge from the causal teacher, we train a student model using a
knowledge distillation manner [18]:

L = KL(P T,P S) =
∑
a∈A

P T(a) log
P T(a)

P S(a)
, (6)

where P S denotes the output of the student model. The difference between the teacher model and the
student model is their architectures. The student model is simply the baseline model, e.g., UpDn [4]
for VQA and BERT [12] for extractive QA. Besides the baseline model, the teacher model ensembles
a separate branch to formulate the shortcut bias, e.g., Q→A for VQA and C→A for extractive QA.
Therefore, the student is more efficient in both parameters and inference speed compared to the causal
teacher model. We fix the causal teacher and only update the student model during distillation.

4 Experiments

We take visual QA and extractive QA, two representative QA tasks, as examples to evaluate our
proposed Introspective Distillation (IntroD)2.

4.1 Visual QA

Dataset. We conducted experiments on the benchmark datasets VQA v2 [16] and VQA-CP v2 [2].
VQA v2 is a balanced VQA dataset that significantly reduces the language bias. For each question in
the dataset, VQA v2 has two different answers for two different images. VQA-CP v2 is a variant of
VQA v2 to evaluate whether the model answers the questions by simply memorizing the language
priors. VQA-CP v2 reverses the priors in the training and validation splits. For example, most of
“what sports” questions are answered as “tennis” in the training set while “baseball” in the test set.

Metric and setting. The standard evaluation metric for VQA is accuracy. In order to evaluate the
robustness of VQA methods, we conducted experiments on two settings: in-distribution (ID) setting
and out-of-distribution (OOD) setting. For the ID setting, we reported the results on VQA v2 val
set. For the OOD setting, we report the results on VQA-CP v2 test set. For the VQA-CP dataset, we

2Code are available at https://github.com/yuleiniu/introd.
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Table 1: Comparisons on VQA. Methods in gray denote the baseline models. We reimplement the
methods using their released codes for fair comparisons.

VQA-CP v2 test (OOD) VQA v2 val (ID)
Methods All Y/N Num. Other All Y/N Num. Other HM
UpDn [4] 39.79 43.23 12.28 45.54 63.42 81.19 42.43 55.47 48.90 -7.07

LMH [11] 52.01 +12.22 72.58 31.12 46.97 56.35 -7.07 65.06 37.63 54.69 54.09
+ IntroD 51.31 -0.70 71.39 27.13 47.41 62.05 +5.70 77.65 40.25 55.97 56.17 +2.08

CSS [7] 58.95 +19.16 84.37 49.42 48.21 56.98 -6.44 65.90 38.19 55.18 57.95
+ IntroD 60.17 +1.22 89.17 46.91 48.62 62.57 +5.59 78.57 41.42 56.00 61.35 +3.40

S-MRL [6] 37.09 41.39 12.46 41.60 63.12 81.83 45.95 53.43 46.72
RUBi [6] 47.60 70.48 20.33 43.09 61.16 81.97 44.86 49.65 53.53

+ IntroD 48.54 +0.96 73.94 19.43 43.21 61.86 +0.70 82.40 45.40 50.58 54.40 +0.87

RUBi-CF [25] 54.90 90.26 34.33 42.01 60.53 81.39 42.87 49.34 57.58
+ IntroD 54.92 +0.02 90.84 25.17 44.26 63.15 +2.62 82.44 45.12 53.25 58.75 +1.17

CF-VQA [25] 55.05 +16.59 90.61 21.50 45.61 60.94 -2.18 81.13 43.86 50.11 57.85
+ IntroD 55.17 +0.12 90.79 17.92 46.73 63.40 +2.46 82.48 46.60 54.05 58.99 +1.14

also followed Teney et al. [31] and held out 8k samples from the training set as the val set for ID
evaluation. We further reported the harmonic mean (HM) of the accuracies on VQA-CP v2 test and
VQA v2 val set. We use this metric to evaluate the trade-off between ID and OOD evaluations.

Methods. According to the causal explanation [25], we implemented the counterfactual teacher
as RUBi [6], LMH [11], CSS [7] and CF-VQA [25]. In particular, the earlier works RUBi and
LMH used natural indirect effect (NIE) [26] for inference. CSS is a variant of LMH that generates
counterfactual training samples for data augmentation. CF-VQA proposed to use total indirect effect
(TIE) [26] for debiasing, and improved RUBi by replacing NIE with TIE. We denote this variant as
RUBi-CF. Following previous works, we used UpDn [4] and S-MRL [6] as the backbone. Based on
the debiasing ability, we used the soft variant of weights for LMH, CSS, RUBi-CF and CF-VQA, and
the hard variant for RUBi (see Table 5). More training details are in the appendix.

Table 2: Comparisons on the VQA-CP v2 val set for
the in-distribution (ID) evaluation.

Methods All Y/N Num. Other
LMH [11] 58.38 67.17 31.16 57.16

+ IntroD 63.68 +5.30 77.33 35.92 58.10
CSS [7] 53.89 55.72 33.98 57.22

+ IntroD 58.63 +4.74 64.83 36.01 58.62
CF-VQA [25] 57.86 66.24 44.98 53.38

+ IntroD 59.96 +2.10 66.81 47.65 56.75

Overall results. Table 1 and 2 show how
our proposed IntroD strengthens the exist-
ing causal models. First, according to the
HM metric, IntroD improves the trade-off
ability of all the causal teachers. In partic-
ular, CSS+IntroD achieves an accuracy of
over 60% under both ID and OOD settings,
which is the only among all the combina-
tions. Second, with a deep look at the OOD
evaluation, IntroD shows its competitive de-
biasing ability. Surprisingly, IntroD even
slightly increases the OOD performance of causal teachers except for LMH. Third, with a deep look
at the ID evaluation, IntroD outperforms RUBi by 0.7% and other teachers by over 2.4%. The biggest
winners are LMH and CSS which suffer from a significant drop in the ID performance. Their increases
in ID performance are over 5.5%. Similar conclusions can be obtained based on Table 2. Furthermore,
IntroD with CF-VQA obtains higher ID performance (63.40%) than the baseline S-MRL (63.12%),
which achieves the best of both ID and OOD worlds. These results demonstrate the effectiveness of
our proposed IntroD on top of different causal VQA models.

Also, the results indicate that the OOD approximation has an impact on the OOD performance of
students. Overall, the OOD performance of the student is proportional to that of the teacher, while
there is no clue whether the student’s ID performance is correlated to that of the OOD-teacher.
As shown in Table 1, CSS+IntroD with the best OOD teacher CSS (58.95%) achieves the highest
accuracy (60.17%) compared to other students on VQA-CP v2 test set. Also, IntroD increases the
OOD performance of CSS by 1.22%, while the improvement over CF-VQA is much slighter (0.12%).
The student achieves even decreased accuracy over the comparatively weakest LMH (-0.70%).

Ablation studies. We further conducted ablation studies to evaluate the introspection and distillation
strategy. We compared the alternatives with ID-teacher and OOD-teacher, i.e., factual and counterfac-
tual predictions of the same causal model. The ablations aimed to answer the following questions.

7



Table 3: Effects of matching scores on VQA. “Prob.” denotes using the predicted probability as the
matching score (Eq. (1)). “XE” denotes using the cross entropy (Eq. (2)).

Measurement LMH [11] CF-VQA [25] CSS [7]
Notes Prob. XE OOD ID HM OOD ID HM OOD ID HM
ID-Teacher 38.74 63.46 48.11 37.10 63.22 46.76 38.20 63.30 47.65
OOD-Teacher 52.01 56.35 54.09 55.05 60.94 57.85 58.95 56.98 57.95

✓ 45.02 63.80 52.79 54.82 63.26 58.74 54.45 63.83 58.76
IntroD ✓ 51.31 62.05 56.17 55.17 63.40 58.99 60.17 62.57 61.35

Table 4: Effects of knowledge weights on VQA. “Fixed” denotes a fixed wID. “Weight Avg.” denotes
the weighted average ensemble. “Simple Avg.” denotes the average ensemble. “CFD”, Counterfactual
Distillation, denotes that the student only learns from OOD-Teacher.

Weight LMH [11] CF-VQA [25] CSS [7]
Notes Fixed w∝s w∝s−1 OOD ID HM OOD ID HM OOD ID HM
ID-Teacher 38.74 63.46 48.11 37.10 63.22 46.76 38.20 63.30 47.65
OOD-Teacher 52.01 56.35 54.09 55.05 60.94 57.85 58.95 56.98 57.95
Weight Avg. ✓ 43.04 64.09 51.50 39.25 64.12 48.69 43.59 64.01 51.86
Simple Avg. 0.5 45.69 64.06 53.33 50.71 63.95 56.57 50.69 63.84 56.51
CFD 0.0 52.88 59.09 55.81 55.40 62.62 58.79 59.21 59.14 59.17
IntroD ✓ 51.31 62.05 56.17 55.17 63.40 58.99 60.17 62.57 61.35

Table 5: Effects of weight variants on VQA.
RUBi [6] LMH [11] CF-VQA [25] CSS [7]

Notes OOD ID HM OOD ID HM OOD ID HM OOD ID HM
ID-Teacher 36.92 63.21 46.61 38.74 63.46 48.11 37.10 63.22 46.76 38.20 63.30 47.65
OOD-Teacher 47.60 61.16 53.53 52.01 56.35 54.09 55.05 60.94 57.85 58.95 56.98 57.95
Hard Variant 48.54 61.85 54.39 52.91 59.38 55.96 55.48 60.43 57.85 59.39 59.22 59.30
Soft Variant 45.95 62.72 53.04 51.31 62.05 56.17 55.17 63.40 58.99 60.17 62.57 61.35

Note that Q1 is for “introspecting the bias”, Q2-Q5 are for “weighing the bias”, and Q6 and Q7 are
for “distillation of fair knowledge” in Section 3.

Q1: Can we use the predicted probability of the ground-truth answer (“Prob.” for short) as the
matching scores? Better not. As shown in Table 3, although using “Prob.” achieves even better ID
performance than ID-teacher, the OOD-performance drops by ∼7% compared to LMH and 4.5%
compared to CSS. As a result, the trade-off metric HM decreases with LMH, and increases marginally
(<1%) with CF-VQA and CSS.

Q2: Can the student learn more from the more accurate teacher, i.e., setting w∝ s? No. This is
a natural question because we hope to learn the best from the best. Unfortunately, this alternative
(“Weight Avg.” for short) enhances the inductive bias rather than reduces it. As shown in Table 4,
the alternative “Weight Avg.” achieves the best ID performance on top of different causal teachers,
even beat ID-teacher. However, the students fail to learn the debiasing ability from OOD-teachers
and achieves much lower OOD performance compared to OOD-teachers. This observation verifies
that the “best” here should be the debiasing ability to the inductive bias rather than the fitting ability.

Q3: Can the student equally learn from ID and OOD teachers, i.e., setting wID=wOOD=0.5? No.
This alternative can be regarded as a simple average ensemble (“Simple Avg.” for short) of ID and
OOD teachers. As shown in Table 4, similar to Q2, the students outperform ID-teachers on the ID
evaluation with the sacrifice of OOD-performance compared to OOD-teachers. Besides, there is
a large gap between “Simple Avg.” and our IntroD with difference causal models, e.g., >2% for
LMH and CF-VQA, and ∼5% for CSS. This observation indicates that our IntroD is not just a simple
ensemble method that combines two teacher models into a bigger one.

Q4: Can the student only learn from OOD-teacher? Yes, but worse than IntroD. This alternative
can be called counterfactual distillation (“CFD” for short) as the student model only learns from the
counterfactual teacher. As shown in Table 4, CFD also achieves a better trade-off on top of different
causal teachers, especially promote all of the OOD performance compared to OOD-teacher. However,
there is a large gap between IntroD’s and CFD’s ID performances because the ID-knowledge is not
utilized. As a result, for the HM metric, IntroD outperforms CFD by a small margin (<0.4%) on
LMH and CF-VQA and a large margin (> 2%) on CSS.
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Table 6: Effects of ID-Knowledge on VQA.
ID-Knowledge LMH [11] CF-VQA [25] CSS [7]

Notes P ID P GT OOD ID HM OOD ID HM OOD ID HM
ID-Teacher 38.74 63.46 48.11 37.10 63.22 46.76 38.20 63.30 47.65
OOD-Teacher 52.01 56.35 54.09 55.05 60.94 57.85 58.95 56.98 57.95

✓ 48.37 61.48 54.14 50.72 63.81 56.52 59.82 62.00 60.89
IntroD ✓ 51.31 62.05 56.17 55.17 63.40 58.99 60.17 62.57 61.35

Table 7: Ensemble vs. IntroD using LMH [11] on VQA. “OOD” represents VQA-CP v2 test set,
and “ID” represents VQA v2 val set.

Ensemble IntroD
wID 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
OOD 52.01 47.35 44.43 42.69 41.53 40.70 40.08 39.56 39.18 38.82 38.74 51.31
ID 56.35 59.34 61.20 62.47 63.14 63.33 63.37 63.39 63.41 63.43 63.46 62.05
HM 54.09 52.67 51.48 50.72 50.10 49.55 49.10 48.72 48.43 48.16 48.11 56.17

Table 8: Ensemble vs. IntroD using CSS [7] on VQA. “OOD” represents VQA-CP v2 test set, and
“ID” represents VQA v2 val set.

Ensemble IntroD
wID 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
OOD 58.95 54.92 53.30 52.57 51.17 46.75 41.84 39.39 38.31 37.86 38.20 60.17
ID 56.98 59.80 61.92 62.88 63.14 63.22 63.26 63.27 63.26 63.26 63.30 62.05
HM 57.95 57.26 57.29 57.26 56.53 53.75 53.75 50.37 48.55 47.37 47.65 61.35

Q5: Should we use the hard or soft variant to calculate the knowledge weights? It depends on the
debiasing ability of the causal teacher. There are some interesting observations from Table 5. First,
the OOD performance is proportional to OOD-teachers’ debiasing ability. Second, the hard variants
marginally improve OOD-teacher’s OOD performances in all cases. Third, the hard variants cannot
fully overcome the sacrifice of degrading ID performance compared to the ID teacher. Empirically,
we use the hard variant for the weaker OOD-teacher, e.g., RUBi, and the soft variant for the stronger
OOD-teachers, e.g., LMH, CF-VQA, and CSS.

Q6: Can we use the ID-Prediction P ID as the ID-Knowledge? No. As shown in Table 6, using P ID

as the ID-Knowledge significantly degrades the OOD performance for LMH and CF-VQA. This
observation indicates that it is better to use the oracle knowledge if available.

Q7: Can we ensemble the two teacher models and directly use that without distillation? In other
words, is IntroD just an ensemble method? No. Recall that our goal is to achieve the best of both ID
and OOD worlds, i.e., a high OOD performance with less or no sacrifice of ID performance. However,
the naive ensemble strategy simply combines two models’ predictions using a fixed weight without
figuring out whether a sample comes from ID or OOD distribution. As a result, the ensemble method
only inherits the disadvantages of the two teacher models rather than their advantages. Empirical
results in Table 7 and 8 further verify our analysis. Here we report the results of ensembling two
teachers with different wID, the weight of ID teacher. In particular, wID=0 denotes the OOD teacher
and wID=1 denotes the ID teacher. We can see that (1) with wID increasing, the ID performance keeps
improving, but the OOD performance is gradually decreasing, (2) all of the ensemble alternatives
achieve a lower HM compared to the OOD teacher. These results indicate that (1) a simple ensemble
of the two teacher models fails to achieve a good trade-off between ID and OOD performances, (2)
our IntroD is not simply an ensemble method.

4.2 Extractive QA

Dataset and settings. We conducted experiments on the reading comprehension benchmark dataset
SQuAD [27]. SQuAD requires QA models to extract the answer from a passage. Recently, a new
setting[22] was proposed to evaluate whether the extractive QA models suffer from the position bias.
This setting divided a subset from the training set SQuADtrain based on the position of answers. For
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Table 9: Comparisons on extractive QA with SQuADk=1
train as the biased training set.

SQuADk=1
dev (ID) SQuADk ̸=1

dev (OOD) SQuADdev (All)
Methods EM F1 EM F1 EM F1
XLNet 79.65 +0.00 87.48 +0.00 30.17 +0.00 35.91 +0.00 47.20 +0.00 53.65 +0.00

LM [11] 78.31 +0.00 85.97 +0.00 61.04 +0.00 69.49 +0.00 66.98 +0.00 75.16 +0.00

+ IntroD 81.08 +2.77 88.55 +2.58 61.52 +0.48 68.84 -0.65 68.25 +1.27 75.62 +0.46

BERT 77.87 +0.00 86.41 +0.00 10.95 +0.00 16.17 +0.00 33.95 +0.00 40.34 +0.00

LM [11] 77.18 +0.00 85.15 +0.00 71.31 +0.00 79.79 +0.00 73.33 +0.00 81.64 +0.00

+ IntroD 79.21 +2.03 87.04 +1.89 72.14 +0.83 79.97 +0.18 74.58 +1.25 82.40 +0.76

Table 10: Comparisons on extractive QA trained on different biased training subsets and unbiased
training set and tested on the origin evaluation set SQuADdev.

Biased Training Unbiased Training
SQuADk=2

train SQuADk=3
train SQuADk=4

train SQuADk≥5
train SQuADtrain

Methods EM F1 EM F1 EM F1 EM F1 EM F1
XLNet 46.40 53.76 47.40 55.29 47.27 55.19 51.38 59.45 72.76 80.58
LM [11] 67.24 75.05 66.36 74.32 61.86 70.88 53.65 62.40 72.54 80.31

+ IntroD 69.38 76.79 68.25 75.72 64.46 72.71 59.58 67.19 73.02 81.01
BERT 32.50 39.23 43.06 51.03 41.38 49.95 59.51 68.31 81.32 88.65
LM [11] 71.61 80.36 69.04 77.91 64.31 73.72 62.82 72.30 81.12 88.44

+ IntroD 73.66 82.01 71.69 80.07 66.66 75.41 64.48 73.48 81.39 88.79

example, SQuADk=1
train denotes the subset where all answers are in the first sentences. The test set is

divided into two subsets: SQuADk=1
dev for ID evaluation and SQuADk ̸=1

dev for OOD evaluation.

Metrics and method. The standard evaluation metrics are exact match (EM) and F1 score [27].
Following Ko et al. [22], we used XLNet [38] and BERT [12] as the backbone models, and LM [11]
as the causal teacher. We empirically used the hard variant for the knowledge weights calculation.

Results. Table 9 shows the main analysis with SQuADk=1
train as the biased training set. The results

are reproduced based on the released code3. Overall, LM increases the OOD performance by a
large margin but slightly sacrifices the ID performance. As a comparison, our IntroD achieves the
best of both ID and OOD performances. Table 10 further shows that IntroD can promote LM with
different answer position bias and different numbers of training samples. In particular, when trained
on the less biased training subset SQuADk≤5

train where the answers locate in sentences except the first
four, LM achieves less improvement on the overall performance, while IntroD stably promotes LM.
Furthermore, using the origin training set SQuADtrain for unbiased training, LM slightly degrades the
performance, while IntroD can still beat the baseline models. This observation indicates that IntroD
does not over-correct the inductive bias.

5 Conclusion

In this paper, we proposed a novel training paradigm, Introspective Distillation (IntroD), to achieve a
fair trade-off between in-distribution (ID) and out-of-distribution (OOD) evaluations for question
answering tasks, e.g., visual QA and extractive QA. IntroD uses a causal teacher to estimate the ID
and OOD inductive bias, introspects whether one of the inductive biases dominates the learning,
blends the inductive bias fairly, and distills the knowledge to the student model. Experiments on
VQA v2, VQA-CP v2, and SQuAD demonstrated that our IntroD is able to achieve the best of both
ID and OOD worlds. The main limitation of our IntroD is that its OOD performance heavily relies on
the OOD-teacher. In the future, we will explore how to establish a stronger OOD-teacher.
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