
A Pseudocode for Unadversarial Example Generation

Algorithm 1: Unadversarial patch generation
Input: Pre-trained classifier with parameters w, loss function `w(x, y), dataset D
Input: Image size m, patch size n, target class Ctarg, patch learning rate η
Result: An unadversarial patch for the class Ctarg
Randomly initialize a patch θ ∈ Rn×n×3;
for K iterations do

Sample batch of image-label pairs (x, y) ∼ D;
if y = Ctarg then

θpadded ← Zero-pad θ to size m×m;
mask← int(θpadded > 0) ; // 0/1 mask signalling patch location
T ← RandomAffineTransform() ; // random rotation, scaling, and
translation
xunadv ← x · (1− T (mask)) + T (θpadded) · T (mask) ; // apply patch using
mask
θ ← θ − η · sign (∇θ`w(xunadv, y)) ; // gradient descent step on θ

end
end
return θ

Algorithm 2: Unadversarial texture generation
Input: Pre-trained classifier with parameters w, loss function `w(x, y), set of background

images Db
Input: Texture size n, target 3D mesh Mtarg, texture learning rate η
Result: An unadversarial texture for the mesh Mtarg

Randomly initialize a texture θ ∈ Rn×n×3;
Init a texture tuv ∈ Rn×n×3 with tuv[i, j, 1] = i, tuv[i, j, 2] = j, tuv[i, j, 3] = 0 ; // tuv is a
UV map

for K iterations do
Sample background xbg ∼ D;
Sample a random 3D configuration (position and orientation) C3D;
xrend ← render Mtarg in configuration C3D with texture θ and background xbg;
xuv ← render Mtarg in configuration C3D with texture tuv and clear background;
xdrend ← linear (differentiable) approximation to xrend, i.e.,

xdrend[i, j] =

{
xbg[i, j] if xuv[i, j] is blank
θ[xuv[i, j]] if xuv[i, j] is not blank

xunadv ← xdrend − detach(xdrend) + xrend ; // so xunadv = xrend but
∇θxunadv = ∇θxdrend
θ ← θ − η · sign (∇θ`w(xunadv, y)) ; // gradient descent step on θ

end
return θ
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B 3D Simulation Details

B.1 Overview of AirSim

We conduct our simulation experiments using the high fidelity simulator, Microsoft AirSim. AirSim
acts as a plugin to Unreal Engine, which is a AAA videogame engine providing access to high
fidelity graphics features such as high resolution textures, realistic lighting, soft shadows etc. making
it a good choice for rendering for computer vision applications. AirSim internally provides physics
models for a quadrotor vehicle, which we leverage for performing autonomous drone landing. As a
plugin, AirSim can be paired with any Unreal Engine environmnent to simulate autonomous vehicles
that can be programmed with an API both in terms of planning/control as well as obtaining camera
images. AirSim also allows for controlling environmental features such as time of day, dynamically
adding/removing objects, changing object textures and so on.

B.2 3D Boosters Classification Experiment

Format of 3D models To evaluate the performance of pretrained ImageNet classifiers at detecting
3D unadversarial/boosted objects (e.g. the jet shown in the main paper) among realistic settings,
we set up an experiment using AirSim for image classification of common classes (warplane, car,
truck, ship, etc). We pick the class of ‘warplane’ as our object class of interest download publicly
available 3D meshes for this class from www.sketchfab.com. Using the open source 3D modeling
software Mitsuba, we modify the object texture to match the boosted texture for the corresponding
class, and then export these meshes into the GLTF format for ingestion into Unreal Engine/AirSim.
This allows us to import the boosted objects into the AirSim framework, and spawn them as objects
in any of the environments being created.

Environment screenshots and description Within AirSim, in the interest of generating realistic
imagery, we simulate a city environment (Figure 10a). For this experiment, we use the Computer-
Vision mode of AirSim, which does not simulate a vehicle but rather, gives the user control of a free
moving camera, allowing us to generate data at ease from various locations and varying camera and
world parameters.

Sampling and evaluation Once the 3D objects (unadversarial or normal) are present in AirSim’s
simulated world, the next step is to evaluate the classification of these objects from different camera
angles, weather conditions etc. Given the location of a candidate object (which we randomize and
average over five locations), we sample a grid (10× 10× 10) of camera positions in 3D around the
object. For each of these positions, we move AirSim’s main camera and orient it towards the object,
resulting in images from various viewpoints. At runtime, each of these images are immediately
processed by a pretrained ResNet-18 ImageNet classifier, which reports the top 5 class predictions.
We average the accuracies across the five different locations in the scene and the 1000 grid points
around the object at each location.

Along with this variation in camera angles and thereby, object pose in the frame; we also evaluate
the performance of of the various 3D objects given environmental perturbations. We achieve this
through the AirSim’s weather conditions feature, using which we simulate weather conditions such
as dust and fog dynamically with varying levels of severity of these conditions. We will open-source
binaries for the AirSim code and environments that we use which will allow people to replicate our
results, and investigate more scenarios of interest.

(a) City environment in
AirSim used for detec-
tion experiment

(b) Boosted ‘jet’ model
in the City environment.

(c) Sample landing pads
atop buildings in the City
environment.

(d) Drone in test environ-
ment used for the landing
experiments.
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B.3 Drone Landing Experiment

In this experiment, we evaluate how unadversarial/boosted objects can help robustify perception-
action loops that are driven by vision-based pose estimation. Perception-action loops are at the heart
of many robotics tasks, and accurate perception is imperative for safe, efficient navigation of robots.
We choose the scenario of autonomous drone landing as our experiment, and simulate it within
AirSim.

For this experiment, we create assets of landing pads that are similar to helipads on top of buildings
in the city environment(Figure 10c). We also use a test environment with a single landing pad located
on a patch of grass. An example of such a landing pad can be seen in Figure 10d. We use AirSim
to simulate a quadrotor drone in these worlds, which can be programmatically controlled using a
Python API. AirSim allows us to equip a downward facing, gimballed camera on this drone in order
to obtain RGB images, which are then processed by our landing pad pose estimation (regression)
model. Given an RGB image, the regression model outputs a 6 degree of freedom pose for the
landing pad. We use/optimize only the first two enteries of this output corresponding to the relative
x and y location of the landing pad w.r.t the drone.

We formulate the drone landing experiment as a visual servoing task: a perception action loop that
involves estimating the relative location of the pad from the image frame captured by the downward
facing camera of the drone, and sending an appropriate velocity command in order to align the
camera center with that of the pad. We achieve these through the following steps:

Data Collection. We use AirSim’s inbuilt data collection API for this step. Given the location of
the pad in the world, we sample various feasible locations for the drone in an imaginary cone whose
vertex aligns with the center of the landing pad. We then spawn the drone in these randomly sampled
positions, and obtain the RGB and segmentation views of the pad as generated by AirSim, along with
the relative ground truth position of the landing pad w.r.t the drone, and repeat this process to create a
dataset. The collected dataset contains 20000 images and is split 80-20 between train and evaluation
sets.

Landing pad pose estimator. We train a model that maps top view images of a scene with a landing
pad, to the relative 2D location of the landing pad w.r.t the drone in the camera frame. We use a
ResNet-18 pretrained on ImageNet as the backbone for the pose regressor, and we replace the last
classification layer with a regression layer outputting the (x, y) relative location of the pad w.r.t
drone. The model is trained end-to-end by minimizing the mean squared error (MSE) loss between
the predicted location and the ground truth location. The ground truth is collected along with the
images using the AirSim City simulation environment as describe before.

We train the model for 10 epochs using SGD with a fixed learning rate of 0.001, a batch size of 512,
a weight decay of 1e-4, and with MSE as the objective function. The model converges fairly quickly
(within the first few epochs).

Drone Landing. To use the pose estimator’s predictions and send appropriate actions, we utilize
the Multirotor API of AirSim. This allows us to control the drone by setting the desired velocity
commands along all the axes (translational/rotational). Given the position of the landing pad in the
scene relative to that of the drone( as output by the pose regressor) we execute the landing operation
by sending appropriate velocity commands to the drone.

To generate the right velocity commands, given the relative position of the landing pad, we use
a standard PID controller that computes corrective velocity values until the position of the drone
matches that of the landing pad. For a pose output by the regressor treated as the setpoint Pset,
and current drone pose Pcurr and at any point at time t, the appropriate velocity command v(t) can
simply be computed as follows:

v(t) = Kpe(t) +Kd
d

dt
e(t) +Ki ∗

∫ t

0

e(t)dt

where e(t) = Pset − Pcurr, Kp, Kd, and Ki are the hyperparameters of the PID controller and are
manually tuned. We find that Kp = Kd = 5 and Ki = 0 to be reasonable for our task.

For realistic perturbations to the scene, similar to the 3D boosters classification experiment, we
continue making use of the weather API to generate weather conditions in AirSim. This results
in a variation of factors such as amount of dust or fog in the scene, allowing us to evaluate the
performance of landing under various realistic conditions.

18



C Experimental Setup

C.1 Pretrained vision models we evaluate

Here we present details of the different vision models we use in our paper. For more details
on all of these, please check the README of our code at https://github.com/microsoft/
unadversarial.

Corruption benchmark experiments: We use pretrained ResNet-18 and ResNet-50 (both stan-
dard and `2-robust with ε = 3) architectures from [SIE+20]: https://github.com/microsoft/
robust-models-transfer. 3D object classification in AirSim: We use an ImageNet pretrained
ResNet-18 architecture from the PyTorch’s Torchvision4 to classify all the boosted and non-boosted
versions of the jets, cars, ships etc in AirSim.

Drone landing experiment in AirSim: We finetune an ImageNet pretrained ResNet-18 model on
the regression task of drone landing. The last layer of the pretrained model is replaced with a 2D
linear layer estimating the relative pad location w.r.t the drone. We collect a 20k sample dataset for
training the pad pose estimation in AirSim with an 80− 20 train-val spilt. We use a learning rate of
0.001, a batch size of 512, a weight decay of 1e− 4. We train for 10 epochs.

Physical world unadversarial examples experiment: Similar to the 3D object classification ex-
periment in AirSim, we use an ImageNet pretrained ResNet-18 architecture from Torchvision.

C.2 Unadversarial patch/texture training details

Patches training details We fix the training procedure for all of the 2D patches we optimize in our
paper. We train all the patches starting from random initialization with batch size of 512, momentum
of 0.9, and weight decay of 1e−4. We train all the patches for 30 epochs (which is more than enough
as we observe that for both ImageNet and CIFAR-10, the patch converges within the first 10 epochs)
with a learning rate of 0.1 We sweep over three learning rates ∈ {0.1, 0.01, 0.001} but we find
that all of these obtain very similar results. So we stick with a learning rate of 0.1 for all of our
experiments..

For the classification tasks (i.e., everything but drone landing) we use the standard cross-entropy
loss. For the drone landing task (landing pad pose estimation), we use the standard mean squared
error loss.

Texture training details We now outline the process for constructing adversarial textures. We im-
plemented a custom PyTorch module with a distinct forward and backward pass; on the forward
pass (i.e., during evaluation), the module takes as input an ImageNet image, and a 200px by 200px
texture; using the Python bindings for Mitsuba [NVZ+19] 3D renderer, the module returns a render-
ing of the desired 3D object, overlaid onto the given ImageNet image. On the backwards pass (i.e.,
when computing gradients), we use the 3D model’s UV map5—a linear transformation from (x, y)
locations on the texture to (x, y) locations in the rendered image—to approximate gradients through
the rendering process. This is the same procedure used by [AEI+18] for constructing physical ad-
versarial examples. Note that this is a simple approximation that only accounts for the location of
pixels in the rendered image (i.e., ignores the effects of lighting, warping, etc.). However,

C.3 Details of the physical world experiment

To conduct the physical-world experiments, we used a toy racecar6, a toy warplane7 (both from
amazon.com) as well as two household objects: a coffeepot and eggnog container. We then printed
the unadversarial patches corresponding to classes “racer,” “warplane,” “coffeepot,” and “eggnog”
on an HP DeskJet 2700 InkJet printer, at 250% scale. We adhere the patches to the top of their
respective objects with clear tape (the results are shown in Figure 9b). We choose 18 distinct poses
(camera positions), and for each pose took one picture of the object with the patch attached, and one

4These models can be found here https://pytorch.org/docs/stable/torchvision/models.html
5Mitsuba provides direct access to the UV map through the aov integrator; see the code release for more

details.
6https://www.amazon.com/gp/product/B07T5X69TZ/
7https://www.amazon.com/CORPER-TOYS-Pull-Back-Aircraft-Birthday/dp/B07DB3839X/
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Figure 11: Photographs in different poses of the four physical objects we experimented on, with and
without an unadversarial patch.

picture without (keeping the location of the patch constant throughout the experiment). Example
photographs are shown in Figure 11. We evaluated a pre-trained ResNet-18 classifier on the resulting
images.

C.4 Datasets

We use two datasets across all the paper:

1. CIFAR [Kri09] https://paperswithcode.com/dataset/cifar-10.
2. ImageNet [RDS+15], with a custom (research, non-commercial) license, as found here

https://paperswithcode.com/dataset/imagenet.

C.5 Compute

We use an internal cluster containing NVIDIA 1080-TI, 2080-TI and P100 GPUs. Each experiment
required no more than 1 GPU at a time.

C.6 Replicate our results

We desired simplicity and kept reproducibility in our minds when conducting our experiments, so
we use standard hyperparameters and minimize the number of tricks needed to replicate our results.
Our code is available at https://github.com/microsoft/unadversarial.
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D Omitted Results

In the below figure, we show a more detailed look of the main results of the benchmarking exper-
iments in our paper, along with useful baselines. The single color plots (e.g. the left subplot in
Figure 12) report the average performance over the 5 severities of ImageNet-C and CIFAR-10-C.
The multicolor bar plots (e.g. the right subplot in Figure 12) report the detail performance per sever-
ity level. The horizontal dashed lines report the performance of the pretrained models on the original
(non-patched) ImageNet-C and CIFAR-10-C datasets and serve as a baseline to compare with. For
both ImageNet and CIFAR as shown in Figure 13 and Figure 12, we are able to train unadversarial
patches of various size that, once overlaid on the datasets, make the pretrained model consistently
much more robust under all corruptions.

D.1 Corruption benchmark main results: additional results to Figure 4b

Here we show the detailed main results for boosting ImageNet and CIFAR-10 with unadverasarial
patches.
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Figure 12: Robustness of a trained 2D booster over pretrained ImageNet ResNet-18 model.
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Figure 13: Robustness of a trained 2D booster over pretrained CIFAR-10 ResNet-50 model.
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D.2 Baselines

Below, we report a number of alternative ways to create patches for boosting the performance of
object recognition.

D.2.1 QR-Code

We compare our unadversarial patches to the well-known QR-Code patches. We create a QR-Code
for each class of the ImageNet dataset using Python’s qrcode package(we avoid using CIFAR-10
since the images are too small for QR-Codes to be visible and detected at all). We overlay the
QR-Codes over the ImageNet validation set according in accordance to what label each image has.
We add the various ImageNet-C corruption on top of the resulting images, then we use python’s
Pyzbar8 package to detect the QR-Codes. The results are shown in Figure 14. The performance of
QR-Codes is not comparable to what we obtain with unadversarial patches (see Figure 4b).
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Figure 14: QR-Code boosted ImageNet results under various corruptions.

8We experiment with OpenCV for detecting the QR-Codes but find that Pyzbar leads to
better performance.
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D.2.2 Best training image per class as patch

Another natural baseline that we compare with is using the best images per class in the training set
of the task of interest as patches for boosting the performance of pretrained models. For example,
for ImageNet classification, we simply evaluate the loss of each training image using a pretrained
ImageNet model (ResNet-18 in our case), and we the image with the lowest loss per class as the
patch for that class. Now we overlay these found patches onto the ImageNet validation set with
random scaling, rotation, and translation (as shown in Figure 15), we add ImageNet-C corruptions,
and we evaluate this new dataset using the same pretrained model we used to extract the patches.
The results for ImageNet and CIFAR-10 are shown in Figure 15 and Figure 16, respectively.
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Figure 15: Best training image with translation, rotation, and scaling for ImageNet.
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Figure 16: Best training image with translation, rotation, and scaling for CIFAR-10.
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D.2.3 Best training image vs random training image as patch

Here we investigate whether using a random image from the training set does any better than using
the best-loss image as a patch. The results are shown in the below Figures. As one would expect,
using a random image from the training set leads to strictly worse performance. This holds for both
ImageNet and CIFAR-10 as shown in Figure 17 and Figure 18.
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Figure 17: Best training image vs random training image with translation, rotation, and scaling.
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Figure 18: Best training image vs random training image with translation, rotation, and scaling.
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D.2.4 Predefined fixed-pattern unadversarial patches

This baselines is slightly different than the previous baselines since it allows the underlying classifi-
cation model to be changed. Basically, we fix the set of patches to a predefined pattern (here a fixed
random gaussian noise for each class), and we train a classifier on an undversarial/boosted dataset
with these patches. The resulting models are consistently weaker on all corruptions of ImageNet-C
and CFAR-10-C as shown in Figure 19 and Figure 20 compared to our trained patches the main
paper in Figure 4b.
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Figure 19: Robustness of an ImageNet ResNet-18 model trained on a predefined patch.
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Figure 20: Robustness of a CIFAR-10 ResNet-50 model trained on a predefined patch.
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