
Supplementary Material

SM 1 Manifolds analysis

SM 1.1 Replica-based Mean Field Theory Manifold Analysis

In this section, we provide a more complete description of Replica-based Mean-Field Theoretic
Manifold Analysis (MFTMA). MFTMA refers to the method that was first introduced in [1], and this
framework has been used to analyze internal representations of deep networks, ranging from visual
[2] to speech [3] and natural language tasks [4]. The shorthand MFTMA was first used in [3], and
provided code formed the basis for our analysis1.

As noted in the main text, object manifolds as used within MFTMA are defined as a set of stimulus
evoked representations, grouped by categorical labels. Examples of object manifolds used in this
work are population responses to different exemplars in the same object class (a class manifold), or
an exemplar manifold created by a variability around a single stimulus (i.e, a single image or an
utterance), where variability in the manifold can be from an adversarial perturbation or stochasticity.

Derived using replica theory in statistical physics, the MFTMA framework generalizes the theory of
perceptron classification capacity for discrete point patterns [5] to the capacity of object manifolds.
Specifically, the MFTMA framework measures the manifold capacity, defined as the maximum
number of object manifolds such that the majority of the ensemble of random dichotomy labels
for these objects manifolds can be linearly separated. This is a direct generalization of ‘shattering’
capacity of a perceptron, where the counting unit for the perceptron is the number of objects 2,
rather than number of discrete patterns. As the measure of manifold capacity can be empirically
evaluated (just as the perceptron capacity can be empirically evaluated), the match between the
empirical manifold capacity and the theoretical manifold capacity predicted from the object manifold
properties has been shown in many domains with different datasets [1, 2, 3, 4]. The expression for
manifold capacity in the MFTMA framework gives rise to new measures for characterizing geometric
properties of object manifolds, such that the shattering capacity of object manifolds can be formally
expressed in terms of the geometric properties of object manifolds. As the framework formally
connects the representational geometric properties and the object manifold’s classification capacity,
the measures from this framework are particularly useful for gaining a mechanistic account of how
information content about objects are embedded in the structure of the internal representations from
deep networks. Below we provide additional details of the measures from this framework: manifold
capacity and the geometrical properties (such as manifold dimension, radius, width, and manifold
center correlation).

SM 1.2 Metrics in the Manifold Capacity Theory

Given neural or feature representations where P object manifolds are embedded in N -dimensional
ambient feature (or neural state) space, load is defined as P/N . Large/small load implies that
many/few object manifolds are linearly separable in the feature dimension. Consider a linear
classification problem where binary positive and negative labels are assigned randomly to P object
manifolds, while all the points within the same manifold share the same label, and the problem is to
find a linearly classifying hyperplane for these random manifold dichotomies.

Manifold capacity is defined as the critical load αM = P/N such that above this value, most
dichotomies have a linearly separating solution, and below this value, most of the dichotomies do not
have a linearly separating solution. A system with a large manifold capacity has object manifolds
that are well separated in the feature space, and a system with a small manifold capacity has object
manifolds that are highly entangled (ie, not linearly separable) in the feature space.

Manifold capacity can be estimated using the replica mean field formalism with the framework
introduced by [1] and refined in [2]. As mentioned in the main text, αM is estimated as αMFT , or
MFTMA manifold capacity, from the statistics of anchor points, s̃, a representative point for the

1https://github.com/schung039/neural_manifolds_replicaMFT
2where each object’s manifold can include a finite or infinite number of points
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points within an object manifold that contributes to a linear classi�cation solution. The general form
of the MFTMA manifold capacity has been shown [1, 2] to be:
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is a mean over randomD- and 1- dimensional Gaussian vectors~t; t 0 whose compo-

nents are i.i.d. normally distributedt i � N (0; 1).

This framework introduces the notion ofanchor points, ~s, uniquely given by each~t, a coordi-
nate for the manifold's embedded space, andt0, the manifold's center direction, representing the
variability introduced by all other object manifolds, in their arbitrary orientations. Formally,~s
represents a weighted sum of support vectors contributing to the linearly separating hyperplane in
KKT (Karush–Kuhn–Tucker) interpretation [1].

Formalized in this way, manifold capacity has many useful interpretations. First, as the manifold
capacity is de�ned as the critical load for a linear classi�cation task, it captures the linear separability
of object manifolds. Second, the manifold capacity is de�ned as themaximumnumber of object
manifolds that can be packed in the feature space such that they are linearly separable, it has a
meaning of how many object manifolds can be "stored" in a given representation such that they can
distinguished by the downstream linear readout. Third, the manifold capacity captures the amount of
linearly decodable object information per feature (or neuron) dimension embedded in the distributed
representation.

SM 1.3 Manifold Geometric Measures

The statistics of the anchor points play a key role in estimating a object manifold's effective Manifold
RadiusRM and Manifold DimensionDM , as they are de�ned as:
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whereŝ = ~s=k~sk is a unit vector in the direction of~s, and~T = ( ~t; t 0).

Manifold Dimension measures the effective dimension of the projection of~t on its unique anchor
point ~s, capturing the dimensionality of the regions of the manifolds playing the role of support
vectors. In other words, the manifold dimension is the dimensionality of the object manifolds realized
by the linearly separating hyperplane. High values ofDM imply that the fraction of the part within
the object manifold embedded in the margin hyperplane is high-dimensional, thereby implying that
the classi�cation problem is hard.

Manifold Radius measures the average norm of the anchor points,~s( ~T), capturing the size of the
object manifold realized by the linearly separating hyperplane. A small value ofRM implies tightly
grouped anchor points.

Manifold Width combines the two measures contributing to the manifold's overall width in the
dimensional space, namely, Manifold Radius,RM , and Manifold Dimension,DM . Prior theoretical
work has shown that there is a trade-off betweenRM andDM such that as long asRM �

p
DM stays

constant, the manifold capacity stays constant [6, 1].

If the object manifold centers are in random locations and orientations, these geometric properties
predict the MFTMA manifold capacity [1], by
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is a capacity ofL 2 spheres with radiusR and dimensionD as de�ned in [6] and
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is a classi�cation capacity of points given an imposed margin of� as de�ned in [5, 1].

In real data, the manifolds have various correlations, hence the above formalism has been applied to
the data projected into the null spaces of manifold centers, similar to the method proposed by [2]. To
characterize the correlation structure in the data, we compute average of absolute values of pairwise
cosine correlation between given manifolds' centroids, and provide them alongside other geometric
measures here in SM.

SM 1.4 Capacity: theory vs. simulation

While a good match between empirically observed manifold capacity (� M )3 and MFTMA predicted
manifold capacity (� MF T ) has been demonstrated in numerous past works [2, 3, 4], here we verify
the match between predicted and simulated capacity under adversarial conditions.

In Figure SM1 we show empirical (simulated) capacity vs MFTMA predicted capacity for class
manifolds in all analyzed layers of VOneResNet50, ResNet50, and ATResNet50 and under a variety
of adversarial perturbation strengths. We observe a tight relationship between MFTMA and simulated
capacity, with a mild propensity for MFTMA to overestimate capacity as representations become
more separable, consistent with prior observations [2], indicating that MFTMA is also applicable
when representations arise from adversarial stimuli.

Figure SM1:MFTMA manifold capacity approximately predicts empirically observed (simu-
lated) manifold capacity under clean and adversarial conditionsfor all layers investigated in
VOneResNet50 (blue), ResNet50 (orange), and ATResNet50 (green) and across different strengths of
adversarial attack, consistent with prior work [2].

3The empirical capacity is computed using a bisection search on the critical number of feature dimensions
required in order to reach roughly 50% chance of having linearly separable solutions given a �xed number of
manifolds and their geometries
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SM 2 Adversarial Attacks

For performing white box adversarial attacks, we used the single-step fast gradient sign method
(FGSM) [7] or multi-step projected gradient descent (PGD) [8] with anL p norm constraint. Given an
image or waveformx, These method uses the gradient of the loss to construct an adversarial image
xadv which maximizes the model loss within anL p bound aroundx. Unless stated otherwise, we use
L 1 attack constraints. Formally, anL 1 PGD attack iteratively computesxadv as

x t +1 = Projx + S (x t + � sgn(r x t L(�; x t ; y)))

wherex is the original image or audio signal, and theProj operator ensures the �nal computed
adversarial imagexadv is constrained to the spacex + S, in this work theL 1 ball aroundx. FGSM
is a special case of PGD, where only a single step is taken.

We used FGSM with a random starting location in the� -sized ball exemplar manifold experiments
because we found that when using 64 step PGD for sampling 50 locations around each image, we
frequently recovered the same perturbation multiple times, in particular for adversarially trained
networks. Therefore, we resorted to FGSM with random starting locations in order to ensure a
diversity of sample points in the� -sized ball around our exemplars.

Model speci�c details of adversarial attacks are provided in each model section below.

SM 3 ImageNet vision networks

SM 3.1 Model architecture and training details

With the exception of the Gaussian VOneResNet50, (GVOneResNet50), all of the ImageNet [9]
trained models investigated including VOneResNet50, ResNet50, and ATResNet50 were drawn from
publicly available sources. ResNet50 pre-trained on ImageNet was taken fromhttps://pytorch.
org/vision/0.8/models.html . ATResNet50 (adversarially trained on ImageNet with PGDL 1
� = 4=255) was taken fromhttps://github.com/MadryLab/robustness [10]. VOneResNet50
was taken fromhttps://github.com/dicarlolab/vonenet . ResNet50 and ATResNet50 share
the same architecture, as described in [11]. VOneResNet50 and GVOneResNet50 have the �rst
conv-relu-maxpool of a ResNet50 architecture replaced with a linear-nonlinear model, followed
by Poisson-like or Gaussian noise respectively (VOneBlock). More speci�cally, the VOneBlock
consists of a Gabor �lter bank tuned to match primate primary visual cortex neuronal data, simple
and complex cell non-linearities, and a stochastic layer. The stochastic layer of GVOneResNet50
was composed of zero-mean Gaussian noise with the standard deviation matched to the overall mean
across all VOneBlock units in response to a reference stimulus set of natural images. The stochastic
layer of VOneResNet was a continuous, second order approximation of Poisson noise as described
in Dapello, Marques et al. All components of VOneResNet50 and GVOneResNet50 including the
VOneBlock are fully differentiable, and the models are always adversarially attacked end-to-end. For
more details on VOneNets, we refer the reader the main text and supplemental materials of [12].

GVOneResNet50 was created using the publichttps://github.com/dicarlolab/vonenet
repository. Like existing VOneNets, GVOneResNet50 was trained on ImageNet, with standard
preprocessing and data augmentation during training including random resizing and cropping to
224 � 224 pixels and random horizontal �ipping. For validation, images are center cropped to
224� 224pixels. Preprocessing was followed by a normalization to render all pixel values between
1 and -1. We used a batch size of 256 images and trained on 2 QuadroRTX6000 GPUs for 70 epochs
on the MIT BCS OpenMind computing cluster, for a total training time of approximately 80 hours.
We used a step learning rate schedule with 0.1 starting learning rate, divided by 10 every 20 epochs
with Stochastic Gradient Descent, a weight decay 0.0001, momentum 0.9, and cross-entropy loss
between image labels and model predictions (logits).

Intermediate layers selected for analysis from ResNet50 and ATResNet50 include the pixels, the
�rst conv-relu (Conv1), the maxpool (bottleneck), the output of each residual block (block1, block2,
block3, block4), and the average pooling layer (avgpool) prior to the softmax classi�cation layer.
For VOneResNet50, and GVOneResNet50 selected layers include pixels, the VOneBlock before
the stochastic layer and after the stochastic layer, the1 � 1 convolution following the VOneBlock
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(bottleneck), the output of each residual block (block1, block2, block3, block4), and the average
pooling layer (avgpool) layer prior to the softmax classi�cation layer. To make layerwise plots well
aligned, for ResNet50 and ATResNet50, the Conv1 layer is duplicated at the pre and post noise
points in the trajectory, essentially plotting them as if they had a noise layer with 0 variance following
Conv1.

SM 3.2 Adversarial attacks

For ImageNet models (VOneResNet50, GVOneResNet50, ResNet50, and ATResNet50), attacks
on class manifold images were performed with untargeted PGD, using 64 steps and a step size of
�=8. When evaluating network accuracy to adversarial attacks we average over 8 gradient samples at
each step of optimization to ensure useful information from stochastic gradients [13]. We did not
average gradients across multiple noise samples for the MFTMA experiments on stochastic ImageNet
models, because we are not strictly focused on claims of robust accuracy under a worst case attack.
For adversarial� -sized ball exemplar manifolds, FGSM with a random starting location was used,
and we veri�ed that all 50 sample points generated were unique images. All adversarial attacks for
ImageNet models were performed using the adversarial robustness toolbox [14].

SM 3.3 Characterizing adversarial robustness of ImageNet models

Here, we characterize the adversarial robustness of the VOneResNet50, GVOneResNet50, ATRes-
Net50, and ResNet50. Of particular interest is GVOneResNet50 in comparison to the original
VOneResNet50. Figure SM2 shows the strength accuracy curves of VOneResNet50 compared to
GVOneResNet50 for an untargettedL 1 -constrained Projected Gradient Descent (PGD) attack with
64 PGD iterations, a step size of�=8, and eight gradient samples at every step. The plot demonstrates
that the GVOneResNet50 is only marginally less robust than the original Poisson-like noise VOneRes-
Net50, indicating that Poisson-like stochasticity is not necessary for improvements in adversarial
robustness.

Figure SM2: Adversarial robustness of VOneResNet50, GVOneResNet50, ATResNet50 and
ResNet50. Left: the L 1 PGD perturbation strength (� ) vs top-1 accuracy on 5000 ImageNet
validation images for VOneResNet50, GVOneResNet50, ATResNet50 and ResNet50. While the
original Poisson-like noise VOneResNet50 is slightly more robust than GVOneResNet50, both
models are in a comparable range. Right: PGD iterations vs ImageNet top-1 accuracy curve going
from zero (random perturbation) to one to many shows that the gradients used in our PGD attack for
both models contain useful information for computing adversarial attacks.

Figure SM2 also provides a number of useful sanity checks on the validity of our attacks for these
models. For all models, accuracy clearly transitions smoothly from near clean level performance
to 0%accuracy as strength increases, indicating that gradients include useful signal for computing
optimal image perturbations. Furthermore, increasing the number of gradient iterations from zero (a
random starting point) to one and again to many iterations generally increases the effectiveness of the
attack, again demonstrating the quality of the gradients for computing adversarial attacks. In general,
we did not �nd multiple random starting points or increasing the number of gradient samples per step
beyond eight to have any signi�cant effect on model accuracy.
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SM 3.4 Accuracy vs. capacity

In Figure SM3 we include a more detailed form of Figure 2B, depicting how models and attack
strength conditions tested for adversarial accuracy relate to MFTMA capacity.

Figure SM3:MFTMA predicted capacity of class manifolds is well correlated with a model's
performance under adversarial attack.Models include VOneResNet50 (blue), GVOneResNet50
(light blue), undefended ResNet50 (orange), and ATResNet50 (green) for clean images and PGDL 1
� = 1=1020and� = 1=255perturbed images.

SM 3.5 Full layerwise trajectories of class manifold geometry

Figure SM4 extends the class manifold analysis performed in Figure 2 to show the MFTMA and
dimensionality measures from all network stages of VOneResNet50, ResNet50, and ATResNet50.
Manifold capacity,RM , DM , center correlation, and the number of principal components needed to
capture90%of the variance were all measured from the class manifold dataset in used in Figure 2.
As expected, the class manifold capacity increases in deeper layers of the network and is highest at
the �nal stage of the network (avgpool) for all tested networks.

SM 3.6 Exemplar manifold capacity for different adversarial strengths

Providing additional context for Figure 3C, Figure SM5 shows the raw manifold capacity (not
normalized by the capacity for clean exemplars) of VOneResNet50, GVOneResNet50, ResNet50,
and ATResNet50. All networks and all layers considered are above the theoretical lower bound of
0.04 for capacity (given by2=M , where M is the number of example points in each manifold.)

When constructing Figure 3C, the values in SM5 were divided by the clean exemplar manifold
capacity for each network (ie manifolds measured from unperturbed stimuli and containing variability
only from the stochastic activations, if stochasticity was present in the model). Clean exemplar
manifold capacity is set to the theoretical upper bound of 2 in all deterministic layers, which is
equivalent to treating the manifold as a point. For VOneResNet50, clean exemplar manifold capacity
is 0.13214 at the VOneBlock, and 0.90949 at the average pooling layer. For GVOneResNet50, clean
exemplar manifold capacity is 0.27230 at the VOneBlock, and 1.01192 at the average pooling layer.

SM 3.7 Normalized exemplar capacity for additional models

Here, we include several additional ImageNet trained models to con�rm the generality of our �ndings.
To look at adversarially robust models beyond the ResNet50 adversarially trained with anL 1
norm of 4/255 (commonly ATResNet50, here ATResNet50.L 1 = 4 ) used in the main text, we
investigate two additional adversarially trained ResNet50s, one with a strongerL 1 penalty of 8/255
(ATResNet50.L 1 = 8 ), and another with anL 2 penalty of 3.0 (ATResNet50.L 2 = 3 )4. To isolate the
in�uences of stochasticity compared to the in�uence of the �xed VOne representation, we also include
a ResNet50 with stochasticity added after the initial conv-relu-maxpool block (NoisyResNet50,

4Additional adversarially trained models were taken fromhttps://github.com/MadryLab/robustness
[10]
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Figure SM4:Class manifold measures across layersfor VOneResNet50 (blue), ResNet50 (orange),
and ATResNet50 (green) across different attack strengths. From top to bottom: mean manifold
capacity, manifold dimension, manifold radius, manifold center-center correlation, and the number of
principal components need to retain 90% of the total data variance. Error bars represent standard
deviation (STD) for 5 RP and MFTMA seeds.

see [12] for full details), and a VOneResNet50 without stochasticity during training or inference
(VOneResNet50.NoNoise, see [12] for full details.) These are compared to ResNet50, VOneResNet50
and GVoneResNet50 from the main text. As shown in Figure SM6, the adversarial trained models
in green all travel together, the noisy models in blue travel together, and the non-stochastic, non-
adversarially trained models in orange also travel together, re�ecting distinct geometries due to
adversarial training and in models with stochastic activations.
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Figure SM5: Unnormalized adversarial � -sized ball exemplar manifold capacity for pixels,
VOneBlock / Conv1, and the �nal average pooling layer.Figure 3C without normalization by the
clean exemplar manifolds. Error bars are STD for 5 RP and MFTMA seeds.

Figure SM6:Normalized exemplar capacity for additional models.relative exemplar manifold
capacity (adversarial exemplar manifold capacity normalized by clean exemplar manifold capacity) is
show for the average pool layer of adversarially trained models in green including ATResNet50.L 2 =
3 (light green), ATResNet50.L 1 = 4 (green), and ATResNet50.L 1 = 4 (dark green), stochastic
models in blue VOneResNet50 (blue), GVOneResNet50 (light blue), and NoisyResNet50 (lighter
blue), and non-stochastic, non-adversarially trained models in orange including ResNet50 (orange)
and VOneResNet50.NoNoise (dark orange) show that stochasticity and adversarial training both lead
to unique signatures of robustness across a range of networks.
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SM 4 Auditory networks

SM 4.1 Model architecture and training details

All auditory models (CochResNet50, ATCochResNet50, and StochCochResNet50) included all
components of the standard ResNet50 architecture [11]. Rather than the �rst convolutional layer
acting on an image, the �rst convolution is applied to the generated cochleagram representation.

The `cochleagram' representation is similar to a spectrogram, but with frequency resolution and
compression tuned to approximate the human ear. Cochlear �lters were constructed using the
pycochleagram library (https://github.com/mcdermottLab/pycochleagram ). The cochlear
model consists of a �lterbank of 211 bandpass �lters with frequency response as the positive portion
of a cosine function, spaced on an equivalent rectangular bandwidth (ERB) scale with low limit of
50Hz and high limit of 10kHz, including lowpass and highpass �lters [15, 16]. Audio input to the
networks was two seconds long sampled at 20kHz (40,000 samples). Passing audio through these
�lters results in audio subbands, and the envelope of the each is computed via the analytic amplitude
of the Hilbert Transform. Envelopes are downsampled to 200Hz and passed through a compressive
nonlinearity (x0:3). The output of this yields a cochleagram representation of shape (211, 390),
which served as the input to the standard ResNet50 architecture layers. The cochleagram operations
were implemented in PyTorch, and all components of the cochleagram generation are differentiable,
allowing adversarial examples to be generated directly on the waveform in an end-to-end manner.

In StochCochResNet50, a layer of additive Gaussian noise with a mean of zero was applied to the
cochleagram representation before being passed to the �rst convolutional layer of the ResNet50
architecture. For auditory model analyses, we investigated the audio input to the network (waveform),
the output of the cochlear model (cochleagram), the additive Gaussian noise stochastic layer (cochlea-
gram + noise), the �rst conv-relu (conv1) of ResNet50, the �rst maxpool (maxpool) of ResNet50,
the output of each residual block (block1, block2, block3, block4), and the average pooling layer
(avgpool) that occurs before the logits of the ResNet50 architecture. To align layerwise plots, the
"cochleagram (+ noise)" layer is a duplication of the "cochleagram" layer in deteministic models
CochResNet50 and ATCochResNet50, while it is the "cochleagram + noise" for StochCochResNet50.

Auditory networks were trained in PyTorch 1.5.0 on the word recognition task from the Word-Speaker-
Noise dataset introduced in [17]. Audio sampling rate was 20kHz. Samples from the audioset dataset
served as additive noise in the waveform, and were combined with the speech clips at uniformly
selected signal-to-noise ratios of -10dB to 10dB. A random 2 second crop of the speech signal was
extracted, always ensuring that the labeled word overlapped with the 1 second boundary of the
signal, and a random 2 second crop of the audioset background was added to the speech signal. The
combined audio was mean subtracted and normalized to a root-mean-square level of 0.1 before being
processed by the cochlear model. Adversarial performance curves were evaluated on held out speech
clips, randomly cropped and normalized the same as during training (but excluding the audioset
augmentation).

Models were trained with a batch size of 256 on 8 Nvidia Tesla-V100 GPUs on the MIT BCS
OpenMind computing cluster. Stochastic models and the standard network took approximately 18
hours to train, while the adversarially trained network took approximately 114 hours. Each model
was trained with 150 epochs of the speech data (corresponding to 42 epochs of the audioset clips).
Learning rate started at 0.1 and was divided by 10 after every 50 epochs, using the pytorch SGD
optimizer with momentum 0.9, weight decay 0.0001, and a cross entropy loss between the word
labels and model predictions. All training was performed with a modi�ed version of the robustness
library [10] with additions to handle auditory training.

The adversarial training parameters for ATCochResNet50 consisted of aL 1 -norm bound of 0.001 on
the waveform. Five attack steps were applied for the PGD attack during training, starting at a random
location with a step size of 0.001/2.

SM 4.2 Adversarial attacks

The adversarial robustness of audio models (StochCochResNet50, CochResNet50, ATCochResNet50)
to untargetedL 1 attacks (Figure 4 and Figure SM7) was evaluated using 32 PGD steps with step
size of�=5. For the stochastic models (StochCochResNet50) model gradients were sampled eight
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times for each PGD iteration and averaged to obtain the step direction. Analysis of the adversarial
robustness with this ensemble method was conducted with [14].

For adversarial� -sized ball exemplar manifolds in Figure 5, FGSM with a random starting location
was used to measure 50 samples for each audio exemplar. The attacks were untargetedL 1 attacks
with step size of2� . For analyses of adversarial class manifolds in Figure 6A, a single adversarial
example was generated for each audio sample in the class using 32 steps of PGD. An untargeted
L 1 attack with a random starting location and step size of�=5 was used for constructing these
adversarial class manifolds. Similar to VOneResNet50 and CIFAR-VOneNet, we did not average
over multiple gradient samples when constructing the manifolds for the stochastic audio models, as
for these experiments we were focused on generating samples from the adversarial manifolds rather
than on evaluating the models defenses. Adversarial examples for both types of manifold experiments
were obtained using [10].

SM 4.3 Choice of Gaussian noise level for StochCochResNet50

The evaluation shown in Figure 4C showed that a Gaussian noise level of� = 0 :125 yielded
maximum adversarial robustness at� = 0 :001to untargetedL 1 attacks. This level of Gaussian noise
also yields best performance when averaged across all tested� values (Figure SM7). Thus, Gaussian
noise level of� = 0 :125was used for the presented experiments that made comparisons between
StochCochResNet50, CochResNet50 and ATCochResNet50.

Figure SM7:Adversarial performance of StochCochResNet50 modelsAnalysis of model perfor-
mance averaged across all testedL 1 attack� values compared to the level of Gaussian noise in
the model, evaluated over 100 randomly chosen speech examples. Model performance peaks at
� = 0 :125. Error bars are STD across 5 sets of test stimuli.

We further quanti�ed the the Signal-to-Noise-Ratio (SNR) of the stochastic cochleagrams for the
selected Gaussian noise levels by (1) calculating the mean cochleagram across 20,000 examples
from the training data (2) taking the mean across time and frequency (3) dividing this value by the
standard deviation used for the Gaussian noise at the stochastic layer. These SNR values are reported
in SM Table 1. Note that the best model shown in bold is close to the SNR ratio of 1 that was chosen
for GVOneNet. A histogram of the averages for the cochlear channels and the ordered average for
each cochlear channel is shown in Figure SM8 to demonstrate the distribution of average channel
activations.

Gaussian (� ) StochCoch SNR

0 inf
0.03125 4.4433
0.0625 2.2217
0.125 1.1108
0.25 0.5554
0.5 0.2777

Table 1: SNR of the cochleagram + noise layer of the StochCochResNet50 architecture when
changing the standard deviation (� ) of the additive Gaussian noise. Model with best performance
across adversarial attacks is shown in bold.
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Figure SM8:Average cochlear channel values. (A) Histogram demonstrating the distribution of the
average value across time in each cochleagram channel. (B) The time average of each cochleagram
channel, ordered by frequency.

SM 4.4 Characterizing adversarial robustness of StochCochResNet50

We further validated the adversarial robustness of the StochCochResNet50 with� = 0 :125 to
L 1 attacks by sweeping through different numbers of PGD iterations and step sizes (Figure
SM9). The StochCochResNet50 with stochasticity during inference remained more robust than
the StochCochResNet50 without stochasticity during inference, and both StochCochResNet50 evalu-
ations were more robust than the CochResNet50.

As with our sanity checks on VOneResNet50 and GVOneResNet50, Figure SM9 results demonstrate
that going from random perturbations (zero iterations) to one PGD iteration increases the effect of
the attack, and again from one to many iterations the effect of the attack is increased, indicating that
the gradients are not broken and indeed contain information for computing adversarial perturbations.

We further tested the adversarial robustness of StochCochResNet50 toL 2 perturbations. Similar to
theL 1 results in Figure 3D, the StochCochResNet50 with stochasticity during inference was more
robust than the StochCochResNet50 without stochasticity during inference, however both were more
robust toL 2 perturbations than the the CochResNet50 with no adversarial defenses. The network
trained withL 1 adversarial perturbations (ATCochResNet50) was more robust than all networks. We

Figure SM9:L 1 adversarial evaluation of Auditory Networks. StochCochResNet50 is adversar-
ially attacked with (A) and without (B) including stochasticity during adversarial generation and
inference. CochResNet50 (C) is similarly adversarially attacked. The number of iterations and
the size of the attack step is varied for each model, withL 1 attack strength of� = 0 :001. For
StochCochResNet50 with inference, the gradients are averaged over 8 instantiations of the model.
The worst accuracy across all attack possibilities is reported, and the STD is computed across 5 sets
of test stimuli.
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