Supplementary Materials of DeBut

Rui Lin ${ }^{1, *} \quad$ Jie Ran ${ }^{1, *} \quad$ King Hung Chiu ${ }^{2} \quad$ Grazinao Chesi ${ }^{1} \quad$ Ngai Wong ${ }^{1, *}$
${ }^{1}$ Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
Emial Address: \{linrui, jieran, chesi, nwong\}@eee.hku.hk
${ }^{2}$ United Microelectronics Centre (Hong Kong) Limited, Hong Kong Science Park, N.T., Hong Kong
Emial Address: \{kuchiu\}@umechk.com

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes] We introduce a new linear transform named DeBut, which alleviates the square size limitation in the existing approaches.
(b) Did you describe the limitations of your work? [Yes] Now we design the chains manually based on our experience instead of automatically.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work is a neural network compression method, which does not involve ethics or public security issues.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes] We have checked the guidelines carefully, and are certain our paper conforms to them.
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] In Appendix I.
(b) Did you include complete proofs of all theoretical results? [Yes] In Appendix I.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] We submit our codes in the supplemental material.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] See Section 4, implementation details. Besides, we display the training details in our codes submitted in the supplemental material.
(c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] We report the error bars by repeating each experiment 10 times under the same setting.
(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4, implementation details.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the existing assets we use in our experiments.
(b) Did you mention the license of the assets? [Yes] We use MNIST, CIFAR-10 \& ImageNet, and mention their licenses in Section 4.

[^0](c) Did you include any new assets either in the supplemental material or as a URL? [N/A] The assets we use are all public and have been used in previous works.
(d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [Yes] We cite the data we use in our paper.
(e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [Yes] The datasets we used are common, which do not contain the mentioned types.
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]

Appendix I: Complexity of DeBut Multiplication

In this section, we analysis the complexity of DeBut in detail when given a CONV layer with weights $\left[c_{i}, c_{o}, k, k\right]$ and an input $\left[c_{i}, H_{i}, W_{i}\right]$. We use $K \in \mathbb{R}^{c_{o} \times c_{i} \cdot k \cdot k}$ to denote the flattened weights, and assume it can be represented by a series of DeBut factors $R_{\left(r_{i}, s_{i}, t_{i}\right)}^{\left(p_{i}, q_{i}\right)}=(i=1, \cdots, N)$.

The number of nonzero elements in $R_{\left(r_{i}, s_{i}, t_{i}\right)}^{\left(p_{i}, q_{i}\right)}$ is $\frac{p_{i}}{r_{i} \cdot t_{i}} \times r_{i} \cdot s_{i} \cdot t_{i}=p_{i} \cdot s_{i}$, or equivalently as $\frac{q_{i}}{s_{i} \cdot t_{i}} \times r_{i} \cdot s_{i} \cdot t_{i}=q_{i} \cdot r_{i}$. By using X to denote the corresponding input matrix for K, the convolution process can be denoted as

$$
\begin{equation*}
K \cdot X=E_{1} \cdot \prod_{i=0}^{N-1} R_{\left(r_{(N-i)}, s_{(N-i)}, t_{(N-i)}\right)}^{\left(p_{(N-i}, q_{(N-1)}\right.} \cdot E_{2} \cdot X \tag{A1}
\end{equation*}
$$

where E_{1} and E_{2} are identity matrices of size $\left[c_{o}, c_{o}\right]$ and $\left[k^{2} c_{i}, k^{2} c_{i}\right]$, respectively.
For easier understanding, the input X can be regarded as $H_{o} W_{o}$ columns of length $k^{2} c_{i}$ (cf. Fig. 2). Since E_{1}, E_{2} and every $R_{\left(r_{i}, s_{i}, t_{i}\right)}^{\left(p_{i}, q_{i}\right)}(i=1, \cdots, N)$ are sparse, the naive sparse matrix-vector multiplication algorithm can be employed. As he number of nonzero elements in E_{1} and E_{2} are c_{o} and $k^{2} c_{i}$, respectively, the corresponding required matrix-vector operation for them are $\mathcal{O}\left(c_{o}\right)$ and $\mathcal{O}\left(k^{2} c_{i}\right)$, which reflect that the complexity cost will be dominated by the DeBut factors.
For each $R_{\left(r_{i}, s_{i}, t_{i}\right)}^{\left(p_{i}, q_{i}\right)}$, the number of nonzeros is $p_{i} s_{i}\left(q_{i} r_{i}\right)$. Therefore, the matrix-vector multiplication required by each $R_{\left(r_{i}, s_{i}, t_{i}\right)}^{\left(p_{i}, q_{i}\right)}$ is $\mathcal{O}\left(p_{i} s_{i}\right)$. For the sake of simplicity, we can approximate the required matrix-vector multiplication operation for all the DeBut factors as $\mathcal{O}\left(N \cdot \max _{i=\{1, \cdots, N\}} p_{i} s_{i}\right)$. Finally, by multiplying the number of columns in X, we can get the complexity of DeBut as $\mathcal{O}\left(\left(N \cdot \max _{i=\{1, \cdots, N\}} p_{i} s_{i} \cdot H_{o} W_{o}\right)\right.$.

Appendix II: Alternating Least Squares (ALS) Initialization

In Section 3.2, we introduce how to employ ALS to initialize the DeBut factors. Fig. A1 shows the relative errors of ALS approximation of an FC layer in LeNet and a CONV layer in VGG-16-BN using different chains, respectively. The relative error of ALS is defined as $\|F-\hat{F}\|_{2} /\|F\|_{2}$, where F is the pretrained flattened filter matrix, and \hat{F} is the approximation of F by the ALS initialized DeBut factors. For the FC layer of size [128, 400] in LeNet, four sweeps are enough for the error to converge. Compared with LeNet, the CONV layer of size [512, 4608] in VGG-16-BN needs more sweeps for convergence. That said, ten sweeps are enough for large layers in VGG-16-BN to obtain good initialization.
We set the number of sweeps equal to 5 to initialize small layers in our experiments, namely, all layers in LeNet and CONV1~3 and FC1 layers in VGG-16-BN. On the other hand, we set the number of sweeps equal to 10 for the large layers in VGG-16-BN and ResNet-50.

Figure A1: (Left) ALS error plots of DeBut approximation to FC1 layer in the modified LeNet. The five chains are described in Table A1. (Right) ALS error plots of DeBut approximation to CONV12 layer in VGG-16-BN. The six chains are described in Table A5

Appendix III: Details of Chains for LeNet

Tables A1 \& A2 describe chains for the [128, 400] FC layer and [16, 72] CONV layer in the modified LeNet. Each table contains monotonic and bulging chains.In the last column, the accuracy outside the brackets is obtained without ALS initialization of the DeBut factors, while the number in the brackets shows the performance with ALS initialization.

Table A1: Monotonic and bulging DeBut chains to substitute the largest FC layer in the modified LeNet. The layer-wise compression (LC) follows the definition in the main paper.

Table A2: Monotonic and bulging DeBut chains to substitute the largest CONV layer in the modified LeNet. The layer-wise compression (LC) follows the definition in the main paper.

Appendix IV: Details of Chains for VGG-16-BN

In Table A3, we give three monotonic and three bulging chains for substituting the CONV13 layer in VGG-16-BN.

The sizes of the flattened layers in VGG-16-BN are listed in Table 1. There are ten different sizes: [64, 27] (CONV1), [64, 576] (CONV2), [128, 576] (CONV3), [128, 1152] (CONV4), [256, 1152]
(CONV5), [256, 2304] (CONV6-7), [512, 2304] (CONV8), [512, 4608] (CONV9-13), [512, 512] (FC1) and $[512,10]$ (FC2). Since the number of input channels of CONV1 (3) and the number of output channels of FC2 (10) are small, we do not use DeBut factors to substitue the two layers. For CONV layers of size [256, 2304] and [512, 4608], we select CONV7 and CONV12 as the representatives.
In Table A4, we list monotonic and bulging chains for the flattened layers of size [64, 576], [128, 576], $[128,1152]$ and $[256,512]$, and provide the LC and (relative) ALS errors after initialization.

In Table A5, we show monotonic and bulging chains for the flattened layers of size [256, 2304], [512, 2304], $[512,4608]$. Since the FC layer is of size [512, 512], a square matrix, we employ the regular Butterfly chain. The LC and (relative) ALS errors are shown as well.

Monotonic Chain(s)	LC	ALS Error	Acc. (with ALS) (\%)
$\begin{aligned} & \text { 1) } 2048 \underset{(2,2,32)}{\overbrace{(2,4,25)}^{4}} 1024 \underset{(2,2,16)}{\overleftarrow{(2,4,128)}} 2048 \overleftarrow{(2,4,8)} 4096 \overleftarrow{(8,9,1)} 4608 \\ & 512 \overleftarrow{(2,2,64)} \end{aligned}$	97.31\%	0.9141	92.97 (93.90)
$\begin{aligned} & \text { 2) } 2048 \underset{(2,4,32)}{\overleftarrow{\leftrightarrows}} 4096 \overleftarrow{(2,2,16)} 4096 \overleftarrow{(2,2,8)} 4096 \overleftarrow{(8,9,1)} 4608 \\ & 512 \overleftarrow{(2,4,256)} 1024 \underset{(2,2,128)}{\overleftarrow{(2,4,64)}} 1024 \end{aligned}$	97.05\%	0.9307	93.09 (93.73)
$\begin{aligned} & \text { 3) } 4096 \overleftarrow{(2,2,32)} 4096 \overleftarrow{(2,2,16)} 4096 \overleftarrow{(2,2,8)} 4096 \overleftarrow{(8,9,1)} 4608 \\ & 512 \overleftarrow{(2,4,256)} 1024 \underset{(2,4,128)}{\overleftarrow{~}} 2048 \underset{(2,4,64)}{\overleftarrow{~}} \end{aligned}$	96.79\%	0.9111	93.18 (94.07)
Bulging Chain(s)	LC	ALS Error	Acc. (with ALS) (\%)
$\begin{aligned} & \text { 1) } 4096 \overleftarrow{(2,2,32)} 4096 \overleftarrow{(2,4,16)} 8192 \overleftarrow{(4,3,4)} 6144 \overleftarrow{(4,3,1)} 4608 \\ & 512 \overleftarrow{(2,4,256)} 1024 \underset{(2,4,128)}{\overleftarrow{\leftarrow}} 2048 \underset{(2,4,64)}{\overleftarrow{~}} \end{aligned}$	96.53\%	0.9116	93.23 (93.79)
2) $4096 \overleftarrow{(2,4,32)} 8192 \overleftarrow{(2,2,16)} 8192 \underset{(4,3,4)}{\overleftarrow{\leftrightarrows}} 6144 \overleftarrow{(4,3,1)} 4608$ $512 \overleftarrow{(2,4,256)} 1024 \overleftarrow{(2,4,128)} 2048 \overleftarrow{(2,4,64)}$	96.18\%	0.9261	92.69 (93.86)
3) $4096 \underset{(2,4,32)}{\Psi} 8192 \overleftarrow{(2,2,16)} 8192 \overleftarrow{(16,9,1)} 4608$ $512 \overleftarrow{(2,4,256)} 1024 \overleftarrow{(2,4,128)} 2048 \overleftarrow{(2,4,64)}$	94.88\%	0.9121	92.89 (93.93)

Table A3: DeBut substitution of the last CONV layer in the modified VGG-16-BN.

Appendix V: Details of Chains for ResNet-50

Tables A6 \& A7describe the chains we use for each CONV layer in the last three blocks except the downsampling layers.

References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.

Layer size	Monotonic Chains	LC	ALS Error
$\begin{aligned} & {[64,576]} \\ & (\mathrm{CONV} 2) \end{aligned}$	1) $64 \overleftarrow{(8,9,8)} 72 \overleftarrow{(2,4,4)} 144 \underset{(1,2,4)}{ } 288 \overleftarrow{(4,8,1)} 576$ 2) $64 \overleftarrow{(8,16,8)} 128 \overleftarrow{(1,2,8)} 256 \overleftarrow{(2,3,4)} 384 \overleftarrow{(4,6,1)} 576$ 3) $64 \underset{(4,8,16)}{\overleftarrow{(8,16,8)}} 128 \underset{(1,2,16)}{\overleftarrow{(1,2,8)}} 256 \underset{(2,3,8)}{\overleftarrow{(2,8,1)}} 384 \underset{(8,12,1)}{\overleftarrow{(4,8,1)}} 576$	$\begin{aligned} & \hline 90.62 \% \\ & 88.19 \% \\ & 83.33 \% \end{aligned}$	$\begin{aligned} & 0.9480 \\ & 0.9478 \\ & 0.8808 \end{aligned}$
	Bulging Chains	LC	ALS Error
$\begin{aligned} & {[64,576]} \\ & (\mathrm{CONV} 2) \end{aligned}$		$\begin{aligned} & 86.81 \% \\ & 85.42 \% \\ & 81.25 \% \end{aligned}$	$\begin{aligned} & 0.9182 \\ & 0.8369 \\ & 0.8295 \end{aligned}$
Layer size	Monotonic Chains	LC	ALS Error
$\begin{gathered} {[128,576]} \\ (\text { CONV3 }) \end{gathered}$		$\begin{aligned} & 92.71 \% \\ & 92.71 \% \\ & 92.36 \% \end{aligned}$	$\begin{aligned} & 0.9531 \\ & 0.9135 \\ & 0.9720 \end{aligned}$
	Bulging Chains	LC	ALS Error
$\begin{gathered} {[128,576]} \\ (\text { CONV3 }) \end{gathered}$		$\begin{aligned} & 92.71 \% \\ & 92.37 \% \\ & 89.59 \% \end{aligned}$	$\begin{aligned} & 0.9287 \\ & 0.9274 \\ & 0.8926 \end{aligned}$
Layer size	Monotonic Chains	LC	ALS Error
$\begin{gathered} {[128,1152]} \\ (\text { CONV4) } \end{gathered}$		$\begin{aligned} & 90.97 \% \\ & 90.97 \% \\ & 89.93 \% \end{aligned}$	$\begin{aligned} & 0.9424 \\ & 0.9413 \\ & 0.9135 \end{aligned}$
	Bulging Chains	LC	ALS Error
$\begin{gathered} {[128,1152]} \\ (\text { CONV4) } \end{gathered}$		$\begin{aligned} & \hline 89.58 \% \\ & 88.89 \% \\ & 88.72 \% \end{aligned}$	$\begin{aligned} & \hline 0.9195 \\ & 0.9132 \\ & 0.8983 \end{aligned}$
Layer size	Monotonic Chains	LC	ALS Error
$\begin{gathered} {[256,1152]} \\ (\text { CONV5 }) \end{gathered}$		$\begin{aligned} & 91.44 \% \\ & 91.44 \% \\ & 91.44 \% \end{aligned}$	$\begin{aligned} & 0.9780 \\ & 0.9681 \\ & 0.9662 \end{aligned}$
	Bulging Chains	LC	ALS Error
$\begin{gathered} {[256,1152]} \\ (\text { CONV5 }) \end{gathered}$		$\begin{aligned} & \hline 94.62 \% \\ & 92.88 \% \\ & 92.88 \% \end{aligned}$	$\begin{aligned} & \hline 0.9685 \\ & 0.9403 \\ & 0.9401 \end{aligned}$

Table A4: DeBut chains for layers with flattened weight matrices of sizes $[64,576]$, $[128,576]$, [128, 1152], and [256, 1152].

\begin{tabular}{|c|c|c|c|}
\hline Layer size \& Monotonic Chains \& LC \& ALS Error \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
{[256,2304]} \\
(\text { CONV7) }
\end{gathered}
\]} \& \& \[
\begin{aligned}
\& 94.79 \% \\
\& 94.62 \% \\
\& 93.58 \%
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.9596 \\
\& 0.9506 \\
\& 0.9420
\end{aligned}
\] \\
\hline \& Bulging Chains \& LC \& ALS Error \\
\hline \[
\begin{gathered}
{[256,2304]} \\
(\text { CONV7) }
\end{gathered}
\] \& \& \[
\begin{aligned}
\& 93.06 \% \\
\& 92.71 \% \\
\& 91.49 \%
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.9405 \\
\& 0.9391 \\
\& 0.9357
\end{aligned}
\] \\
\hline Layer size \& Monotonic Chains \& LC \& ALS Error \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
{[512,2304]} \\
(\text { CONV })
\end{gathered}
\]} \& \begin{tabular}{l}
1) \(512 \overleftarrow{\overleftarrow{(8,16,64)}} 1024 \underset{(4,4,16)}{ } 1024 \underset{(2,4,8)}{ } 2048 \overleftarrow{(8,9,1)} 2304\) \\
 \(512 \underset{(2,2,256)}{\overleftarrow{\leftarrow}} 512 \underset{(2,4,128)}{\overleftarrow{(2,32)}} 1024\) \\

\end{tabular} \& \(97.05 \%\)
\(96.79 \%\)
\(96.70 \%\) \& 0.9854
0.9654
0.9749 \\
\hline \& Bulging Chains \& LC \& ALS Error \\
\hline \[
\begin{gathered}
{[512,2304]} \\
(\text { CONV })
\end{gathered}
\] \& \& \[
\begin{aligned}
\& 96.35 \% \\
\& 96.18 \% \\
\& 95.14 \%
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.9755 \\
\& 0.9578 \\
\& 0.9509
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{(CONV12)} \& Monotonic Chains \& LC
\(97.31 \%\)

97.05%

96.79% \& ALS Error
0.9199

0.9158

0.9124

\hline \& Bulging Chains \& LC \& ALS Error

\hline | $[512,4608]$ |
| :--- |
| (CONV12) | \& \& 96.53%

96.18%

94.88% \& 0.9075
0.9045
0.8864

\hline Layer size \& Regular Chains \& LC \& ALS Error

\hline $$
\begin{gathered}
{[512,512]} \\
(\mathrm{FC} 1)
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& \text { 1) } \overleftarrow{(2,2,8)} 512 \overleftarrow{(2,2,16)} 512 \overleftarrow{(2,2,32)} 512 \overleftarrow{(2,2,64)} 512 \overleftarrow{(2,2,128)} 512 \overleftarrow{(2,2,256)} 512 \\
& 512 \overleftarrow{\overleftarrow{(2,2,1)}_{\overleftarrow{(2,2,2)}}^{\overleftarrow{(2,2,4)}} 512} 512
\end{aligned}
$$
\] \& 96.48\% \& 0.9010

\hline
\end{tabular}

Table A5: DeBut chains for layers with flattened weight matrices of sizes [256, 2304], [512, 2304], [512, 4608], and [512, 512].

Layer	Chains	LC	ALS Error
CONV5_1	$\begin{aligned} & 1024 \underset{(2,4,16)}{\overleftarrow{(2,2,256)}} 2048 \overleftarrow{(2,2,8)} 2048 \underset{(2,4,128)}{\overleftarrow{(2,2,4)}} 2048 \overleftarrow{(4,2,1)} 1024 \\ & 512 \overleftarrow{(2,2,64)} 1024 \overleftarrow{(2,2,32)} \end{aligned}$	95.51\%	0.9630
CONV5_2	$\begin{aligned} & 4096 \overleftarrow{(2,4,32)} 8192 \overleftarrow{(2,2,16)} 8192 \overleftarrow{(16,9,1)} 4608 \\ & 512 \overleftarrow{\overleftarrow{(2,4,256)}} 1024 \overleftarrow{(2,4,128)} 2048 \overleftarrow{(2,4,64)} \end{aligned}$	94.88\%	0.9599
CONV5_3	$\begin{aligned} & 1024 \underset{(2,2,32)}{\overleftarrow{(2,2,1024)}} 1024 \overleftarrow{(2,2,16)} 1024 \overleftarrow{(2,2,8)} 1024 \overleftarrow{(2,2,4)} 1024 \overleftarrow{(4,2,51)} 512 \\ & 2048 \underset{(4,2,128)}{\overleftarrow{\leftarrow}} 1024 \overleftarrow{(2,2,64)} \end{aligned}$	97.66\%	0.9788
CONV5_4	$\begin{aligned} & 8192 \overleftarrow{(4,4,16)} 8192 \overleftarrow{(4,4,4)} 8192 \overleftarrow{(4,1,1)} 2048 \\ & 512 \overleftarrow{(2,8,256)} 2048 \overleftarrow{(4,16,64)} \end{aligned}$	89.45\%	0.9164
CONV5_5	$\begin{aligned} & 4096 \overleftarrow{(2,4,32)} 8192 \overleftarrow{(2,2,16)} 8192 \overleftarrow{(16,9,1)} 4608 \\ & 512 \overleftarrow{(2,4,256)} 1024 \overleftarrow{(2,4,128)} 2048 \overleftarrow{(2,4,64)} \end{aligned}$	94.88\%	0.9567
CONV5_6	$\begin{aligned} & 1024 \underset{(2,2,32)}{\overleftarrow{(2,2,1024)}} 1024 \overleftarrow{(2,2,16)} 1024 \underset{(2,2,8)}{\overleftarrow{(2,2,512)}} 1024 \overleftarrow{(2,2,4)} 1024 \overleftarrow{(4,2,1)} 512 \\ & 2048 \underset{(4,2,128)}{\overleftarrow{\leftarrow}} 1024 \underset{(2,2,64)}{\overleftarrow{(})} \end{aligned}$	97.66\%	0.9791
CONV5_7	$\begin{aligned} & 8192 \overleftarrow{(4,4,16)} 8192 \overleftarrow{(4,4,4)} 8192 \overleftarrow{(4,1,1)} 2048 \\ & 512 \overleftarrow{(2,8,256)} 2048 \overleftarrow{(4,16,64)} \end{aligned}$	89.45\%	0.9189
CONV5_8	$\begin{aligned} & 4096 \overleftarrow{(2,4,32)} 8192 \overleftarrow{(2,2,16)} 8192 \overleftarrow{(16,9,1)} 4608 \\ & 512 \overleftarrow{(2,4,256)} 1024 \overleftarrow{(2,4,128)} 2048 \overleftarrow{(2,4,64)} \end{aligned}$	94.88\%	0.9544
CONV5_9	$\begin{aligned} & 1024 \underset{(2,2,32)}{\overleftarrow{(2,2,1024)}} 1024 \overleftarrow{(2,2,16)} 1024 \overleftarrow{(2,2,8)} 1024 \overleftarrow{(2,2,4)} 1024 \overleftarrow{(4,2,1)} 512 \\ & 2048 \underset{(2,2,512)}{\overleftarrow{(4,2,128)}} 1024 \overleftarrow{(2,2,64)} \end{aligned}$	97.66\%	0.9778

Table A6: The bulging chains for DeBut-bulging. CONV5_1 to CONV5_9 are convolution layers from the last three blocks denoted in [1].

Layer	Chains	LC	ALS Error
CONV5_1	$512 \overleftarrow{(2,4,256)} 1024 \overleftarrow{(4,4,64)} 1024 \overleftarrow{(4,4,16)} 1024 \overleftarrow{(4,4,4)} 1024 \overleftarrow{(4,4,1)} 1024$	96.48\%	0.9640
CONV5_2	$\begin{aligned} & 4096 \underset{(2,2,32)}{\overleftarrow{(2,4,256)}} 4096 \underset{(2,2,16)}{\overleftarrow{\leftarrow}} 4024 \underset{(2,4,128)}{\overleftarrow{(2,2,8)}} 4096 \overleftarrow{(8,9,1)} \overleftarrow{\overleftarrow{(2,4,64)}} 4608 \\ & 512 \end{aligned}$	96.79\%	0.9730
CONV5_3	$\begin{aligned} & 1024 \underset{(2,2,32)}{\overleftarrow{(2,2,1024)}} 1024 \overleftarrow{(2,2,16)} 1024 \overleftarrow{(2,2,8)} 1024 \overleftarrow{(2,2,4)} 1024 \overleftarrow{(4,2,1)} 512 \\ & 2048 \underset{(2,2,512)}{\overleftarrow{(4,2,128)}} 1024 \overleftarrow{(2,2,64)} \end{aligned}$	97.66\%	0.9788
CONV5_4	$\begin{aligned} & 1024 \underset{(2,4,16)}{\leftrightarrows} 2048 \overleftarrow{(4,4,4)} 2048 \overleftarrow{(4,4,1)} 2048 \\ & 512 \overleftarrow{(2,2,256)} 512 \overleftarrow{(2,4,128)} 1024 \underset{(4,4,32)}{\overleftarrow{\leftarrow}} \end{aligned}$	97.36\%	0.9705
CONV5_5	$\begin{aligned} & 4096 \underset{(2,2,32)}{\overleftarrow{(2,4,256)}} 4096 \underset{(2,2,16)}{\overleftarrow{\leftarrow}} 4096 \underset{(2,4,128)}{\overleftarrow{(2,2,8)}} 4096 \overleftarrow{(8,9,1)} 4608 \\ & 512 \overleftarrow{(2,4,64)} \end{aligned}$	96.79\%	0.9699
CONV5_6	$\begin{aligned} & 1024 \underset{(2,2,32)}{\overleftarrow{(2,2,1024)}} 1024 \overleftarrow{(2,2,16)} 1024 \overleftarrow{(2,2,8)} 1024 \overleftarrow{(2,2,4)} 1024 \overleftarrow{(4,2,512)} 5048 \underset{(4,2,128)}{\overleftarrow{(4,2)}} 51024 \underset{(2,2,64)}{\overleftarrow{(})} \\ & 2048 \end{aligned}$	97.66\%	0.9791
CONV5_7	$\begin{aligned} & 1024 \underset{(2,4,16)}{\overleftarrow{\leftrightarrows}} 2048 \overleftarrow{(4,4,4)} 2048 \overleftarrow{\overleftarrow{(4,4,1)}} 2048 \\ & 512 \\ & \overleftarrow{(2,256)} \\ & \overleftarrow{(2,4,128)} \\ & \overleftarrow{(4,4,32)} \end{aligned}$	97.36\%	0.9716
CONV5_8	$\begin{aligned} & 4096 \underset{(2,2,32)}{\overleftarrow{(2,4,256)}} 4096 \underset{(2,2,16)}{\overleftarrow{\leftrightarrows}} 4096 \underset{(2,4,128)}{\overleftarrow{(2,2,8)}} 4048 \underset{(2,4,64)}{\overleftarrow{(8,9,1)}} 4608 \\ & 5124 \end{aligned}$	96.79\%	0.9669
CONV5_9		97.66\%	0.9778

Table A7: The monotonic chains for DeBut-mono. CONV5_1 to CONV5_9 are convolution layers from the last three blocks denoted in [1].

[^0]: *RL, JR, and NW contributed equally to this work.

