A Supplemental materials for Section 2]

A.1 Definitions in convex optimization
Definition 1 (Convexity). A differentiable function f is convex if for every z,y € R,

fy) = f2) + V(@) (y - ).

Definition 2 (Smoothness). A differentiable function f is L-smooth for some positive constant L if
its gradient is L-Lipschitz; namely, for every x,y € RY, we have

IVf(z) = V)l < Lllz—yll.
Corollary 1. If f is L-smooth, then for every z,y € R?,

7w) — @) = V)T (= )| < 5Ll - 2, (12

Proof. See Lemma 3.4 in [2]. O

Definition 3 (Strong convexity). A differentiable function f is T-strongly convex for some positive
constant T, if for all x,y € R,

F) 2 J(@)+ V@) (y =)+ Zlly -«

A.2  Proof of Proposition

Proposition 1. If f is L-smooth, then for any (z,v) with ||v|| = 1, |g,(v;z) — Vf(2) "v| < 3 Lp.

Proof. In Eq. (I2), setting y = = + pwv and dividing both sides by 1, we complete the proof. O

B Supplemental materials for Section

B.1 Proofs of Lemmal([l} Theorem [[]and Theorem

2
Lemma 1. Let C; := (Vf(xt)Tvt) and L' := ﬁ then in Algorithm we have
i
E.[C
Eulii) <0 — A9 a2 13)

Proof. We have

5t+1 — 0 = f($t+1) - f(fl?f) (14)
1
=f <xt — ZVf(act)Tvt -vt) — f(xy) (15)
1 2 1 1 >
<-—=(V T “L-(=V T 16
< L( fla) "vr) +2 (L f(x) 'Ut) (16)
2
=50 (Vf(a:t)Tvt) . (17)
Hence,
1 T 2 ]Et [Ct] 2
E¢[6¢41] — 6¢ < *ﬁEt [(Vf(xt) vt) } =~ 5p IV £zl (18)
where the last equality holds because x; is F;_1-measurable since we require J;_; to include all the
randomness before iteration ¢ in Remark 2] (so ||V f (z;)||? is also F;_-measurable). O

Remark 9. The proof actually does not require f to be convex. It only requires f to be L-smooth.
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Remark 10. From the proof we see that ;11 — 0; < 0, so f(x141) < f(xt). Hence, the sequence
{f(x+)}+>0 is non-increasing in Algorithm

Theorem 1 (Algorithm|I} smooth and convex). Let R := max,.f(y)<f(z) |2 — 2*|| and suppose
R < oc. Then, in Algorithm[I} we have

2R E |

Blor] €~y (19)
Proof. Since f is convex, we have
0p = flxe) = f(2*) S V(@) (we —2*) S|V - ze — ™| S RIVF(zo)ll,  (20)

where the last inequality follows from the definition of R and the fact that f(z:) < f(xg) (since
d¢41 < d¢ for all t). The following proof is adapted from the proof of Theorem 3.2 in [1]]. Define
®; := t(t + 1)0;. By Lemmall] we have

Ey[@eq1] — o = (¢t + 1) (¢ + 2)Ey[6p41] — t(t +1)6, 2D
= (t+ 1)(t +2)(Be[01] — 62) + 2(t + 1)6, (22)
<@+ D+ TP 2+ DRIV @3)

(2(t+1)R)?
T4t + 1)(t+2) B 29
_2L(t+1)R?
C(t+H2)E[C] @
2L'R?

= ELC] 0

2 b
where Eq. (24) follows from the fact that —at® + bt < 2~ for a > 0. Hence

E[®:11] — E[®] = E[E[®;41] — @] < 2L'R’E [Et [IC’tJ : 27)

Since @g = 0, we have E[®7] < 2L/ R? Y2/ E [ ;| Therefore,

rp2 N~T'-1 1
E[®r] _ 2R ) 4o E [Et[c,,]}

Elor] = T(T+1) ~ T(T +1)

(28)

O

Remark 11. By inspecting the proof, we note that Theorem [I| still holds if we replace the fixed
initialization x in Algorithm|[I|with a random initialization x{, for which f(z{)) < f(zo) always
holds. We formally summarize this in the following proposition. This proposition will be useful in the
proof of Theorem 3}

Proposition 3. Let x5 be a fixed vector, R := maXy. ()< f(any) |12 — 7| and suppose R < oc.
Then, in Algorithm using a random initialization xo, if f(xo) < f(zax) always hold, we have

E.[C4]
T(T +1)

oy < LTI E Bl

(29)

Proof. By Remark[10] f(z;) < f(zo). We note that ||z, — z*|| < Rsince f(z;) < f(zo) < f(zfix).
The remaining proof is the same as the proof of Theorem[I] O

Next we state the proof regarding the convergence guarantee of Algorithm [T] under smooth and
strongly convex case.
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Theorem 2 (Algorithm [T} smooth and strongly convex). In Algorithm[I} if we further assume that f
is T-strongly convex, then we have

o
E < do. (30)
exp (—£ X1 EdlCH])
Proof. Since f is T-strongly convex, we have
Gy = f(xe) = f(@") S V(@) (@ —a*) - %let —a*|? G
* T *
<IVFEOl- o =27 = gllwe — 2| (32)
2
2T
Therefore we have
IV f(ze)||* > 276, (34)
By Lemma|I]and Eq. (34) we have
Et[ct]T T
Ei[d¢41] < 0 — 7 0y = (1 - FEt[Ct]) 0y (35)

Let Q¢ 1= %Et [Ct], then Et[5t+1] < (1 — Oét>(5t. ‘We have
o = B[] ZE{ ! Eo[m} E[Eo[ d! H E[ ! }

1—040 1—0(0

o] - o e -l
(1 —ag)(l —ar) (1 —ag)(1—a1) (1 —ag)(l—a)
> ...
> E T—15T‘| '
L +=0 (1 — Oét)
Since exp(—z) > 1 — 2 > 0 when 0 < 2 < 1, the proof is completed. O

Remark 12. Indeed, the proof does not require f to be strongly convex or convex. It only requires
the Polyak-Lojasiewicz condition (Eq. (34)) which is weaker than strong convexity [I14) 8 [7].

B.2  Proof of Proposition 2]
We note that in Algorithm([I} [|v;|| = 1. If v, € A, then we have the following lemma by Proposition 1
in [10].

Lemma 4. Let uy,us,...,uq be q fixed vectors in R and A := span{ui, ug, ..., uq} be the
subspace spanned by uq,us, ..., uq. Let V f(x,)a denote the projection of V f(x;) onto A, then

Vf(x1)a = argmax,, ¢ 4 o, =1 Ct-

We further note that V f(z;) 4 could be calculated with the values of {V f(x;) "u; }_;:

Lemma 5. Let A := span{uy, ug, ..., u,} be the subspace spanned by uy, us, . . ., u,, and suppose
{u1,u2, ..., uq} is linearly independent (if they are not, then we choose a subset of these vectors
which is linearly independent). Then ¥V f(x:)a = Y 1, a;u;, where a := (a1, a2, ,aq) " is given

by a = G~1b, where G is a ¢ x q matrix in which G;; = u:u] b is a q-dimensional vector in which
bi = Vf(a:t)TuZ

Proof. Since Vf(xy)a € span{ui,us,...,uq}, there exists a € R? such that Vf(z,)a =

>4 aju;. Since Vf(z¢)a is the projection of Vf(z;) onto A and uy,us,...,u; € A,
Vf(x) yui = Vf(z¢) u; holds for any i. Therefore, Ga = b. Since {uy,us,...,u,} is lin-
early independent and G is corresponding Gram matrix, G is invertible. Hence a = G~ 1b. O
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Therefore, if we suppose v; € A, then the optimal v, is given by V f () 4, which could be calculated

from {V f(z;) "u; }?_,. Now we are ready to prove Propositionthrough an additional justification.

Proposmon 2 (Optlmahty of subspace estimator). In one iteration of Algorzthmm if we have queried

{Vf(a;t) 1|, then the optimal v, maximizing C; s.t. ||v¢]| = 1 should be in the following form:
= Vf(mt)A, where A := span{uq,ug, ..., Uq}

Proof. Tt remains to justify the assumption that v; € A. We note that in Line [3] of Algorithm [T}
generally it requires 1 additional call to query the value of V f(x;) vy, but if v; € A, then we can al-
ways save this query by calculating V f (;) " v, with the values of {V f(x;) Tu; }_,, since if v; € A,
then we can write vy in the form v; = Y. | a;u;, and hence Vf(z¢) v, = 30 | aZVf(xt)Tui.
Now suppose we finally sample a v; ¢ A. Then this additional query of V f(x;)  v; is neces-
sary. Now we could let A’ := span{uy,us, ..., uq,v;} and calculate v; = V f(x;) 4. Obviously,
(Vf(x,g)—rv,'f)2 > (Vf(xt)Tvt)2, suggesting that vj is better than v;. Therefore, without loss of
generality we can always assume v; € A, and by Lemma ] the proof is complete. O

B.3 Details regarding RGF and PRGF estimators
B.3.1 Construction of RGF estimator
In Example 1, we mentioned that the RGF estimator is given by v; = V f(x;), where A =

span{uy, ug,...,ug} (¢ > 0) and Vi, u; ~ U(Sq—1) (u ~ U(S4—1) means that v is sampled
uniformly from the (d — 1)-dimensional unit sphere, as a normalized d-dimensional random vector),

and ug,us, ..., u, are sampled independently. Now we present the detailed expression of v, by
explicitly orthogonalizing {u1,us, . . ., uq}:
up ~U(Sa-1);

us = (I —uguf )&, & ~ U(Sq-1);

uz = (I —uju{ —ugug )&s,& ~ U(Sa—1);

(I_Zuz ) gqagq (Sd71)~

Then we let v, = >°7 | V f(z¢) Tu; - u;. Since g; = Vi) "Vf(z)a - V(w)a = VI(ze)a,
we have g; = Zgzl Vf (xt)Tui - u;. Therefore, when using the RGF estimator, each iteration in
Algorithm|[T]costs ¢ queries to the directional derivative oracle.

B.3.2 Properties of RGF estimator

In this section we show that for RGF estimator with ¢ queries, E;[C;] = 4. We first state a simple
proposition here.

Proposition 4. [fv, = ZZ 1 Vf(ze)Tu; - i and uy,ug, . .. , Uq are orthonormal, then

(Vf Ty) Ut) i(vf (w¢) i>2~ (36)

i=1

Proof. Since Vf(xi) v - vy == g = I VS ) Tu; - u;, we have Vf(xt)—rvt o
1. Vf (xt)—rul u;. Taking inner product w1th V f(z) to both sides, we obtain the result. O

By Proposition 4]

E[Cy] = {(fot )} z:: [(fot )} Zq:(fot Etuqu(xt))

=1
(37)
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In RGF, u; is independent of the history, so in this section we directly write E[u;u,' ] instead of
Eq[usu].
For i = 1, since u; ~ U(Sq—1), we have E[uju{] = 1. (Explanation: the distribution of u

is symmetric, hence E[u;u] ] should be something like aI; since Tr(E[uju{]) = Efu{ u1] = 1,

a =11 =1/d.)

.
For i = 2, we have E[ugu] |uy] = =4

——1—- (See Section A.2 in [4] for the proof.) Therefore,

_ T
Elugug | = E[E[ugug |u;]] = % =L

Then by induction, we have that V1 < i < ¢, E[u;u;] = 1. Hence by Eq. 87), E;[C;] = £.

B.3.3 Construction of PRGF estimator

In Example we mentioned that the PRGF estimator is given by v; = V f(x;), where

A = span{p;,u1,us,...,uq} (¢ > 0), where p; is a vector corresponding to the prior message
which is available at the beginning of iteration ¢, and Vi, u; ~ U(Sq—1) (u1,us, ..., u, are sam-
pled independently). Now we present the detailed expression of v; by explicitly orthogonalizing
{pt,u1,us,...,uqs}. We note that here we leave p, unchanged (we only normalize it, i.e. p; Hi—:H
if [|[p]] # 1) and make {uq,us,...,u,} orthogonal to p,. Specifically, given a positive integer
g<d—1,

ur = (I = pipf )1, & ~ USa-1);

uy = (IT—pep) —uruf 2,8 ~ U(Sa-1);

uz = (I—pip) —uru] —uzug )és,85 ~ U(Sq-1);

q—1
Uug = (I—ptpj —Zuiuj) €4:6q ~U(Sq1).
=1

Then we let v, = Vf(xy)Tps-pr + Z?:l Vf(z)Tu;-u;. Since g¢ = Vf(ay) Vf(w)a -

Vf(z)a =V f(x)a, wehave g, = Vf(x) pe-pys +Zg=1 V f(x¢) "u;-u;. Therefore, when using
the PRGF estimator, each iteration in Algorithm|[T]costs ¢ 4+ 1 queries to the directional derivative
oracle.

B.3.4 Properties of PRGF estimator

Here we prove Lemma[2]in the main article (its proof appears in [10]; we prove it in our language
here), but for later use we give a more useful formula here, which can derive Lemma Let

T 2
D, := (Vf(xt) pt) . We have
Proposition 5. Fort > 1,

Ci =Dy + (1 - Dy)Et, (38)
T
where &2 = 7 &, & =Vf(z)n u in which ey := e — pyp, e denotes the projection of

the vector e onto the (d — 1)-dimensional subspace H, of which p; is a normal vector.

Proof. By Proposition[d] we have

—— T \?2 LI A— N
Co= (Vi) v) =D+ Y (Vi) w) (39)
i=1
By the definition of w1, us, ..., u,, they are in the subspace H. Therefore
(Vi@) w) = (ViGdgu) = IVF@)yl? (Vi@ w) = 0- D) (Viea u) -
(40)

'“Note that in different iterations, {u;} are different. Hence here we explicitly show this dependency on ¢ in
the subscript of €.

17



By Eq. (39) and Eq. (@0)), the proposition is proved. O

Next we state E,[¢7], the condmonal expectation of £2 given the history F;_;. We can also derive it
in the similar way as in Section B L but for later use let us describe the distribution of £2 in a more
convenient way. We note that tle condltlonal distribution of u; is the uniform distribution from the

T
unit sphere in the (d — 1)-dimensional subspace H. Since &;; := V f(z) g wi, & is indeed the inner
product between one fixed unit vector and one uniformly random sampled unit vector in H. Indeed,

£? is equal to H(Vf (xe)m ) H where A’ := span(uj, ug,- - ,uq) is a random g-dimensional

subspace of H. Therefore, £2 is equal to the squared norm of the projection of a fixed unit vector in
H to a random ¢-dimensional subspace of H. By the discussion in the proof of Lemma 5.3.2 in [15]],
we can view a random projection acting on a fixed vector as a fixed projection acting on a random
vector. Therefore, we state the following proposition.

Proposition 6. The conditional distribution of £? given F;_1 is the same as the distribution of

1 22 where (21,29, ..., 24-1) ~U(S?™?), where S~ is the unit sphere in R4,

Then it is straightforward to prove the following proposition.
Proposition 7. E[¢7] = 7%5.
Proof. By symmetry, E[27] = E[z7] Vi, j. Since E[> %! 22] = 1, E[z2] = L. Hence by
Proposition@ E[&7] = B[}, 22] = 745 O
Now we reach Lemma[2l

Lemma 2. In Algorithm[I|with PRGF estimator,

E/[Ci] = Di + —1=(1- D)), A1)

where Dy := (WTptf.

Proof. Since D, is F;_1-measurable, by Proposition [5|and Proposition [7] we have

E/[Ci] = Di+ (1= DOEE) = Di + 52— (1- D).

O

Fmally, we note that Proposition E] implies that £2 is independent of the history (indeed, for all 4,
€2 is independent of the history). For convenience, in the following, when we need the conditional
expectation (given some historical information) of quantities only related to &2, we could directly
write the expectation without conditioning. For example, we directly write E[¢?] instead of E;[£2],
and write Var[¢?] instead of the conditional variance Var;[¢?2].

B.4 Proof of Lemma[3|and evolution of E[C]

In this section, we discuss the key properties of History-PRGF before presenting the theorems in
Section[B.5] First we mention that while in History-PRGF we choose the prior p; to be v;_;, we can
choose pg as any fixed normalized vector. We first present a lemma which is useful for the proof of
Lemma[3

Lemma 6 (Proof in Section [B.4.1). Let a, b and c be vectors in =1 B:={b:
lb—all <k-a"c},0<k<1 a"c>0. Then minyep b e > mingep ch— 1—k)a'e
Lemma 3. In History-PRGF (p; = v;_1), we have
N2
D, > (1 — L) Cy . 42)
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Proof. In History-PRGF p, = v;_1, so by the definitions of D; and C; we are going to prove

(7@ ua) = (1-7)

Without loss of generality, assume V f(z;_ 1)Tvt,1 > 0. Since f is L-smooth, we have

2

V@) ) . 43)
( )

L
IVf(zt) = V(1) < Lljze — 21| = Evf(mt—l)TUt—la (44)
which is equivalent to
Vf(z: - L——r—T
—Vf(zi—1)|| £ =V f(re-1) ve-a. 45
anmu Fla)| < SV v 45)

Leta = Vf(z_1), b—%m—vt 1. ByLemma@wehave

T

Vf(ﬂft)—rvtfl > (1 - L) Vf(:ct 1) Vt—1- (46)

By the definition of v, the right-hand side is non-negative. Taking square on both sides, the proof is
completed. O

When considering the lower bound related to C;, we can replace the inequality with equality in
Lemma 3] Therefore, by Proposition [5]and Lemma [3] we now have full knowledge of evolution of

2
C';. We summarize the above discussion in the following proposition. We define o’ := (1 — %) in

the following.

2
Proposition 8. Ler o’ := (1 — %) . Then in History-PRGF, we have
Cy>dCroq+ (1— a’Ct,l)Ef. 47

Proof. By Proposition Cy = (1 —&)Dy + €2. By Lemma D; > a’Cy_q. Since €2 < 1, we
obtain the result. O]

As an appetizer, we discuss the evolution of E[C}] here using Lemma 2|and Lemma 3]in the following
proposition.

Pr0p051t10n9 Suppose 715 = kL (k > 0), then in History-PRGF, E[Cy] > (1 —e ") 537 745 ==
fort > nT.

Proof. By Eq. @7), we have

E[Cy] = E[E,[Cy]] > E[a/Cy—1 + (1 — a’C_1)E4[€]] (48)
=E[a'Ci—1 + (1 — a/Cy_1)E[E]]] (49)
B 4 q
_ (1 dl) E[Ci] + . (50)
Letting @ := a'(1 — 7%5), b := %5, then E[C;] > aE[C;_1] +band 0 < a < 1. We have
E[C] — & > a(E[Ci—1] — 1) > *(E[Ci2] — 1&) > ... > a*(E[Cy] — 1Z), hence
E[Cy] > & — (% —E[Co]) > (1 —a') 2

1 1 — L)2 L L _L
it A LLLL< > 2 (51)
1-(1-kB)1-52 L4 La-L)+kl(1-L)2 " 24k



we have 1=4' > Meanwhile, a < 1 — L. Therefore, if t > nT we have

1—a 2+k
at < (1- dg ) < exp(—%)”% =e " (52)
Since 111‘2/ >3 +k and a* < e~ ™, we have
b 2 1 q
E[C,] > (1 —at >—(N1—-e")——— 53
(Gl = (U =a)— 2 570 —e ) T—wg (53)
O
Corollary 2. In History-PRGEF, lim inf; ., E[C;] > —kd— L.
Recalling that L' := =, the propositions above tell us that E[C;] tends to O (5 L—) in a fast rate,

as long as k is small e.g. when 4 < Q (whrch means that the chosen learning rate = is not too small

compared with the optimal learnmg rate 172 ﬂl) IfE[C;] ~ ¢ LL , then [ ] is not dependent

on L’ (and thus independent of L. By Lemma Theoreml|l I and Theorem thls roughly means that
the convergence rate is robust to the choice of L, i.e. robust to the choice of learning rate. Specifically,
History-PRGF with L>L (but L is not too large) could roughly recover the performance of RGF
with L = L, since E[LC:‘]

~ d where £ is the value of E;[C;] when using the RGF estimator.

B.4.1 Proof of Lemmald

In this section, we first give a lemma for the proof of Lemma [6]

Lemma 7. Let a and b be vectors in

—al|.
Proof.
1b—al*—[b—al®*=lb—0bl* +2(b—b)" (b—a) (54)
>2(b—0)"(b—a) (55)
= 2(||bl| - )b (0 - a) (56)
—2(|lb] = 1)(1 = b a) (57)
> 0. (58)

Then, the detailed proof of Lemma E]is as follows.

Proof. ¥b € B,b'c=a"c—(a—b)Te>a'c—|la—b||e]| > (1 —k)a"c, and both equality
holds whenb=a —k-a'c-c.

Case1: [|b] > 1 By Lemmal7|we have [|b — a|| < ||b— al|, hence if b € B, then b € B, so when

||b]] > 1 we have b e > minyeg b c.

Case2: [b] <1 Vbe B.if [b] <1 thenb c=1tof >bTe> mimepbe,

The proof of the lemma is completed. O

B.5 Proofs of Theorem [3land Theorem [
B.5.1 Proof of Theorem[3|

2
As mentioned above, we define a’ := %— %) to be used in the proofs. In the analysis, we first
a

try to replace the inequality in Lemma [3] with equality. To do that, similar to Eq. (7)), we define

{E}} as follows: Ey = 0, and
B =dE 1+ (1-dE)g, (59)
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where &7 is defined in Proposition

First, we give the following lemmas, which is useful for the proof of Theorem 3]

Lemma 8 (Upper-bounded variance; proof in Section . Ifd > 4, then Vi, Var[E.[Ey]] <
=y @b

Lemma 9 (Lower-bounded expectation; proof in Section . If -1 < % and t > %=1 then

1 q

1 1 q
E[F - _—
S (60)
Lemma 10 (Proof in Sectlon ). If a random variable X > B > 0 satisfies that E[X| > uB,
Var[X] < (0B)?, then
1 1 (402
El=| <— 2 1
&)= () o

Then, we provide the proof of Theorem [3in the following.
Theorem 3 (History-PRGF, smooth and convex). In the setting of Theoremm when using the History-

PRGF estimator, assuming d > 4, -5 1< 7 L<1andT > [ —‘ ([-] denotes the ceiling function), we
have
§ 32 2L R?
Blf(er)] - 1) < (2 +2) —r—. 62
q T - M +1

Proof. Since Eyg =0 < Cp,and if E;_1 < C;_1, then

Et = a’Et_l + (1 - a/Et_l)ftQ (63)
S a/Ct_l + (1 - a’C’t_l)ff (64)
<Ci, (65)

in which the first inequality is because £Z < 1 and the second inequality is due to Eq. (&7). Therefore
by mathematical induction we have that V¢, £, < C;.

Next, if d > 4, d < f and t > % by Lemma and Lemma@ if we set B = d , then
E[E:E:]] = ]E[E] > 1L B and Var[E[E]] < 21— (,)QB Meanwhile, if ¢ 2 , then
E¢[E] = a'(1 = 745)Ey—1 + 745 > B. Therefore, by Lemma.we have
E < ‘ +2 (66)
|:Et[Et]:| %171a’%1 ( %1710/
d—1 32 1—-da
= "(1-d)|Z=——+2 67
0 (e ) ©7
d 32
S (2]
q q
dL (32
=—— | —4+2]). 69
qL’ (q " ) ©
Since E; < Cy, EJE] < EiCy]. Let s = { 1 then Vt > s, E [E [Ct]:| < E {m} <

d L 32
rh =42

ization in Algorithm |I|, and set pg to vs_1. Then quantities in iteration t (e.g. x;, v, Cy) in the
imaginary setting have the same distribution as quantities in iteration ¢t + s (e.2. Tt1s, Vttss Crys)
in the original algorithm (indeed, the quantities before iteration ¢ in the imaginary setting have
the same joint distribution as the quantities from iteration s to iteration ¢ + s — 1 in the original
algorithm), and F;_; in the imaginary setting corresponds to F;4s_1 in the original algorithm. Now
we apply Proposition [3]to the imaginary setting, and we note that if we set x5y to the original z,

. Now imagine that we run History-PRGF algorithm with =4 as the random initial-
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then the condition in Proposition [3|holds (since by Remark[10] f(z,) < f(z¢)). Since quantities in
iteration ¢ in the original algorithm correspond to quantities in iteration ¢ — s in the imaginary setting,
Proposition [3]tells us that if 7' > s, we have

T-—1 1
oL/ R2Y TR [Tt[ad

E[f(zr)] — f(z¥) < T\ —s+1) (70
SO
2L4R?
Elf(zr)] — f(z*) < (?;2 + 2) T_ﬁi—‘ﬂ. (71)
O

B.5.2 Proofs of Lemma|8}[9]and

In this section, we first present Lemma [T1] for the proof of Lemmal §]

Lemma 11. Suppose d > 3, then Var[€?] < (1137‘11)2.

Proof. For convenience, denote D := d — 1 in the following. By Proposition [6] the distribution of

£? is the same as the distribution of >°7_, 22, where (21, -+ ,z,) | ~ U(SP~T). We note that the

distribution of z is the same as the distribution of H%\I where x ~ N (0, I). Therefore,

q 2 q 2 \ 2 a  .2\2
2 _ 3 _ (Zizl a:l)
2|(5) |2 (Srk) | -2 [ 7
i=1 i=1 (Zi:l xi)
q 2 a2 2
By Theorem 1 in [6], Zﬁl‘f" and ||x||? are independently distributed. Therefore, % and
i=1 T3
2
(Zi1 xf) are independently distributed, which implies
q 2\ 2 E [( q m2)2}
( i=1 l‘i) =11
= (73)

(z2i2) | el(s2ia)]

We note that Zf 1 7 follows the chi-squared distribution with ¢ degrees of freedom. Therefore,

E[>YL, 2?] = ;, and Var [Y7 | #?| = 2q. Therefore, E {( 7 xf)ﬂ =E[>L, x?]Q +

Var [ 1 mg] = q(g + 2). Hence

q

q 2 q 2 2
+2) ¢ 2¢(D-q) 2
V. 2l _ R 2 _E o _ alet+2) @ _ 2(D—q) =4
"2 (Zl Z) [Z;Z D(D+2) D’ D*D+2) - D?
(74)
Since D = d — 1, the proof is complete. O

Then, the detailed proof of Lemma [§]is as follows.
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Proof. By the law of total variance, using Proposition[7|and Lemma[TT} we have

Var[F;] = E[Var|E;|E;_1]] + Var[E[E:|E;—1]] (75)
= E[(1 — a'E;—1)*Var[§]]] + Var[a'(1 — E[§]]) Bt (76)
= Var[¢/E[(1 — a'E,—1)°] + (¢/)*(1 — E[¢}))*Var[E; 1] (77)
= Var[¢2)(E[(1 — 'E;_1)])? 4+ Var[l — d'E;_1]) + (a’)?(1 — E[¢2])*Var[E;_1] (78)
= Var[¢f](E[(1 - a'Ey—1)]* + (a')*Var[Ee—1]) + (a)2(1 = E[E])*Var[E, 1] (79)
= (a')*(Var[67] + (1 — E[67])*) Var[E;_1] + Var[¢]E[(1 — o' E;—1)]? (80)
< (a')*(Var[€f] + (1 — E[67])*) Var[E; 1] + Var[¢]] (81)

< (a)? <(d iqlp + (1 - d:) ) Var[E; 1] + @ 3‘11)2. (82)

Ifd >4, then 20 + (1 - 74) =1 - ghp2d-1) —q¢—2) <1 - ghp(d—g) < L.
Therefore we have

2

Var[Ey] < (a')?Var[E,_] + e _q1)2~ (83)
Letting a := (a)?,b := d 1)2, then Var[FE;] < aVar[ 1] +band 0 < a < 1. We have
Var[Ey] — & < a(Var[Et_l] ) < a?(Var[Ey_o] — 12) < ... < a!(Var[Ep] — 12-), hence
Var[E,] < ﬁ —a'(72 = VarlBo)) = (1 - a') 125 < 125 = =y mone-
Finally, since Var[E.[E;]] = Var[E[E;|E;_1]] < Var[Ey], the proof is completed. O
The detailed proof of Lemma [J]is as follows.
Proof. Similar to the proof of Propositionl?l, letting a:=a(l1—Z45)and b:= J45, then E[F;] =
(1 —a')12-, and 1= . Meanwhile, since %7 < L ,a < (1 — 7%7)3. Therefore, if ¢ > dql,
we have

9 34t 9 32t -3
1———)" ¢ ——)" 7 = . 4
<(1- LT <o L = (34)

=% > Zand a’ < e73, we have

b 2 3y 1 q 1 1 ¢
E[E]=(1-a >(1—e? > = 85
e e AL Er s S gy ®
O
The detailed proof of Lemma [I0]is as follows.
Proof. By Chebyshev’s Inequality, we have
1 Var[X] 402
Pr(X < -E[X]) < < —. (86)
2 (zE[X])? ~ p?
Hence
1 1 1 1 1 (40% 2 1 (402
E|l+| <5Pr X<IE3X)+ <<+>:<+2>. (87)
)= mrr (<) g < G n) = am (5
O



B.5.3 Proof of Theorem ]
As in Section | similar to Eq. (7)), we define { E;}/_," as follows: Ey = 0, and
By =d' By + (1-dE1)¢, (88)

where (2 := 7 | (%, (% := min{¢&}, 755} and &; is defined in Proposition [5| Here we use ¢}
instead of ¢2 in Eq. (88) to obtain a tighter bound when using McDiarmid’s inequality in the proof of
Lemma[2l

Here we first give Lemma [I2]for the proof of Theorem 4]
Lemma 12 (Proof in Section[B.5.4). Pr (% 32_01 E.[FE:]

141 ) < exp(~0.027).

Then, we provide the proof of Theorem[]in the following.

Theorem 4 (History-PRGF, smooth and strongly convex). Under the same conditions as m Theorem|2]
(f is T-strongly convex), when using the History-PRGF estimator, assuming d > 4 <L <7,

e d 1 p— L i
4<0.2% and T > 54, we have

E[sr] < 2exp(~0.15F1)do. (89)

Proof. Since Eqg =0 < Cy,andif E;_1 < C;_1, then

q
Et = G/Et,1 + (]. — G/Etfl) Z Ctzz (90)
i=1
q
<dE1+(1-dE; ) 251‘27 O
=1
=dE 1+ (1 -dE )& 92)
< a/Ct,1 + (1 — a’Ct,l)ﬁf (93)
S Cta (94)

in which the second inequality is due to that £ < 1 and the third inequality is due to Eq. 7).
Therefore by mathematical induction we have that V¢, E; < Ct

Then, since V¢, E; < C,, we have = Zt o BB < % t 0 E;[C}]. Therefore, by Lemma
we have Pr (% o Ei[C] < 0.15 l—a’) < exp(—0.02T). Let kr = exp ( IR(C).
Since ﬁ = LT/,
(k:T < exp (o lng)) < exp(—0.027). (95)
Meanwhile, let 6, := f(z;) — f(x*), Theorem2]tells us that
Noting that 69 > d7, we have
do > E[orkr] (CH))
= E[(sTleszexp(OAI%%T)] (98)
qT
> exp (0.133 ) ]E[(SleTZCXP(O.I%%T)] (99)
qT
= exp (012 27) (Eor] — Ebrl,, cop(os 1)) (100)
qT
> exp (012 27) (E[67] — 0E[Ly, oxp(o.15 1)) (101)
_ ar _ 47 p
— exp (0.1dLT) (E[éT] 8o Pr (kT < exp( 152 ))) (102)
qT
> 14z - .
> exp (0 142 ) (E[57] — 8o exp(—0.02T)), (103)
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in which 15 denotes the indicator function of the event B (15 = 1 when B happens and 15 = 0
when B does not happen). By rearranging we have

E[67] < exp ( 0. 1ng) 8o + exp(—0.02T)dp. (104)
When 2 < 0.2% 0.127T < 0.027, and hence exp (—O.l%%T) > exp(—0.02T). Therefore,
E[67] < 2exp (—0.122T') &y. The proof of the theorem is completed. O

B.5.4 Proof of Lemma[12|

In this section, we first give two lemmas for the proof of Lemma[12]
Lemma 13. Ifd > 4, then E[(?] > 0.35%;

Proof. We note that the distribution of u, is the uniform distribution from the unit sphere in the

(d — 1)-dimensional subspace A. Since &;; := V f(zy) ATui, &4, is indeed the inner product between
one fixed unit vector and one uniformly random sampled unit vector. Therefore, its distribution is the
same as z1, where (21, 22, ..., 24—1) are unlformly sampled from S92 j.e. the unit sphere in R4-T,
Now it suffices to prove that E[mm{zl, A > 28

Let p(-) denote the probability density function of z;. For convenience let D := d — 1. We have

D
p(0) = Sp-2 \where Sp_1 denotes the surface area of Sp_;. Since Sp_1 = 225~ where T'(-) is

Sp T %
the Gamma function, and by [11]] we have FIEEEZ) < %, we have p(0 \/ 277 \/ 27r .
Meanwhile, we have p(z) = p(0) - LV ﬁ =p(0)- (VI—22)P=3.1f d > 4, then D > 3, and

we have Vz € [—1,1],p(0) > p(z). Therefore,

1 1 2 2
P 2>~ ) =1-P >1— —p(0)=1—4/—>0.2. 105
r(zl_d_1> r<21|< d—l)_ d_lp() ”w_ (105)

Similarly we have

0.25 0.5 1
Pr >——]=1-P 1-— =1—4/—>06. (1
(22 32) =1-pr (lal < 22 ) 1p<o> Vo 206 106

Let 4 := min{2?, 727 }. Then Pr (21 > 11> dPr(2?> 2—) > 0.6. Then
B4 > Pr(Zi22d11>+ 0.25 ( . ,2_(;)_251> (107
- 0T p (zfzdll) =p ( ) (108)
0.3
> 1 (109)
Hence E[¢7] > 2. By the definition of (7 the lemma is proved O
Lemma 14. If ;% < £, 7 > 52, then % Y7 E[E,] > 025,

Proof. By Eq. (88) and Lemma we have E;[E;] > (1 - O.3ﬁ) a'Ey 1 + 0.37%5. Taking
expectation to both sides, we have

E[E,] > <1 _ o.sdfl> WEE, ] +03 0 (110)

Leta := (1— O.Sd—) ;b := 0.35%, then E[E;] > aE[E; 1] +band 0 < a < 1. We have
E[E,] — <& > a(E[E;_1] — &) > a®(E[E,_o] — &) > ... > a*(E[Ey] —

1—a 1—a l—a’/ =— hence

1a)
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E[E] > 1& —a(:2 — E[Ey]) = (1 — a) 2. Hence we have

1 T2 b LT , 1
T;E[Et]>1—@(1_(1_G)T>>1_a<1—(1_a)T>. (111)

Since 1 —a=1—(1-033%7)(1 — %) <1—(1—0.3£)(1—%)Q,notingthat

L2
U AR 2
17(1f03£)(1fé)2_£+£(1 )+03 (1 £)2223’ (1)
i 3 LT i i :
ol > 2 Letting T > 54 thenT25é25%251_ﬁ25ﬁ By Eq. (TTI)) we
have
T-1 q q
1 2 b 4 24 73 1
— Y E[E]> = = >0.2 : 113
T; B2 o35~ tis1-w 2 g (13

Finally, the detailed proof of Lemma [12]is as follows.

Proof. Let E := LS/ ' E,[E,]. We note that {¢?,¢3,...,(3_,} are independent, and E is
a function of them. Now suppose that the value of (? is changed by A(?, while the value of

{¢, ..., ¢21. ¢, - -+, (3 } are unchanged. Then
AE, =0, 0<s<t—I; (114)
AE, = (1—d E_1)AG < A, s=t (115)
AE, = (1-(2)dAE,_y <d AE,_y, s>t+1. (116)

Therefore, for s > ¢, AE; < (a/)57'AE; < (a/)*7tA(?; for s < t, AE; = 0. By Eq. (89),
E,[E,] = a'(1 — E[¢3])E,—1 + E[C2], s0 AR, [E,] < ! AE,_, < AE,_,. Hence

L T2 | T 11
T _ - nNs—1—t 2 - - 2
AB =) AR[E]< = Y ()717AG < o ——AG (117)
s=0 s=t+1
Since ¢ = min{¢}, 727}, 0 < ¢? < 7%45. Therefore AE < = -4 Therefore, by McDi-

armid’s inequality, we have

_ . 2¢?

d—1\"
Pr(E <E[E] —¢)<exp | —————— | <exp | -2T (6(1 —a') ) . (118)
T (; 1 L) q
T 1—a’ d—1
9 _ — —_ 9 _ —_
Let € = 0.17=;, we have Pr(E < E[E] — 0.19=;) < exp(—0.02T). By Lemma , E[E] >
0.2 1d .. Noting that 4 <

7%, the proof is completed. O

C Supplemental materials for Section 4]

C.1 Proof of Theorem[3|

Theorem 5. In Algorithm@] if 0y is F;_1-measurable, we have
Y *
E |(f(or) - £ ( AT Z NG ) < fao) ~ f@) + Dy — a2 (119)

To help understand the design of Algorithm [2] we present the proof sketch below, where the part
which is the same as the original proof in [12] is omitted.
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Sketch of the proof. Since xy11 =y — 7g1(y:) and g1 (y:) = V £ (ye) "ve - vy, by Lemmall}

E, {(Vf(yt)—rvt)ﬂ

E; [(Vf(yt)—r”t)ﬂ
E¢[f(ze41)] < flye) — 5T/ < f(ye) — . .

2L

(120)

Define p; := 2||m; — 2*||* + f(x;) — f(z*). The same as in original proof, we have

* * 0 *
Pt+1 = %Ilmt —2*|® = augalye) " (my — %) + é||92(yt)H2 + f(ze41) — f(z7).  (121)

Then we derive E;[p;1]. We mentioned in Remark [2]that the notation E;[-] means the conditional
expectation E[-|F;_1], where F;_; is a sub o-algebra modelling the historical information, and
we require that F;_; includes all the randomness before iteration t. Therefore, v, and m; are
Fi_1-measurable. The assumption in Theorem E]requires that 0, is F;_1-measurable. Since «; is
determined by ~; and 6; (through a Borel function), o is also F;_;-measurable. We have

Eq[pt41]

0
= %QH [me — 2*||* — cuBelga(ye)] " (my — 2*) + i]Et[||92(yt)H2} + Ei[f(241)] — f(2¥)
(122)

= iy — )% — 0V F ()T (me — 2*) + %Etnlgz(yt)n?] +Ei[f(zen)] - f(=7) (123)

2
E, [(Vf(yt)TUt) 2}

= %Hmt—ac*ﬂ2 — V()" (me — %) + 27, + Ee[f (2e41)] — f(27)
(124)

< T e — 2 = @V £ ()T (me = 2%) + F () = f(a) (129)

< (1- oo, (120

where the first equality is because m;, a; and 6; are F;_;-measurable, the second equality is
E; [(Vf(yt)TUt)z]

L-Et[llg2(y:)112]
inequality is because of Eq. (120), and the last inequality is the same as in original proof. By the

because E:[g2(y:)] = Vf(y:), the first inequality is because 6; < , the second

similar reasoning to the proof of Theorem we have E [

3:7)1(1 —oy) < (

m} < po. By the original proof,
L 7, completing the proof. O

0 S V)

From the proof sketch, we see that

* The requirement that E;[g2(y:)] = V f(y:) is to ensure that Eq. (I23) holds.
* The constraint on 6, in Line [3]of Algorithm [2]is to ensure that Eq. (I24) holds.

* The choice of g1(y:) (91(y:) = Vf(y:) " ve - v;) and update of z¢ (v441 = yr — %91 (1))
is the same as in Algorithm[I] i.e. the greedy descent framework. This is since Eq. (I23)
requires that B[ f (z;1)] decreases as much as possible from f(y;).

* From Eq. (T21) to Eq. (122)), we require B¢ [ov;g2(y:) T (my — )] = @B [g2(ye)] T (my — )
and ;0|1 g2 (v¢)|1?] = 0:E¢[||g2(y:)||?]. Therefore, to make the two above identities hold,
by the property of “pulling out known factors” in taking conditional expectation, we require
that m,, a; and 6; are F;_-measurable. Since we make sure in Remark@that Fi—1 always
includes all the randomness before iteration ¢, and o is determined by ~; and 6, it suffices to
let 6, be F;_1-measurable. We note that “being F;_;-measurable” means “being determined
by the history, i.e. fixed given the history”.

Now we present the complete proof of Theorem 5}
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Proof. Since w11 = y; — %91 (ye) and g1 (yz) = Vf(yt)—rvt - v, by Lemma
2
E, [(Vf(yt)TUt) ]

Ee[f(zes1)] < flye) — oW (127)

< E; [(Vf(yt)TUt)2] 128

For an arbitrary fixed z, define p;(x) := % ||m; — z|*> + f(x¢) — f(z). Then
mﬂw»:f;wmwlfmﬁ+f@wn—f@> (129)
0 0?2
= %;1 Ime — ) = 2222 g5 () T (s — 2) + L2 go (y) |2 + f(@1) — f(2)
o 20
(130)
0

- %;1 e = [* = anga(y) T (me = 2) + S llg2 @l + f(2ee1) = f2). (3D

‘We make sure in Remark|2|that Fi—1 always includes all the randomness before iteration ¢. Therefore,
~¢ and m, are F;_q-measurable. The assumption in Theorem|§]requ1res that 6, is F;_1-measurable.
Since «; is determined by ~y, and 6; (through a Borel function), a; is also F;_;-measurable. Since
my, ay and 6 are F;_;-measurable, we have By [a;g2(y:) T (ms — 2)] = ayEy[ga(ys)] T (ms — ) and
Ee[0:1192(y2) 7] = 0:Ex[l|g2(y2)||?] Hence

Ei[pr41(z)] = Jeil [me — 2% 1> — cuBelga(ye)] " (my — 2*) + %Et[qu(yt)HQ] + Eilf(ze41)] — f(z7)

2
(132)
= %;1 [me — 2| — .V f(y) T (me — ) + %]Et[||92(yt)|\2] + E[f(zi41)] — f(2)
(133)
Ee | (Vf(ye) v 2
< 5 e — @ — eV F () (e — @) + [ o )}+EU@HM—f@)
(134)
%“ e — @l — eV f(ye) " (me — @) + flye) — f(2) (135)
=ﬁ;wm—xW—Vﬂmfmmu—mm+f@»—ﬂw (136)
= L5 e — 2| + VA e) T (—ye + (L= e + wa) + fly) = fl2) (13D)
_%“Ht—ww+f«L%MM+aw).ﬂ@ (138)
sﬁﬁwm—w\+u—mﬁua—u—mwu> (139)
= (1= an) (Flme =2l + f(:) = () (140)
= (1 —a)pe(). (141)
Therefore,
(o) = Elpo(a)] > & [0 gy | 20| g [ 28
[ Elpe@] ] gl [ @ ] pa(@)
ZE_ﬂawﬂaﬁ}_E%&[ﬂmmlmJ} E[uawuan]
> ..
>E ﬂu)] .
_Ht:O (1 — ay)
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We have pr(z) > f(xr) — f(z). To prove the theorem, let 2 = z*. The remaining is to give an

upper bound of [T/_y" (1 — o). Let ¢, := [[1— (1 — o) and ay, := ﬁ, we have
Gt — ap = L1 V= Ve Yk — Ve (142)
V¥t VU VUkYr+1 VU¥kt1 (Vr + Vi)
> Ve — Yrt1 (143)
Vetr41(2v/0k)
k= —a)e ok Vb VO [k (144)
29Uk \/Vrt1 2/ k1 24/ Urga 2\ Y+
VY00
- % (145)
Since ¥ = 1, ap = 1. Hence ap > 1 + \/%ZT_l \/0;. Therefore, Y < L 5.
= 3 2ut=0 S (B i vm)
The proof is completed. O

C.2 Construction of g2(y:)

We first note that in PARS, the specification of F;_; is similar to that in Example @ That is,
we suppose that p, is determined before sampling {u1, ug, . .., uq}, but it could depend on extra
randomness in iteration . We let F;_ also includes the extra randomness of p; in iteration ¢ (not
including the randomness of {u1, ug, . . ., U4 }) besides the randomness before iteration ¢. Meanwhile,
we note that the assumption in Theorem [S|requires that 6, is F;_1-measurable, and this is satisfied
if the algorithm to find ; in Algorithm [2|is deterministic given randomness in F;_; (does not
use {u,us,...,uq} in iteration t). Since F;_; includes randomness before iteration ¢, if 6, is
Fi_1-measurable, we can show that y; is F;_j-measurable.

S 2
We also note that in Section 4 and Appendix we let D, = (V f (yt)Tpt) , which is different

- T
from the previous definition D; := (V f(zy) pt) in Section [3|and Appendix |B| This is because in
ARS-based algorithms, we care about gradient estimation at y; instead of that at x;.

In Algorithm [2| we need to construct g(y;) as an unbiased estimator of V f(y;) satisfying
Ei[g2(y:)] = Vf(y;). Since Theorem [5]tells us that a larger 6; could potentially accelerate con-
vergence, by Lineof Algorithm 2] we want to make E;[||g2(y:)||] as small as possible. To save
queries, we hope that we can reuse the queries V f (y¢) "p; and {V f(y;) T
of constructing g1 (y¢).

49 1
uz}i:l used in the process

Here we adopt the construction process in Section [B.3.3] and leave the discussion of alternative ways
in Section We note that if we let H be the (d — 1)-dimensional subspace perpendicular to py,
then

VI = V) pepe+ Q= pp V) = V@) pepe+ V). (146)

Therefore, we need to obtain an unbiased estimator of V f (y;) 7. This is straightforward since we
can utilize {u; }{_, which is uniformly sampled from the (d — 1)-dimensional space H.

Proposition 10. Forany 1 <i < ¢, B[V f(y) "wi - wi] = 75V f (y) -

Proof. We have E;[u;u, | = I;’%’fj (See Section A.2 in [4] for the proof.). Therefore,

I-pipf 1
BV £ (y) s wi] = =PIV ) = =V @) (147)
[
Therefore,
T d—13 T
92(ye) = VS () 'propu+ —— D V) T w (148)

i=1
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satisfies that E; (g2 (v )] = V f(y:). Then
2
(149)

Eolllg2(u)l12] = IV £ ()|, HVf(ytfpt et Y VT e
2

Wq;”im [(v yt)Tul-)QD (150)

V) (Dt + oo D») , (151)

= IV £l ((W(ytfpt)Q +

2
where the last equality is due to the fact that E;[u;u, | = % (hence E, {(V f (yt)Tui) } =

(y2). then Ee[llg2(ye)I°] = IV f(we)lI*.

Noting that D;+ % (1-Dy) < g, our proposed unbiased estimator results in a smaller E[||g2 () ||?]
especially when D is closed to 1, since it utilizes the prior information.

Finally, using ¢2(y;) in Eq. (I48), when calculating the following expression which appears in Line
of Algorithm 2} the term ||V f(y;)||> would be cancelled:

E[(VSw)Tw)"] B [(W(yt)Tvt)z} _ Dt ah(=Dy) (152)
LBllgew)l?l L(Dy+421-Dy)  L(Di+4201-Dy)

where the last equality is due to Lemma[2]

C.2.1 Alternative way to construct g>(y;)

Instead of using the orthogonalization process in Section when constructing ¢ (y:) as the
PRGEF estimator, we can also first sample q orthonormal vectors uz} _, uniformly from S;_;, and
then let p; be orthogonal to them with {ul _, unchanged. Then we can construct g2 (y;) using this

set of {V f(y) "us}{_; and V f(y:) " p

Example 3 (RGF). Since {u; }!_, are uniformly sampled from Sy_1, we can directly use them to
construct an unbiased estimator of V f (y;). We let g2(y:) = g 1V f(y) " wi - ui. We show that
it is an unbiased estimator of V f (y;), and E[||g2(y:)||?] = gHVf(yt)HQ

Proof. In Section we show that E[u;u; | = L. Therefore

d
tlg2(ye)] = ZEf uiu] |V f(ye) 52& =V f(ye).
q 2 q
]Et[||92(yt)”2] Z [(Vf( yt u;)?] = 72 (Ye) T]Ef [uiu ]Vf(yf)
? . -
- Zg )l = 2197w

We see that E[||g2(y:)||?] here is larger than Eq. (T5]).

Example 4 (Variance reduced RGF). To reduce the variance of RGF estimator, we could use p; to
construct a control variate. Here we use p; to refer to the original p{"" before orthogonalization
so that it is fixed w.r.t. randomness of {u1, ..., uq} (then it requires one additional query to obtain

YV f(ye) "pe). Specifically, we can let go(y;) = g 321(Vf(yt)Tufuif(Vf(yt)Tpt.pt)Tui.ui)Jr
YV f(y:) "ps - pi. We show that it is unbiased, and By ||| g2 (y:)||?] = [V f (ye)||? (Dt + %(1 - Dt)).
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Proof.

Bl(VF ) e pe) e i) = Eeluea] 17 () e e = 59 0) o

Therefore,

d q

Et[g2(ye)] = E¢ QZVf(yt)Tul ui| =V f(y).
i=1

Let Vf(y:)m == Vf(y:) — Vf(ys) "pi - pr. We define that Var[z] for a stochastic vector z is
such that Var[z] = ), Var[z;]. Then for any stochastic vector z, E[||z|?] = ||E[z]||* + Var[z].
We have Vary[gs(y:)] = Varg {E ilef(yt)Hui~ui}. Let gh(y:) := 5 V() fpwi -
ui. Then Eelgs(y)] = VF(y)u, Eellga(wo)ll*) = IV f(ye)ull*. Therefore, Vary[ga(y:)] =
Eulllgh () I12] = IElgs(wo)l2] = (£ = 1) IV S ()all® = (1= Do) (£ = 1) V5 (90) . Hence,

Ellg2 ()] = [Eulga (w1 + Var[ga ()] = (1 (-Dy (j - 1)) 19 £ )
d :
_ (Dt +da- D») 19 £ )12

We see that E.[||g2 (1 )||?] here is comparable but slightly worse (slightly larger) than Eq. (I51).

In summary, we still favor Eq. (T48) as the construction of go(y:) due to its simplicity and smallest
value of E;[||g2(y:)||?] among the ones we propose.

C.3 Estimation of D; and proof of convergence of PARS using this estimator

2
%) . For the term inside

the square, while the numerator can be obtained from the oracle, we do not have access to the
denominator. Therefore, our task is to estimate ||V f(y;)]|?.

In zeroth-order optimization, D; is not accessible since D; = (

To save querles it is ideal to reuse the oracle query results used to obtain v; and g2 (y¢): V£ (y:) " ps

and {Vf(y;)" ul}ze{l } Again, we suppose p¢, u1, - - - ,Uq are obtained from the process in
Section[B.3.3] By Eq. (146), we have
HVf(yt)ll2 = (Vf(ye) 'p)* + IV ) ul® (153)

Since {u;}7_ is uniformly sampled from the (d — 1)-dimensional space H,

Proposition 11. Forany 1 <i < ¢ E[(Vf(y:) wi)?] = 251V f(y)m|*

Proof. By Proposition |10, E;[V f(y:) T u; - u;] = =V f(y:) & Therefore,
y p Y a—1 Y

Bl(VS () w0)?] = V() "BV S ) T i) = = VI @) V) (154
= ﬁllW(yt)Hll? (155)
O

Thus, we adopt the following unbiased estimate:
s d—1 ! T \2
197 G)nl* = == > (V) "w) (156)

=1
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By Johnson-Lindenstrauss Lemma (see Lemma 5.3.2 in [[15]]), this approximation is rather accurate
given a moderate value of q. Therefore, we have

IV £ =~ (V10 Tp)*+ = 3 (V) )’ (1s7)
and
(Vo) p)? (V) Tp)*

Dy = (158)

IVFWII? (V) Tp)* + S (VF () Tua)®
C.3.1 PARS-Est algorithm with theoretical guarantee

In fact, the estimator of D; concentrates well around the true value of D, given a moderate value of
q. To reach an algorithm with theoretical guarantee, we could adopt a conservative estimate of Dy,
such that the constraint of 6, in Line [3]of Algorithm [2]is satisfied with high probability. We show the
prior-guided implementation of Algorithm 2] with estimation of D; in Algorithm 3] call it PARS-Est,
and show that it admits a theoretical guarantee.

Algorithm 3 Prior-guided ARS with a conservative estimator of D, (PARS-Est)

Input: L-smooth convex function f; initialization xo; L > L; Query count per iteration g; iteration number 7'
Yo > 0.
Output: z7 as the approximate minimizer of f.
1: mo < xo0;
2: fort =0toT — 1do
3: Obtain the prior py;
4: Find a 0, such that #; < @} in which ; is defined in the following steps:
5 Step 1: y; + (1 — ay)xs + aymy, where oy > 0 is a positive root of the equation af = 04 (1 — cu)e;
Yerr < (1 — o)y
6: Step 2: Sample an orthonormal set of {u;

Section[B:3.3}
7: Step 3: D, «

q

;—1 in the subspace perpendicular to p; uniformly, as in

(Vi) pe)? 0 Di+74:(1-Dy)
(Vi) Tp )+ 20 S0 (Vi) Tui)? 0 E(Det i (1-Dy))’
8: Resample {u;}7_, and calculate v; as in Section
9 gi(y) « VF(ye) veve =30 Vi (ye) wiwi+ Vi (ye) e pes
10: ga(ye) « 2300, Vi (ye) Twi - wi + V F(ye) "pe - pis
1 e 4 ye = £91(Ye)s musr = me — 2o g2(ye);
12: end for
13: return xr.

Theorem 6. Let
- 2.4 15
p r(;xl<2(d—l)> (159)

where (z1,72,...,xq-1) ~ U(Saq_2), i.e. follows a uniform distribution over the unit (d — 1)-
dimensional sphere. Then, in Algorithm Jorany ¢ € (0,1), choosing a q such that p < %, there
exists an event M such that Pr(M) > 1 =6, and

T-1 2
E |(f(xr) - f(z*)) <1+V;°Z¢E> M| < f(ao) = (@) + Sllao —a* |, (160)
t=0

Proof. We first explain the definition of F;_; in the proof (recall that E;[-] is E[-|F;—1]). Since in
TheoremE] we require 6; to be F;_1-measurable, we let F;_; also includes the randomness in Line E]
of AlgorithmE]in iteration ¢, besides randomness before iteration ¢ and randomness of p;. We note
that F;_1 does not include the randomness in Line
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_ 2
Let M be the event that: Foreach ¢ € {0,1,...,7 — 1}, % ! (V) Tw)” = V(o)
When M is true, we have that V¢,

- (V£(y)pe)*
D (161)
e <Vf<yt>Tpt>2 A 2‘3:1 (V£ () Tui)?
(Vf(yt)Tpt) + ||Vf(yt)H||2
- (Vf yt )2 o
= Nfwr (169
Therefore,
) _q (1 _ 7 9 (1 — ]Et \% t T t 2
Htgegz _ f+ _1(1 Dj) < Dt+d 1(1 Dt) _ A|:( f(y) ,U):| (164)
i (Dt pdiq Dt)) I3 (D +d=1(1 Dt)> L -Ey|lg2(ye) 2]

Since F;_; includes the randomness in Line |§| of Algorithm [3|in iteration ¢, E;[-] refer to only taking
expectation w.r.t. the randomness of v; and g2 (y;) in iteration ¢, i.e. w.r.t. {uq,...,uq} in Line
of Algorithm l Since {u1,...,uq} in Line[8]is independent of {us,...,u,} in Line[6] adding
{u1,...,ug} n Line[f]to the hlstory does not change the distribution of {ul, ..., Uq} in Line F given
the hlstory Therefore according to the analysis in Sectlon@ the last equahty of Eq. (164) holds,

and E¢[g2(y¢)] = V f(y¢). By Theorem[5] Eq. (T60) is proved.
Next we give a lower bound of Pr(M). Let us fix ¢. Then

q

Pr (d_l Z (vf(yt)TUi)z < ;”Vf(yt)HHz) =

=1

Since for different ¢ the events inside the brackets are independent, by union bound we have Pr(M) >
1 —pT. Since p < %, the proof is completed. ]

Remark 13. 7o save queries, one may think that when constructing vy and go(yt ), we could omit
the procedure of resampling {u;}!_, in Line and reuse {u;}{_, sampled in Line 6|10 utilize the
queries of relevant directional derivatives in Line[7} Our theoretical analysis does not support this
vet, as explained below.

If we reuse {u;}!_, sampled in Line @ to construct vy and g2(y:), then both 0; and {g2(yt), v¢ }
depend on the same set of {u;}}_,. Since Theorem |5|requires 0, to be F;_1-measurable, we have
to make Fy_1 include randomness of this set of {u;};_,. Then both g>(y;) and v; are fixed given
the history F;_1, which is not desired (e.g. Bi[g2(y)] = V f(y:) generally does not hold since
E:[g2(y)] = g2(y:) now, making the proof of Theorem fail).

Remark 14. For given d and q, p can be calculated in closed form with the aid of softwares such as
Mathematica. When d = 2000, if ¢ = 50, then p ~ 7.5 x 1074, If ¢ = 100, then p ~ 3.5 x 1076,
Hence p is rather small so that a moderate value of q is enough to let p < %.

In fact, p can be bounded by O(exp(—cq)) by Johnson-Lindenstrauss Lemma where c is an absolute
constant (see Lemma 5.3.2 in [15]]). Note that the bound is exponentially decayed w.r.t. q and
independent of d.
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Remark 15. We give an analysis of the influence of the additional factor 2 in Line[7 of Algorithm|3]
Let

ﬁtQ _ - (VQf(E/t)Tpt)Q ’
(Vf () Tpe)* + 2L (VS () Tws)?

Dtl = Q(Vf(,yt)—rpt>2 2
(VF(ye) Tpe)” + 4 220 (VF () Tws)

0y — Dys + (1= Dys)
L (DQ +4=2(1 - [)tg)) ’

0y = Dy +ﬁ(1—bt1)

L (Dtl + %(1 - Dtl))

Then Dtl > Dtg and 1 — Dtl <1- Dtg. We have

0 D+ g55(1= D) Du+ 11— Dy) 165
0n  Du+75(1—Du) Dp+ 11— D)
Dy 1-D
> Dz It (166)
Dy 1 — Dy
Dy
=522 (167)
1-Dyy
(Vf(yt)Tpt)Q
2(d—1) ~—q T, N\2
_ TZL=1(Vf(y’f) u7)
o (Vf(yt)Tpt)2 (168)
% Zg=1(vf(yt)-ru1,)2
1
=5 (169)
Therefore, we have 05 > %Gﬂ.
Meanwhile, since ﬁtz >0, we have 0,9 > ﬁ(dqijl)r Hence ;5 > max {%th, L(;ijl)z}'

C.4 Approximate solution of 6§, and implementation of PARS in practice (PARS-Impl)

We note that in Line [3]of Algorithm[2] it is not straightforward to obtain an ideal solution of 6,, since
Ee [(Vf(y:) " ve 2
y: depends on 6,. Theoretically speaking, 6; > 0 satisfying the inequality 6; < %
e (l192\Yt

. . Et[(vf(yt)-rvt)z} a2

always exists, since by Eq. (152), LE oGO 2 T-1
let 8; = 6. However, such estimate of 6, is too conservative and does not benefit from a good prior
(when D; is large). Therefore, one can guess a value of Dy, and then compute the value of 6; by

E[(Vf(ye) Toe)®
Eq. (I32), and then estimate the value of D, and verify that 6; < % holds. If it does
ot 2\Yt

not hold, we need to try a smaller 6, until the inequality is satisfied. For example, in Algorithm 3] if
we implement its Lineéto Linewith a guessing procedureE] we could obtain an runnable algorithm
with convergence guarantee. However, in practice such procedure could require multiple runs from
Line[5]to Line[7)in Algorithm 3] which requires many additional queries; on the other hand, due to
the additional factor 2 in Line[7|of Algorithm[3] we would always find a conservative estimate of 6;.

:= 6 always holds, so we can always

'SFor example, (1) compute 8, with §; < 0 by running Lineto Line (2) we guess 0; < k0, to compute
a new 0 by rerunning Line to Line[7] where 0 < x < 1 is a discount factor to obtain a more conservative
estimate of d; (3) if 0; < 0, then we have found 0; as required; else, we go to step (2).
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In this section, we introduce the algorithm we use to find an approximate solution to find 6, in Line[3]
of Algorithm[2] which does not have theoretical guarantee but empirically performs well. The full
algorithm PARS-Impl is shown in Algorithm[] It stills follow the PARS framework (Algorithm [2),
and our procedure to find 6, is shown in Line|5|to Line Next we explain the procedure to find 6,
in detail.

Algorithm 4 Prior-Guided Accelerated Random Search in implementation (PARS-Impl)

Input: L-smooth convex function f; initialization x¢; L > L; Query count per iteration q (cannot be too small);
iteration number 77; o > 0.
Output: z7 as the approximate minimizer of f.
1: mo <« To,
2: [V fa|? = +oo;
3: fort =0to7T — 1do
4: Obtain the prior py;

) (0) P (Vi) Tp)? DitgZy(1=Dy) |
5: Yp ' Tt Dy NV i1l 5 Ut ﬁ(f)t+%(1fﬁt))’
6: yt(l) +— (1 — at)zt + apmy, where iy > 0 is a positive root of the equation al = 0:(1 — cve)yes
) 3 (Vi) Tpe)? Dyt gy (1-Dy)
N ST L L(D+ T ra-Dn)’
8: yr + (1 — ay)xe + aymy, where a; > 0 is a positive root of the equation af = 0;(1 — cu)ye;

Yeg1 — (1 — a)yes
9: Sample an orthonormal set of {u; }{_; in the subspace perpendicular to p; uniformly, as in Section

100 gi(ye) < 0 ViF(ye) Twi i + Vi (ye) "o e
e galye) < 20, VF(ye) "ui - wi + V() 'pe - pos

2 2 _ 2
122 VP < (V) o) + S0, (VF(ye) Twi) s
130 w1y — 2g1(ye) meps - mu — 2go(uh);
14: end for

15: return x7.

Specifically, we try to find an approximated solution of 6, satisfying the equation 6, =

]Et[(vf(yt)T'Ut)2:| . . . .
S EA PN to find a 6; as large as possible and approximately satisfies the inequality
Lt [192\Yt
Et[(vf(yt)—r1’t)2] . E, [(Vf(yt)T’Ut)Q] Di+545(1-Dy)
< _— = = = d—1 -
0; < BACRIE Since RS (Dt Si(1-Dy)’ we try to solve the equa
tion

D+ -2 (1-D
0, = g(6,) = — et d(ff 2 , (170)
i (Dt + 11— Dt))

where D, = (Vf (yt)Tpt)2 and y; depends on 6. This corresponds to finding the fixed-point of g,
so we apply the fixed-point iteration method. Specifically, we first let 8, = 0, then y; = x, and let
0 + g(6:) (the above corresponding to Lineof Algorithm E]); then we calculate y; again using the
new value of ; (corresponding to Line @) and let 6; < g(0;) (corresponding to Line . We find that
two iterations are able to lead to satisfactory performance. Note that then two additional queries to

the directional derivative oracle are required to obtain V f (yt(o))—r pyand V f (y,gl) ) Tps used in Line
and Line[7]

.
Since Dy = (Vf(y:) pi)? = %, we need to estimate ||V f(y:)|* as introduced in

Section However, yt(o) and y,fl) in Algorithm @ are different from both y; and y,_;, so to

estimate ||V f (y,go))H2 and |V f (yt(l))H2 as in Section many additional queries are required
(since the query results of the directional derivative at y;_1 or y; cannot be reused). Therefore, we
introduce one additional approximation: we use the estimate of |V f(;—1)||? as the approximation

of |V f (y,go))H2 and ||V f (ygl)) |2. Since the gradient norm itself is relatively large (compared with

18Line|5|and Line7|require the query of V f (yéo) ) p; and V£ (yt“))T p: respectively, so each iteration of
Algorithm 4] requires 2 additional queries to the directional derivative oracle, or requires 4 additional queries to
the function value oracle using finite difference approximation of the directional derivative.
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e.g. directional derivatives) and in zeroth-order optimization, the single-step update is relatively small,
we expect that ||V £(1\”)||2 and ||V £ (y\")||? are closed to ||V f(y—1)|2. Tn Algorithm Line
estimates ||V (3 )||? by Eq. (T57), and the estimator is denoted ||V f,||2. (yt(o) |2
and |V f (yt(l))H2 are approximated by ||V f,_1|| for calculations of D, in Line |5|and Line [7| as
approximations of (Vf(yt(o))—rpt) and (Vf(y (1))T t) .

Finally we note that in the experiments, we find that when using Algorithm[4] the error brought by

approximation of ||V f (yt(o) )||? and ||V f (y,gl) )||* sometimes makes the performance of the algorithm
not robust, especially when ¢ is small (e.g. ¢ = 10), which could lead the algorithm to divergence.
Therefore, we propose two tricks to suppress the influence of approximation error (we note that in
practice, the second trick is more important, while the first trick is often not necessary given the
application of the second trick):

« To reduce the variance of ||V f;|| when ¢ is small, we let
¢
av 1 =
VAP =2 > IV 171)

s=t—k+1
and use ||V f>%]2 to replace ||V fi-1 H2 in Line [5| and Line [7} In our experiments we
2 using | V£28||2 to estimate ||V £(y{”))]|? and

IV f (ygl)) |2 could reduce the variance at the cost of increased bias. We note that the
increased bias sometimes brings problems, so one should be careful when applying this
trick.

* Although D, < 1, It is possible that D, in Lineand Lineis larger than 1, which could
lead to a negative 6;. Therefore, a clipping of D, is required. In our experiments, we
observe that a D, which is less than but very close to 1 (when caused by the accidental large
approximation error) could also lead to instability of optimization, perhaps because that it
leads to a too large value of 6, used to determine y; and to update m,. Therefore, we let
D, + min{f)t, By} in Line and Linebefore calculating 6;, where 0 < By, < 1is
fixed. In our experiments we set By, to 0.6.

We leave a more systematic study of the approximation error as future work.

C.5 Implementation of History-PARS in practice (History-PARS-Impl)

In PARS, when using a specific prior instead of the prior from a general source, we can utilize some
properties of the prior. When using the historical prior (p; = v;—1), we find that D, is usually similar
to D,_1, and intuitively it happens when the smoothness of the objective function does not change
quickly along the optimization trajectory. Therefore, the best value of 6, should also be similar to the
best value of §;_;. Based on this observation, we can directly use 8;_; as the value of 6, in iteration
t, and the value of 0;_; is obtained with ;1 in iteration ¢ — 1. Following this thread, we present our
implementation of History-PARS, i.e. History-PARS-Impl, in Algorithm 5]

C.6 Full version of Algorithm 2] considering the strong convexity parameter and its
convergence theorem

In fact, the ARS algorithm proposed in [12]] requires knowledge of the strong convexity parameter
7 of the objective function, and the original algorithm depends on 7. The ARS algorithm has a
convergence rate for general smooth convex functions, and also have another potentially better
convergence rate if 7 > (. In previous sections, for simplicity, we suppose 7 = 0 and illustrate the
corresponding extension in Algorithm[2] In fact, for the general case 7 > 0, the original ARS can also
be extended to allow for incorporation of prior information. We present the extension to ARS with
7 > 0 in Algorithm[6] Note that our modification is similar to that in Algorithm[2] For Algorithm [6}
we can also provide its convergence guarantee as shown in Theorem [7] Note that after considering
the strong convexity parameter in the algorithm, we have an additional convergence guarantee, i.e.

Eq. (I73). In the corresponding PARS algorithm, we have 6; > 7 d2, so the convergence rate of
PARS is not worse than that of ARS and admits improvement given a good prior.
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Algorithm 5 History-PARS in implementation (History-PARS-Impl)

Input: L-smooth convex function f’; initialization x; L>L; Query count per iteration g (cannot be too small);
iteration number T'; vo > 0.
Output: z7 as the approximate minimizer of f.

1: mo < xo;

2: @_1 < avery small positive number close to 0;

3: V-1 NZ/[(Sd_1);

4: fort =0toT — 1do

5: yt + (1 — a¢)me + agmy, where oy > 0 is a positive root of the equation a? = 0r—1(1 — as)ye;
Y1 = (1= ae)yes

6: Sample an orthonormal set {u; }{_, in the subspace perpendicular to v;—1, as in Sectionwith

Pt = Vt—1,
70 gi(ye) & L Vi (ye) Twi o ui + VE(ye) Tveet - vee1s v 4 g1(ye);
8 ga(y) «— AL VI(ye) "wi - wi + V(ye) Tve-n - v
. Di+5%45 (1-Dy)
% b L(De+ 2 (1-Dy))’

where D is estimated using Eq. with py = ve_1;
10: Tii1 < Y¢ — %gl(yt), M1 < My — (yt)3
11: end for

12: return zr.

Algorithm 6 Extended accelerated random search framework for 7 > 0

Input: L-smooth and 7-strongly convex function f; initialization xo; L > L; 7 such that 0 < 7 < 7 iteration
number 7'; a positive yo > 7.
Qutput: =7 as the approximate minimizer of f.
1: mo < xo;
2: fort =0toT — 1do

. R Et [(Vf(yt)TUt)2]
3: Find a 6; > 0 such that 8, < T Ele @O

4: Step 1: yr < (1 — Be)ze + Beme, where By := 2y is a positive root of the equation

Oé? = 0:((1 — o)yt + ae); yer1 (1 — )y + a7
5 Step 2: Let v; be a random vector s.t. [[ve|| = 1; g1 (ye) < VF(ye) ve - ves
6: Step 3: Let gg(yt) be an unbiased estimator of V f(y:), i.e. E¢[g2(y:)] = V f(ye);
7

where 0;, y; and g2(y:) are defined in following steps:

At 7
'Yt+1
8: Ti41 & Yt — %91(%), Mt41 < (1 - )\t)mt + Aeye — %gg(yt);
9: end for

10: return xp.

Theorem 7. In AlgOrithm@ if 0y is F;_1-measurable, we have

E (f(wT)—f(l‘)< m2f> < flao) = F@) + Llag — 2% (172)
and

E[(f(:LT) f(@*)) exp (fz \F)] < flwo) — f@) + Dag — 2|2 (A73)

Proof. Let L. :=

L fal .
7 - L. We still have Eq. (T8), so

Eq {(Vf(yt)TUt) 2]

Ee[f(ze1)] < flye) — 5L (174)
Ee | (VF(y) ve)’
< flye) — [( 2yﬁ ) ] (175)

For an arbitrary fixed z, define p;(2) := 2||my — x| + f (1) — f(2). Let 7y := (1 — Xe)my + Ay
We first prove a lemma.
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Since (1 — B)xs + Byme = yp = (L = Be)ye + Bryr, we have my — y; = 12;? (ye — ). So
1 _
re = (1= A)me +Mye =y + (1= M) (me — ) = ye + (1= \p) 3 Be (ye — ). (176)
t

xt

By i = %aﬁltﬁ» Yir1 = (1 — ap)y + w7 and Ay = o~
(1— )\t)lg—fat = —1;:”. Hence r; = y; + =2 (y; — x;), which means

623

7, after eliminating +; and 7,11, we have

Y = (]. — Oét).’Et + Qg (177)
Now we start the main proof.
praa(@) = L miss — ol + flae) - f(2) (78)
g Y410 Y4167
= 2 ry — 2l = g (ye) T (re — @) + o g2 (o) |12 + Flaes) — f(x)
2 (o7 20&15
(179)
o 0
= 5l =2l = onga () " (re = 2) + S llg2Ol* + flaegn) = f(x) (180)

We make sure in Remark|Z|that Fi—1 always includes all the randomness before iteration ¢. There-
fore, ¢, m; and x; are F;_i-measurable. The assumption in Theorem [5| requires that 6; is
Fi_1-measurable. Since oy, B, y: and r; are determined by -, =, m; and 6, (through Borel
functions), they are also F;_j-measurable. Since 0y, a; and r; are F;_;-measurable, we have
Eiarga(ye) T (re — 2)] = cuBelga(ye)] T (re — ) and Ee[0,]|92(ye) I”] = 0:E:[l|g2(y2)[|°]. Hence

Ei[pry1(z)] = MHW —2|* — uBalga(ye)] " (re — ) + %Et[||92(yt)||2] +Ei[f(we41)] — f(z)

2
(181)
0
= 2 e = all” — V£ ()T (re = @) + SEllga (90| + Eelf (@] - f(a)
(182)
E; (Vf(yt)Tvt)2

< %;1 e — 2|* = eV f () " (re — ) + [ o7 } + Eif(2e41)] = f(=)
(183)
< L — all? — gV £ () (e — ) + () — £(@) (184
= %2“ e — )| = Vf(ye) T (ure — ewz) + f(ye) — f(2) (185)
= Tyl 4 V() + (- e+ ) + ) - f@) (86
= T a4 () + V) 2 ) (187)
+ (L= ) (fye) + V() (e —ye)) — fl) (188)
< Ly P 4 (1 - 0 o) — (- af@) = o -yl (189

We also have

’“2“ lre — 2||* = %H(l—mmtmwt — z|f? (190)
- %2+1|\(17At)(mt—x>+&(yt —2)||? (191)
L R (192)
B R T (193)
= (1= ) g e = o + S e = (194)
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where the inequality is due to Jensen’s inequality applied to the convex function || - ||?, and the
third equality is obtained after substituting A\;y;11 = a7 by the definition of A;. Since v;41 =
(1 —ag)v + o = (1 — ag)ye + Aeyes1, we have v11(1 — Ay) = (1 — a)yz, which leads to the
last equality.

Hence
Edlpear(@)] < Xl — 22 + (1 — @) f(ae) — (1 —a)f(@) = oz —pel®  (199)
= (1 - apule) + 2T g2 (196)
< (1 —oy)pe(x). (197)
Therefore,
po(@) = E[po()] > E {Ef[’“fjg)q ~E {Eo L’“(Z)OH =E [1”1(2)0]
[ Eafpa(2)] } _ { [ p2(x) H _ { p2(x) ]
R et —an] =P 0 a0 —an )] =B T a0)@ —an)
'pm>]
2E| |-
L thol(l — o)
We have pr(z) > f(xr) — f(z). To prove the theorem, let 2 = z*. The remaining is to give an
upper bound of HZ:;(l —ay). Letyy, = f:_ol(l — a¢) and ay, := ﬁ, we have
Gt — ap = 11 Ve Ven Yk — Ve (198)
Vire Vi V41 Ve 1 (Ve + /rr1)
> I eSS U (199)
T VYR (Vr)
k= —a)e ok Vb VO [ (200)
205/ Yk 2V k1 24/ Yk 2\ Y+
> V0obs (201)

2
The last step is because v;11 > (1 — )y, SO ’ny% > Hfzo(l — ) = Ygy1. Since g = 1,
ap = 1. Hence ap > 1 + @ Zf:_ol \/0;. Therefore,

Vr < ! . (202)

(1+ 5 sl v

Meanwhile, since 7o > 7 and v;41 = (1 — ay)V + a7, we have that Vt,~y, > 7. Then af =
0:((1 — ap)ye + oy 7) > 0,7, then we have that oy > /70;. Therefore,

vr < Tf[l (1= V70:) < exp (—ﬁTZl JE) . (203)

t=0
The proof is completed. O
D Supplemental materials for Section

D.1 More experimental settings in Section

In experiments in this section, we set the step size p used in finite differences (Eq. (I)) to 107, and
the parameter -y in ARS-based methods to L.
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D.1.1 Experimental settings for Fig.|T]

Prior We adopt the setting in Section 4.1 of [9] to mimic the case that the prior is a biased version

of the true gradient. Specifically, we let p, = V f(z:) + (b + n:), where b is a fixed vector and n; is
a random vector uniformly sampled each iteration, ||b|| = 1 and ||n:|| = 1.5.

Test functions Our test functions are as follows. We choose f as the “worst-case smooth convex
function” used to construct the lower bound complexity of first-order optimization, as used in [[12]:

d—1
1 1 ) , 1
_ (e (IN2 & (i+1) _ (N2 4 Z/.(d)y2 _ (1) _
filz) = 2(x ) —1—2;(30 ™) —1—2(:10 )* — ', where zp = 0. (204)
We choose f> as a simple smooth and strongly convex function with a worst-case initialization:
d ;.
fa(z) = Z ((Zi : (x(i))Q) , where 2V = d, z{) = 0 fori > 2. (205)

i=1

We choose f3 as the Rosenbrock function (fg in [3]]) which is a well-known non-convex function
used to test the performance of optimization problems:

ot . N2 _

fa(x) = Z (100 ((:::(Z))2 - :c(”l)) + (2 — 1)2) , where zg = 0. (206)

i=1
We note that ARS, PARS-Naive and PARS could depend on a strong convexity parameter (see
Section C.6)) when applied to a strongly convex function. Therefore, for fo we set this parameter to
the ground truth value. For f; and f5 we set it to zero, i.e. we use Algorithm[2]

D.1.2 Experimental settings for Fig.

In this part we set d = 500 and set ¢ such that each iteration of each algorithm costs 11 queries. Since
when using the historical prior, we aim to build algorithms agnostic to parameters of the objective
function, we set the strong convexity parameter in ARS-based methods to 0 even though we know
that e.g. fs is strongly convex. Correspondingly, we adopt adaptive restart of function scheme [13]]
to reach the ideal performance. We introduce our implementation here. In each iteration (suppose
that currently it is iteration t) of Algorithm[5] we check whether f(y;) < f(y:—1). If not, we set
Myt1 < Ty41 and Y41 < 7o as the restart.

D.2 More experimental settings in Section

We perform targeted attacks under the ¢5 norm with the perturbation bound set to 3.514 (= 32/255 x
V/784) if each pixel value has the range [0, 1]. The objective function to maximize for attacking
image x is the C&W loss [3]], i.e. f(z) = Z(z); — max;x Z(x);, where ¢ is the target class
and Z(z) is the logits given the input z. The network architecture is from the PyTorch example
(https://github.com/pytorch/examples/tree/master/mnist).

We set the step size 4 used in finite differences (Eq. () to 10~%, and the parameter v, in ARS-based
methods to L. To deal with the constraints in optimization, in each iteration we perform projection
after the update to ensure that the constraints are satisfied. In historical-prior-guided methods, to
prevent the prior from pointing to the infeasible region (where the constraints are not satisfied), we
let the prior p; be xy — x;_1 for History-PRGF and x; — y;_; for History-PARS. In unconstrained
optimization, this is equivalent to the original choice of p; (p; = g;—1 for History-PRGF and
pt = g1(y4—1) for History-PARS) up to sign. But in constrained optimization, since x; is further
projected to the feasible region after the update from x;_1 or y;_1, they are not equivalent.

We note that the number of queries for each image does not count queries (one query per iteration) to
check whether the attack has succeeded.

E Potential negative societal impacts

As a theoretical work, we think this paper can provide valuable insights on understanding existing
algorithms and may inspire new algorithms for zeroth-order optimization, while having no significant
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potential negative societal impacts. One may pay attention to its application to query-based black-box
adversarial attacks.
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