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This supplementary material provides results for additional experiments and details to reproduce our
results that could not be included in the paper submission due to space limitations.

• Sec. A provides additional analysis on our meta-learners based on hard parameter sharing
idea in MTL. The analysis shows the optimal layer sharing configurations for multimodal
and unimodal task distributions. The analysis further justifies the configurations used in the
main paper.

• In Sec. B, additional transference analysis for both multimodal and unimodal few-shot
classification are provided. The additional results are consistent with those in the main paper,
and support the finding: knowledge transfer between different modes happens in the later
stages of the training. Also, results show that multimodality in terms of transference also
exists in conventional unimodal few-shot learning at a micro-level. This further supports the
applicability of proposed KML scheme for conventional few-shot learning.

• Sec. C provides the Reinforcement Learning results for proposed KML scheme.
• Sec. D provides additional experiments to verify the proposed interpretation of the mod-

ulation scheme in MMAML [1]. More specifically, the new interpretation is compared
with original Feature-wise Linear Modulation (FiLM) scheme used in MMAML in terms of
generated feature maps and also met-test results. This comparison shows same featuremap
values for CNN layers and the similar training results in both versions.

• Sec. E discusses the parameter reduction of the proposed simplified parameter generator
network compared to a single MLP. Results show that for a 4 Layer CNN, proposed
simplified structure provides better generalization performance and reduces the number of
parameters by a factor of 152.

• Sec. F addresses the parameter and computational overhead of the proposed KML compared
to original FiLM used in MMAML.

• Sec. G provides additional experimental results for higher ranks of the proposed simplified
structure.

• In Sec. H the results of applying the proposed KML algorithm for visual reasoning is
presented.

• Sec. I discusses two roles of the meta-learner in the multimodal meta-learner framework:
affecting the meta-learning performance, and feeding the modulation network for gradient
update. Experimental results show that when ProtoNet [2] is replaced by MAML [3]
in general framework of MMAML , a more stronger task encoder is learned which can
lead to generating more accurate modulation parameters, and consequently improve the
generalization performance.

• The details of datasets, network structure and hyperparameters used in all experiments are
provided in Sec. J.

• Finally, the limitations, broader impact and amount of compute are discussed in Sec. K.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



A Additional Few-Shot Classification Results

In this section we include additional experimental results for both unimodal and multimodal few-shot
classification. Note that here we focus on the analysis of our proposed meta-learner considering the
hard parameter sharing concept in MTL. We recall that, by hard parameter sharing for a layer, similar
to MTL, we mean the layer that is not modulated using proposed KML and all parameters are shared
between different few-shot tasks. For example, in the case of "1st Layer Shared", we mean we do
not apply the modulation on the parameters of the first layer (lines 5,6,7,11 and 12 are bypassed for
these parameters in Algorithm 2). While for the remaining layers, the modulated parameters are
generated and applied in the inner-loop, and then the modulation network is updated in the outer-loop
following the procedure in Algorithm 2. So, when all of the layers are shared, the algorithm reduces
to the vanilla meta-learner.

Unimodal Few-Shot Classification. When compared to a multimodal scenario, in conventional
unimodal few-shot setup, there could be less negative knowledge transfer between few-shot tasks
(see Sec. B for an example). In this case, from the experiences in the MTL domain, we expect the
performance to be increased when some layers are shared between tasks (specially earlier layers
which encode low-level features [4]). The meta-test accuracies for different number of shared layers
in a 4-layer CNN are shown in table 1. In this case, no shared layers means that all of the layers are
modulated using task-aware KML scheme. In contrast, all layers shared means that no modulation is
applied. Based on these results, proposed KML improves the unimodal few-shot classification by up
to 2.5% compared to the vanilla meta-learner. Additionally, modulating only third and fourth layers of
the CNN on average yields the best results. The details of network architecture and hyperparameters
used for this experiment can be found in Sec. J.

Table 1: Meta-test accuracies on unimodal few-shot classification for different number of shared
layers.

Shared Layers mini-ImageNet tiered-ImageNet
1-shot 5-shot 1-shot 5-shot

No Shared Layers 53.18±0.51% 67.18±0.39% 54.36± 0.39% 71.84± 0.27%

1st Layer 53.54± 0.66% 68.07±0.45% 54.22± 0.35% 71.93± 0.28%

1st & 2nd Layers 54.10± 0.61% 67.31± 0.35% 54.67± 0.39% 72.09± 0.27%

1st, 2nd & 3rd Layers 52.83± 0.57% 66.98± 0.44% 54.10± 0.37% 71.68± 0.29%

All Layers (ProtoNet) 51.55±0.51% 65.83±0.36 % 53.01±0.33% 70.11±0.29%

Multimodal Few-Shot Classification. In contrast, in multimodal scenario, few-shot tasks are more
diverse. So, the negative transfer can happen more often due to the larger discrepancy between the
characteristics of the different datasets. Therefore, here we expect the performance to degrade by
sharing layers between tasks from different modes. The experimental results for sharing different
number of layers in a 4-layer CNN are shown in table 2 for 2Mode multimodal classification
(including mini-ImageNet and FC100). Similar results are obtained for other modes. As the results
suggest, sharing layers between a diverse set of tasks degrades the performance, and the best results
obtained when all of the layers are modulated.

Considering this behavior, for multimodal few-shot classification, the optimal layer sharing configu-
ration is to modulate all layers and use no shared layers. Also for unimodal scenario, sharing first
two layers produces the best results due to less negative transfer in unimodal scenario. These results
justify the configurations used in the main paper.

B Additional Experimental Results on Transference Analysis

Here we provide some additional results on transference analysis that could not be included in the
main text due to the lack of space. First, we provide some additional results on the transference from
mini-ImageNet meta-train tasks to FC100 target tasks. Then, the results for transference analysis
from Omniglot to FC100 is discussed. Finally, we provide some results for transference between
tasks within a conventional unimodal few-shot learning.
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Table 2: Meta-test accuracies on multimodal few-shot classification by including hard parameter
sharing.

Shared Layers 2Mode†

1-shot 5-shot

No Shared Layers 44.40±0.65% 59.31±0.62%

1st Layer 44.18± 0.64% 59.07±0.60%

1st & 2nd Layers 43.77± 0.65% 58.65± 0.59%

1st, 2nd & 3rd Layers 43.59± 0.60% 58.40± 0.61%

All Layers (ProtoNet) 43.05±0.58% 57.70±0.59 %

Network Structure. In the transference analysis experiments using ProtoNet and MProtoNet+KML
networks, we exactly use the same structure and hyperparameters discussed in Sec. J of this
supplementary.

B.1 Cross-Mode Transference in Multi-Modal Few-Shot Learning

Transference from miniImageNet to FC100. Here, we repeat the transference analysis from 300
randomly sampled mini-ImageNet meta-train source tasks into a randomly sampled target tasks from
FC100. We train the model with multimodal dataset (including both mini-ImageNet and FC100
tasks). For extracting the transference histogram in an specific epoch, we use the network parameters
in this epoch as initial parameters for transference analysis. Then using Algorithm 1 (main paper),
first we calculate the loss on target meta-test task using initial parameters. Then, for each source task,
we use the data from that task to calculate the adapted parameters to that task and then calculate the
loss of target task on adapted parameters. Then, transference from each task is the ratio between the
loss of target task after and before adapting.

This target classification task contains samples from “otter, girl, dolphin, raccoon, and skunk”. The
classes are disjoint enough and the sampled data points are clean which makes classification task
a less challenging one to handle. On the other hand, most of the classes share similar underlying
structure as in the animal subcategories of the mini-ImageNet tasks. So, as we expect, the ProtoNet
also performs better in meta-target task with the information provided by the source mini-ImageNet
tasks. The transference histograms during training are shown in figure 1. Based on the transference
results, following points can be considered:

• In the beginning iterations of the training, most of the source tasks from mini-ImageNet have
negative transference on the target task. The probable reason could be that at the beginning
stages, the model has not learned to generalize and still tries to remember the meta-training
tasks and corresponding samples (Please note that the LR is measured on a meta-test task
which consists of unseen classes under the few-shot problem setting).

• As training proceeds, the percentage of the positive transference increases. After learning the
useful features, the network begins to overfit to training tasks and as a result its generalization
performance (knowledge transfer to FC100 meta-test task) degrades.

Overall, our additional results are consistent with those in the main paper, and support the observation:
In the case of cross mode knowledge transfer, negative transference occurs at the beginning
iterations and increasingly more positive transference occurs as training proceeds. As the major
advantage of cross mode knowledge transfer is to improve generalization to better handle unseen test
tasks, it is reasonable to observe positive transference in the later iterations when the networks learn
features for generalization.

Average Transference. The average transference values from 300 meta-train mini-ImageNet tasks
to 100 meta-test FC100 tasks are shown in figure 2. For calculating each point in this figure, we have
averaged the transference results from 300 source tasks to each task and then computed the average
along all target tasks in that training iteration. This figure shows that in the beginning of the training,
the information provided by the mini-ImageNet are almost negative for generalization performance
on the FC100 meta-test tasks. As training proceeds and the network learns necessary features (and
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Figure 1: Transference Histogram from mini-ImageNet to FC100 task.

probably low and mid-level ones), it can make good use of additional information provided by the
external mini-ImageNet dataset. This means that cross-mode knowledge transfer occurs on the later
iterations of training. Results also show that on average the proposed method performs better in
terms of obtaining the information provided by the source meta-train tasks.

Transference from Omniglot to FC100. Here we investigate the transference from Omniglot
meta-train tasks to FC100 meta-test target task. Omniglot is a set of black-and-white images of
handwritten characters with clean background. Therefore, classification of these tasks requires not
much complicated feature representation, and the major challenge is limited number of data samples
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Figure 2: Average transference from 300 mini-ImageNet task to 100 meta-test FC100 tasks.

in each task. Please note that current meta-learning algorithms can easily handle the Omniglot
few-shot classification tasks, and their performance is almost saturated on this dataset. However, by
including the Omniglot in our analysis, we aim to investigate the dynamics of knowledge transfer
from Omniglot to challenging FC100 few-shot tasks.

In this experiment we train both ProtoNet and proposed MProtoNet+KML on a meta-dataset con-
structed by combining Omniglot and FC100 few-shot tasks. We samples 300 meta-train Omniglot
tasks, and a meta-test FC100 task as target task to perform transference analysis. The transference
results are shown in figure 3. Considering these results, similarly, as training proceeds the negative
knowledge transfer reduces. An interesting phenomena is the high rate of positive transfer in the
later training stages. In the later training stages, probably the model overfitts to meta-train classes by
learning some features that can not generalize well for meta-test tasks. On the other hand, source
meta-train tasks from Omniglot require strong but simpler features due to their samples type. So, a
potential reason is that since Omniglot meta-train tasks emphasize on these features, they can prevent
overfitting and have a positive impact on the generalization performance on the FC100 meta-test task.

B.2 Transference within the same mode in Unimodal Few-Shot Learning

In this section, we analyze the knowledge transfer between tasks within a conventional unimodal
dataset. While a single dataset is defined to be one mode following the definition in [1], tasks from
different classes can have a negative or positive impact on each other within a dataset. To investigate
this, we analyze the transference from a number of meta-train miniImageNet tasks to a meta-test
task from the same dataset. The experimental setup is exactly like the previous experiments, but
the only difference is that we just train the model on the miniImageNet dataset (not combination of
datasets). The transference results from 300 randomly sampled miniImageNet meta-train tasks on a
target miniImageNet meta-test task is shown in figure 4 for different training iterations.

Transference histograms show that there is a multimodality in terms of transference from meta-train
tasks of a dataset to a target meta-test task from the same dataset. This means that a group of
tasks have positive knowledge and others have negative. This can be interpreted with our previous
findings. For example, in the simplest form, if the target meta-test task includes samples from animal
classes, we expect the meta-train tasks from animal classes to have positive knowledge transfer, and
tasks from non-animal classes to have negative transfer. Considering this behaviour within tasks
in mini-ImageNet dataset, applying proposed KML scheme boosts the performance by reducing
negative transfer (also shown in histograms) through assigning task-aware layers.
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Figure 3: Transference Histogram from Omniglot to FC100 task.

C Reinforcement Learning Results

The proposed KML idea can be extended to Reinforcement Learning (LR) environments, when using
an optimization-based meta-learner like MAML. we have applied our KML algorithm on the official
code of MMAML for RL experiments on three different environments used in [1]: Point Mass,
Reacher, and Ant. Similar to [1], for each environment, the goals are sampled from a multimodal
goal distribution, with similar environment-specific parameters as [1]. To have a fair comparison,
we have kept all other hyperparameters the same as the [1]. The mean and standard deviation of
cumulative reward per episode for multimodal reinforcement learning problems with 2, 4 and 6
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Figure 4: Self-Transference Histogram within mini-ImageNet dataset.

modes are shown in table 3. Results show that our proposed KML can achieve gain over [1] in all of
the RL experiment setups.

D Verification of New Interpretation

In Sec. 5.1. of the main paper, we propose a new interpretation of modulation scheme used in
MMAML. Briefly, we show that feature-wise linear modulation (FiLM) [5] applied to each channel
of feature map in MMAML, can be considered as convolving the input with modulated kernel
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Table 3: The mean and standard deviation of cumulative reward per episode for multimodal reinforce-
ment learning problems with 2, 4 and 6 modes reported across 3 random seeds.

Method Point Mass 2D Reacher Ant
2Modes 4Modes 6Modes 2Modes 4Modes 6Modes 2Modes 4Modes

MMAML -136±8 -209±32 -169±48 -10.0±1.0 -11.0±0.8 -10.9±1.1 -711±25 -904±37

MMAML+KML(ours) -121±9 -197±30 -161±41 -9.6±1.0 -10.6±0.7 -10.6±1.0 -689±23 -891±36

Ŵi = ηiWi and adding the modulated bias term b̂i = ηibi + γi. In addition to the mathematical
formulation provided in the main paper, we also verify this new interpretation with experiments.
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Figure 5: The structure of each layer in MMAML.

First,, we compare generated featuremaps by the proposed new interpretation for MMAML (new-
MMAML) with the ones generated by the original implementation of MMAML. For implementing
the new interpretation of MMAML, we use the official code provided by authors with exactly same
hyperparameters. Figure 5 shows the structure of each Convolutional Block used in MMAML for
few-shot image classification. Original MMAML implementation uses the Batch Normalization (BN)
layer before modulation. So, for a fair comparison, we disable the BN layer in MMAML and extract
the feature maps after applying FiLM. Then for new-MMAML, we simply perform convolution with
modulated parameters Ŵi and b̂i to produce featuremaps. The produced featuremaps are same for
all CNN layers. For example, for a mini-ImageNet classification task, the average error between two
produced featuremaps in first layer is around 3.7e−3 while the average absolute value of feature
maps is around 1.4e+2. Note that this minor error probably stems from the floating-point round-off
error in PyTorch [6].

Table 4: Comparison of meta-test accuracies for original implementation of MMAML with proposed
new interpretation (new-MMAML) for few-shot classification on multimodal scenario.

Method 2 Mode 3 Mode 5 Mode
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MMAML 67.67±0.63% 73.52±0.71% 57.35±0.61% 64.21±0.57% 49.53±0.50% 58.89±0.47%

new-MMAML 67.43±0.61% 73.64±0.66% 57.44±0.60% 64.09±0.61% 49.23±0.51% 58.71±0.44%

Second, we compare the training performance of MMAML and new-MMAML. In the official
implementation of MMAML, the affine transform of the BN layer [7] is disabled, due to the
similar functionality performed by FiLM. However, since in new-MMAML we are using modulated
parameters, we enable the affine transform of the BN layer. Meta-test results are shown in table 4
for different multimodal image classification modes. As the results suggest the new-MMAML has
almost the same performance as the MMAML which also verifies the proposed interpretation through
experiments. The minor difference between the results is due to the difference between the BN layer
in two implementations (as discussed).

8



E Parameter Reduction in Proposed Parameter Generator

In Sec. 5.2 of the main paper we have proposed a structure to reduce the number of parameters in the
modulation parameter generator network gφ. As discussed, proposed structure includes three smaller
MLP modules. Here a more detailed comparison between the proposed simplified structure and a
single MLP is provided. A standard convolutional layer is parameterized by convolution kernel of
size Nk ×Nk ×Ni×No and a bias term of size No, where Nk is the spatial dimension of kernel, Ni
is the number of input channels and No is the number of output channels. Then the required number
of parameters for an MLP with single hidden layer that takes the task embeddings with size Nυ to
produce the whole elements for this layer is: Nυ × (Nk × Nk × Ni × No + No). Instead using
the proposed structured MLP, we use three smaller MLPs to produce No, Ni ×Nk ×Nk and No
parameters, respectively. Then the parameter reduction ratio compared to single MLP is:

Nk ×Nk ×Ni ×No +No
Nk ×Nk ×Ni + 2No

Following the structure proposed in [1], the base network consists of four convolutional layer with
the channel size 32, 64, 128 and 256. In our KML scheme we intend to produce a modulation
parameter for each parameter of the base network using task embedding υ (with a dimension of 128)
as input. Table 5 compares the number of parameters in single MLP and proposed structure when
used as parameter generation network for each layer. The total number is also provided. As one can
see, proposed structure reduces the number of the parameters by a factor of 152.

Table 5: Number of parameters required in each structure as modulation parameter generator gφ.

Layer Number of parameters
MLP Proposed Structure

#1 114,688 11,648

#2 2,367,488 45,056

#3 9,453,568 90,112

#4 37,781,504 180,224

Total 49,717,248 327,040

We also compare using MLP with proposed structure in terms of convergence speed. We use the
same hyperparameters for training both models. The accuracy of meta-validation set during meta-
training on 3Mode, 5-way 1-shot setting is plotted in figure 6. We can clearly see that using the
proposed structure as modulation parameter generator, the network converges faster and also yields
better results in term of accuracy compared to single MLP. We have also provided the meta-test
accuracy results for 3Mode few-shot classification in Table 6. These results also support the improved
performance of the proposed simplified structure versus single MLP.

Table 6: 2Mode Meta-test accuracy of the proposed simplified structure versus single MLP for 2Mode
5-way scenario.

Method Setup
1shot 5shot

MLP 61.22±0.56% 69.38±0.48%

Proposed Simplified Structure 62.08±0.54% 70.03±0.43%

F KML vs FiLM: Parameter and Computational Overhead

Previously, we have demonstrated that replacing FiLM with the proposed KML method significantly
improves the accuracy of the meta-learner in both multimodal and conventional unimodal few-shot
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Figure 6: The meta-validation accuracy during meta-training.

classification. KML achieves this substantial improvement by modulating the whole elements of
the kernel instead of applying the affine transform on the feature maps (FiLM in [1]). This is done
by generating a larger number of parameters compared to FiLM. Here we analyze the overhead
introduced by replacing FiLM (existing method in [1]) with KML (our proposed method).

First, we discuss the number of additional parameters introduced by KML. Since the only difference
between the two methods is on the generator, we consider this module for comparison. Recalling from
section D of the supplementary, the number of parameters required in proposed simplified structure in
KML (for a layer) isNυ×(Nk×Nk×Ni+2No). Since in FiLM, only two parameters are generated
for each channel of the convolutional layer, the number of parameters in the generator is Nυ × (2No).
Therefore, the additional overhead of KML for the generator becomes Nυ ×Nk ×Nk ×Ni for each
layer. Considering we have four convolutional layers in our structure and for each layer, a separate
generator is used, in total, KML adds around 261.5 K parameters to the ones in FiLM. Considering
this number, for example, the total number of parameters in MProtoNet+KML (our method) increases
by 22.9% compared to MProtoNet (existing method in [1]).

Table 7: Training time for MProtoNet and MProtoNet+KML (proposed method) for 2Mode setup.

Method Training Time Accuracy
MProtoNet 173 minutes 56.03±0.64%

MProtoNet+KML(proposed) 182 minutes 59.31±0.62%

Second, in terms of computational overhead, the table 7 shows the total training time for MProtoNet
(existing method in [1]) and MProtoNet+KML (ours) for 2Mode (combination of Omniglot and
miniImageNet), 5-way 5-shot scenario. As the results show, the computational overhead of the
proposed method in training time is around 5.2%. Similar training results are obtained for the other
setups (3 Mode, 5Mode). Also please note that the inference time of our method and existing method
[1] are almost the same (on average 0.087 seconds for each mini-batch of few-shot tasks).

G Simplified Parameter Generator as Low-Rank Approximation

The proposed simplified structure (figure 4 of the main paper) can be considered as a low-rank
approximation (1-rank). In the section E of this supplementary, we have shown that this 1-rank
approximation achieves better meta-test results compared to a full-rank version. Here we check the
results for higher ranks (2-rank and 3-rank). For producing the 2-rank approximation, we produce
two different matrices: M1 and M2 using a similar method as (8) in our paper, and then add these two
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matrices to generate the final modulation matrix M =M1 +M2. Please note that this time instead of
3 modules, we have 5 modules in our simplified structure. Two pairs of modules are used to generate
the M1 and M2, and the fifth one is used to generate the bias term. We have checked these vectors
to be independent. A similar procedure is used to design a 3-rank approximation of the MLP using
three different pairs.

Table 8: Meta-test accuracies for 2Mode setup with different rank approximation in simplified
parameter generator gφ.

Setup MProtoNet MProtoNet+KML(1-rank) MProtoNet+KML(2-rank) MProtoNet+KML(3-rank)
5way-1shot 70.60±0.56% 73.69±0.52% 72.12±0.54% 72.06±0.52%

5way-5shot 75.72±0.47% 79.82±0.40% 78.94±0.43% 78.70±0.46%

The meta-test results for 2Mode classification are shown in table 8. As results suggest, the 2-rank
and 3-rank approximations still have better performance compared to the MProtoNet. However,
the performance is degraded compared to the 1-rank approximation. The possible reason could be
overfitting of 2-rank and 3-rank versions due to more parameters.

H KML for Visual Reasoning

We remark that based on the proposed new interpretation of the FiLM scheme, our proposed KML
can be seen as a generalization of FiLM. So we can expect that applying KML to the areas improved
by FiLM may bring some further improvement. We also declare that the amount of improvement
depends on the underlying structure of learning tasks. For example in the case of few-shot learning
(especially multimodal distribution), since there could be a significant difference between different
tasks (e.g., digit classification vs natural object classification), KML brings a large improvement
over FiLM by letting the more powerful adaption of kernels for each few-shot task. Intuitively, this
improvement may be less for the applications where more similar kernels are required for different
tasks, e.g., visual reasoning on CLEVR dataset where there is a significantly lower variation on image
statistics compared to our multimodal few-shot distribution, and the main difference originates from
the question, and probably program signal.

Table 9: Results of applying the proposed KML on visual reasoning dataset CLEVR.

Method Count Exist Compare Numbers Query Attribute Compare Attribute Average
CNN+GRU+FiLM [5] 94.3% 99.1% 96.8% 99.1% 99.1% 97.7%

CNN+GRU+KML(ours) 96.1% 99.5% 97.1% 99.3% 99.1% 98.2%

We applied the KML to the CLEVR dataset by replacing KML with the FiLM in the official code of
the FiLM paper [5]. The results are shown in table 9. As the results show, KML on average improves
the FiLM by 0.5% in the 5 question types. Note that KML obtains this improvement while FiLM has
achieved very high accuracy already.

I Gradient Flow From Meta-learner to Modulation Network

In general multimodal meta-learning framework, meta-learning algorithm plays two important roles.
First, its meta-learning capability directly affects the multimodal meta-learning performance. Second,
modulation network is fed with the gradient propagated from the meta-learner in each training
iteration. In the case of good gradient propagation, the modulation network can be trained well to
predict the task mode and generate powerful modulation parameters. So, good gradient flow from
meta-learner to modulation network is as important as the good performance of the meta-learner
itself.

Limitation of MMAML in Terms of Gradient Flow. While proposing a generic framework,
another limitation of MMAML is due to using MAML as meta-learner. MAML is a simple and elegant
meta-learning algorithm, however, backpropagating the gradients through inner-loop (with multiple
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updates) requires the second order gradients for optimization. This increases the computational
complexity of meta-learning and makes it difficult for gradients to propagate [8]. This problem
gets even worse when using MAML in multimodal meta-learning framework where the modulation
network and meta-learner are supposed to be trained together in an end-to-end fashion. We empirically
found that multimodal meta-learning framework can benefit from using a more simpler meta-learner
like ProtoNet [2] which has better gradient propagation due to replacing the inner-loop adaptation
with prototype construction.

Experiment. To gain a better understanding on the effective modulation network training, we
randomly sample 1000 5-mode, 5-way 1-shot meta-test tasks and calculate the task embeddings υ
for each task using both MMAML and MProtoNet. Then we employ the t-SNE [9] to visualize υ
in Figure 7. As one can see, in the task embeddings produced by MProtoNet, the embeddings for
different modes are separated better.
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Figure 7: t-SNE plots for task embedding vectors υ produced for 1000 randomly generated test tasks
in 5Mode, 5-way, 1-shot setup by MMAML and MProtoNet.

J Experimental Details

J.1 Meta-Dataset

To create a meta-dataset for multi-modal few-shot classification, we utilize five popular datasets:
OMNIGLOT, MINI-IMAGENET, FC100, CUB, and AIRCRAFT. The detailed information of all the
datasets are summarized in Table 10. To fit the images from all the datasets to a model, we resize all
the images to 84 × 84. The images randomly sampled from all the datasets are shown in Figure 8,
demonstrating a diverse set of modes.

Table 10: Details of Datasets.

Dataset Train Classes Validation Classes Test Classes Image Size Image Channel Image Content
Omniglot 4112 688 1692 28×28 1 handwritten digits

mini-ImageNet 64 16 20 84×84 3 natural objects
FC100 64 16 20 32×32 3 natural objects
CUB 140 30 30 ∼500×500 3 species of birds

Aircraft 70 15 15 ∼ 1-2 Mpixels 3 types of aircrafts

J.2 Meta-Learning Algorithms in Multimodal Framework

Here we provide more details about the meta-learners used in experiments including: MAML [3]
and ProtoNet [2].
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Figure 8: Examples of images used to create multimodal meta-dataset.

MAML. MMAML uses the model-agnostic meta-learning (MAML) algorithm [3] as meta-learner
in base network. Given a network fθ, MAML aims to learn a common initialization for weights θ
under a certain task distribution such that it can adapt to new unseen task with a few steps of gradient
descent. In multimodal scenario of MMAML, for each task Ti, first the modulation parameters τ i are
generated. Then base network uses these parameters together with the samples from support set Si to
adapt the network weights to that task using gradient descent:

θ′i = θ − α∇θLi(fθ(Si; τ i))

Where Li(fθ(Si; τ i)) denotes the loss function on the support set of task Ti. Then the adapted model
is evaluated on the query samples of the same task Qi which provides the feedback in the form of
loss of gradients for generalization performance on that task. The feedback from a batch of tasks is
used to update the base network weights θ to achieve better generalization:

θ ← θ − β∇θ
∑
Ti

Li(fθ′i(Qi))

The modulation network parameters (φ, ϕ) are also updated in a same manner using the feedback
from the generalization performance of the adapted model.

ProtoNet. As another multimodal meta-learner, we replace the ProtoNet with MAML due to its
ease of training and better gradient flow. In this algorithm, first modulation parameters are generated
by processing task samples. Then network parameters are modulated using these parameters to
produce modulated parameters θ̂T 1. ProtoNet computes a prototype for each class through an
embedding function fθ̂T : RD → RF which maps an input sample x ∈ RD to an F -dimensional
feature space. The prototype cn of a class n = 1, . . . , N , is the mean vector of the embedded support
samples belonging to that class:

cn =
1

|SnT |
∑
x∈Sn

T

fθ̂T (x)

After generating prototypes, it uses a distance function to produce the distribution over classes for
each query sample x̃ as follows:

pn(x̃) =
exp(−d(fθ̂T (x̃), cn))∑
n′ exp(−d(fθ̂T (x̃), c

′
n))

This predicted distribution is compared with class labels to compute the loss. Then this loss optimized
by SGD with respect to network parameters (θ, φ, ϕ).

1Note that, while in our KML algorithm these parameters are produced explicitly, in MProtoNet (variant of
MMAML produced in this paper) these are implicitly generated by applying FiLM [5] on each featuremap.
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J.3 Network Structures

J.3.1 Base Network

Multimodal Few-shot Classification Experiments. In multimodal experiments, for the base net-
work (as meta-learner), we use the exactly same architecture as the MMAML convolutional network
proposed in [1]. It consists of four convolutional layers with the channel size 32, 64, 128, and
256, respectively. All the convolutional layers have a kernel size of 3 and stride of 2. A batch
normalization layer follows each convolutional layer, followed by ReLU. With the input tensor size of
(n·k)×84×84×3 for an n-way, k-shot task, the output feature maps after the final convolutional layer
have a size of (n · k)× 6× 6× 256. For ProtoNet-based architectures, these featuremaps are directly
used for constructing prototypes and performing classification. For MAML-based architectures, the
featuremaps are average pooled along spatial dimensions, resulting feature vectors with a size of
(n · k)× 256. In this case, a linear fully-connected layer takes the feature vector as input, and produce
a classification prediction with a size of n for n-way classification task.

Unimodal Few-Shot Classification Experiments. In conventional unimodal few-shot classifica-
tion, we use the more standard architecture which is slightly different from the one used in MMAML
for multimodal scenario. Here, for ProtoNet-based experiments, following the original implementa-
tion of the ProtoNet [2], 4 similar convolutional blocks are used. Each block comprises a 64-filter
3×3 convolution, batch normalization layer, a ReLU nonlinearity and a 2×2 max-pooling layer.
As also discussed in [1], the slight difference between the multimodal results and unimodal ones
reported in previous works is due to the difference in network structure and hyperparameters.

J.3.2 Modulation Network

The modulation network includes a task encoder network hϕ and a modulation parameter generator
network gφ.

Task Encoder. Similar to [1], for the task encoder, we use the exactly same architecture as the
base network. It consists of four convolutional layers with the channel size 32, 64, 128, and 256,
respectively. All the convolutional layers have a kernel size of 3, stride of 2, and use valid padding.
A batch normalization layer follows each convolutional layer, followed by ReLU. With the input
tensor size of (n · k) × 84 × 84 × 3 for a n-way k-shot task, the output feature maps after the
final convolutional layer have a size of (n · k) × 6 × 6 × 256. The feature maps are then average
pooled along spatial dimensions, resulting feature vectors with a size of (n · k)× 256. To produce
an aggregated embedding vector from all the feature vectors representing all samples, we perform
an average pooling, resulting a feature vector with a size of 256. Finally, a fully-connected layer
followed by ReLU takes the feature vector as input, and produce a task embedding vector υ with a
size of 128.

Modulation Parameter Generator. Modulation parameter generator structure varies based on
the multimodal algorithm. For MMAML and MProtoNet, we follow the design in [1]. In this
design, the modulating each channel requires producing two parameters (ηi for scaling and γi for
shifting featuremap). Considering the channel size 32, 64, 128 and 256 in base network, four linear
fully-connected layers are used to convert task embedding vector υ (with a size of 128) to required
modulation parameters. The size of these layers are as follows: 128 × 64, 128 × 128, 128 × 256
and 128 × 512 2. For KML-based meta-learners (MMAML+KML and MProtoNet+KML), we
produce a modulation number for each parameter in the network using the proposed simplified
structure. The details explanation on the number of required parameters are discussed in Sec. E of
this supplementary material.

J.3.3 Hyperparameters

The hyperparameters for all the experiments are shown in Table 11. For comparing our algorithm
with previous work, we use exactly the same hyperparameters. We use 15 examples per class for
evaluating the post-update meta-gradient for all the experiments, following [3, 10, 1, 2]. In the
training of all networks, we use the Adam optimizer with default hyperparameters.

2For unimodal experiments, these numbers are changed based on the number of filters in the base network.
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Table 11: Hyperparameters used in the experiments. † Halve every 10K Iterations.

Method DataSet group Inner lr Outer lr Meta batch-size Number of updates Training Iterations
MMAML – 0.05 0.001 10 5 60000

MMAML+KML(ours) – 0.05 0.001 10 5 60000

Multi-MAML Grayscale 0.4 0.001 10 1 60000
RGB 0.01 0.001 4 5 60000

MProtoNet – – 0.001† 10 – 30000

MProtoNet+KML(ours) – – 0.001† 10 – 30000

Multi-ProtoNet Grayscale – 0.001† 10 – 30000
RGB – 0.001† 4 – 30000

K Information for checklist

Limitations: We have followed the procedures in [1] to construct multimodal datasets in our
experiments for fair comparison with their work. Specifically, the following popular datasets have
been used and we have also followed the combination procedures discussed in [1]: OMNIGLOT,
MINI-IMAGENET, FC100, CUB, and AIRCRAFT. Potentially, additional datasets can be used in
experiments to further demonstrate our ideas. Furthermore, our work has focused on few shot image
classification. Our proposed ideas could be applicable to other few shot learning problems.

Broader Impact: Multimodal meta-learning is an extension of conventional few-shot meta-learning.
Importantly, it mimics humans’ ability to acquire a new skill via prior knowledge of a set of diverse
skills. Research findings in this problem are very meaningful and important in machine learning.
Furthermore, few shot classification studies the problem to classify samples from novel categories
given only a few labeled data from each category. The setup is significantly different from other
modern deep learning problems, but important for many domains where labeled data is difficult to
obtain. For example, in clinical disease diagnosis, data needs to be labeled by medical experts and
labeled data is expensive to obtain.

Amount of compute: All the results in this paper are produced by a machine with a single RTX 2080
Ti GPU. The amount of compute in this project is documented in Table 12. We follow submission
guidelines to include the amount of compute for different experiments and CO2 emission.

Table 12: Amount of compute in this project. The GPU hours include computations for early
explorations and experiments to produce the reported values. The carbon emission values are
computed using https://mlco2.github.io/.

Experiment Hardware GPU hours Carbon emitted in kg
Multimodal Classification Results: Main paper Table 1 RTX 2080 Ti 480 51.84

Unimodal Classification Results: Main paper Table 3 RTX 2080 Ti 36 3.89

Visualization: Main paper Figure 1, Figure 2 and supplementary RTX 2080 Ti 5 0.54

Hard Parameter Sharing: Supplementary Table 1 and Table 2 RTX 2080 Ti 90 9.72

Verification of new-MMAML interpretation: Supplementary Table 3 RTX 2080 Ti 45 4.86

Visualization: Supplementary t-SNE plot RTX 2080 Ti 10 1.08
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