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A Illustration Figure of Network Structures

Figure 1 illustrates our feedback models with single-layer and multi-layer structure as indicated in
Sections 4.1 and 4.3.
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Figure 1: Illustration of feedback models with single-layer and multi-layer structure.

B Pseudocode for the IDE Training Algorithm

We present the pseudocode of one iteration of IDE training in Algorithm 1 to better illustrate our
training method.

∗Corresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Algorithm 1 One iteration of IDE training.
Input: Network parameters θ; Input data x; Label y; Time steps T ; Other hyperparameters;
Output: Trained network parameters θ.
Forward:
1: Simulate the SNN by T time steps with input x based on Eq. (2) and calculate the final (weighted)

average firing rate a[T ];
2: Calculate the output o and the loss L based on o and y.
Backward:
1: Specify the fixed-point equation a = fθ(a) of the equilibrium state (define gθ(a) = fθ(a)− a);
2: Calculate the gradients based on implicit differentiation:

3: (1) Solve the equation
(
JTgθ |a[T ]

)
xT +

(
∂L
∂a[T ]

)T
= 0 by root-finding methods;

4: (2) Calculate gradients ∂L∂θ = − ∂L
∂a[T ]

(
J−1
gθ
|a[T ]

) ∂fθ(a[T ])
∂θ based on the solution and ∂fθ(a[T ])

∂θ ;
5: Update θ based on the gradient-based optimizer.

C Proof of Theorem 1 and Theorem 2

We first prove Theorem 1. Then Theorem 2 is similarly proved.

Theorem 1. If the average inputs converge to an equilibrium point x(t) → x∗, and there exists
constant c and γ < 1 such that |u+

i [t]| ≤ c,∀i, t and ‖W‖2 ≤ γVth, then the average firing rates of
FSNN with continuous IF model will converge to an equilibrium point a(t)→ a∗, which satisfies the

fixed-point equation a∗ = ReLU
(

1
Vth

(Wa∗ + Fx∗ + b)
)

.

Proof. ∀ 0 ≤ εt < ∆td, we construct the sequence {aiεt}
∞
i=0 where aiεt = a

(
tiεt
)
, tiεt = i∆td + εt.

Then the equation (1) turns into the iterative equation (2) as the following:

a(t) = ReLU
(

1

Vth

(
t−∆td

t
Wa(t−∆td) + Fx(t) + b

))
− 1

Vth

u+(t)

t
, (1)

ai+1
εt = ReLU

(
1

Vth

(
ti+1
εt −∆td

tiεt
Waiεt + Fx(ti+1

εt ) + b

))
− 1

Vth

u+(ti+1
εt )

ti+1
εt

. (2)

We prove the sequence {aiεt}
∞
i=0 converges. Consider ‖ai+1

εt − aiεt‖, it satisfies:∥∥ai+1
εt − aiεt

∥∥
=

∥∥∥∥(ReLU
(

1

Vth

(
ti+1
εt −∆td

ti+1
εt

Waiεt + Fx(ti+1
εt ) + b

))
− 1

Vth

u+(ti+1
εt )

ti+1
εt

)
−
(

ReLU
(

1

Vth

(
tiεt −∆td

tiεt
Wai−1

εt + Fx(tiεt) + b

))
− 1

Vth

u+(tiεt)

tiεt

)∥∥∥∥
≤

∥∥∥∥ReLU
(

1

Vth

(
Waiεt + Fx∗ + b

))
− ReLU

(
1

Vth

(
Wai−1

εt + Fx∗ + b
))∥∥∥∥

+

∥∥∥∥ReLU
(

1

Vth

(
ti+1
εt −∆td

ti+1
εt

Waiεt + Fx(ti+1
εt ) + b

))
− 1

Vth

u+(ti+1
εt )

ti+1
εt

− ReLU
(

1

Vth

(
Waiεt + Fx∗ + b

))∥∥∥∥
+

∥∥∥∥ReLU
(

1

Vth

(
tiεt −∆td

tiεt
Wai−1

εt + Fx(tiεt) + b

))
− 1

Vth

u+(tiεt)

tiεt
− ReLU

(
1

Vth

(
Wai−1

εt + Fx∗ + b
))∥∥∥∥

≤
∥∥∥∥ReLU

(
1

Vth

(
Waiεt + Fx∗ + b

))
− ReLU

(
1

Vth

(
Wai−1

εt + Fx∗ + b
))∥∥∥∥

+
1

Vth

(∥∥∥∥∆td

ti+1
εt

Waiεt

∥∥∥∥+
∥∥F (x(ti+1

εt )− x∗
)∥∥+

∥∥∥∥u+(ti+1
εt )

ti+1
εt

∥∥∥∥+

∥∥∥∥∆td
tiεt

Wai−1
εt

∥∥∥∥+
∥∥F (x(tiεt)− x∗

)∥∥+

∥∥∥∥u+(tiεt)

tiεt

∥∥∥∥) .
(3)
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As ‖W‖2≤ γVth, γ < 1,x(t) → x∗, and |u+
i (t)| ≤ c,∀i, t, we have

∥∥ai+1
εt

∥∥ ≤ γ
∥∥aiεt∥∥ +

1
Vth

(∥∥Fx(ti+1
εt )

∥∥+ ‖b‖+

∥∥∥∥u+(ti+1
εt

)

ti+1
εt

∥∥∥∥), and therefore
∥∥aiεt∥∥ is bounded.

Since tiεt → ∞,x(t) → x∗, and |u+
i (t)| ≤ c,∀i, t, then ∀ε > 0,∃M such that when i > M , we

have:

1

Vth

(∥∥∥∥∆td

ti+1
εt

Waiεt

∥∥∥∥+
∥∥F (x(ti+1

εt )− x∗
)∥∥+

∥∥∥∥u+(ti+1
εt )

ti+1
εt

∥∥∥∥+

∥∥∥∥∆td
tiεt

Wai−1
εt

∥∥∥∥+
∥∥F (x(tiεt)− x∗

)∥∥
+

∥∥∥∥u+(tiεt)

tiεt

∥∥∥∥) ≤ ε(1− γ)

2
. (4)

And since ‖W‖2≤ γVth, we have:∥∥∥∥ReLU
(

1

Vth

(
Waiεt + Fx∗ + b

))
− ReLU

(
1

Vth

(
Wai−1

εt + Fx∗ + b
))∥∥∥∥ ≤ γ ∥∥aiεt − ai−1

εt

∥∥ .
(5)

Therefore, when i > M it holds that:∥∥ai+1
εt − aiεt

∥∥ ≤ γ ∥∥aiεt − ai−1
εt

∥∥+
ε(1− γ)

2
. (6)

By iterating the above inequality, we have ‖ai+1
εt − aiεt‖ ≤ γi−M‖aM+1

εt − aMεt ‖ +
ε(1−γ)

2

(
1 + γ + · · ·+ γi−M−1

)
< γi−M‖aM+1

εt − aMεt ‖ + ε
2 . There exists M ′ such that when

i > M + M ′, γi−M‖aM+1
εt − aMεt ‖ ≤

ε
2 , and therefore ‖ai+1

εt − aiεt‖ < ε. According to
Cauchy’s convergence test, the sequence {aiεt}

∞
i=0 converges to a∗εt . Considering the limit, it satisfies

a∗εt = ReLU
(

1
Vth

(
Wa∗εt + Fx∗ + b

))
.

The solution of a for the equation a = ReLU
(

1
Vth

(Wa + Fx∗ + b)
)

is unique, since ‖W‖2≤
γVth, γ < 1. So ∀εt, the sequence {aiεt}

∞
i=0 converges to the same point. Therefore, the average

firing rates a(t) of IF model will converge to an equilibrium point a(t) → a∗, which satisfies the
fixed-point equation a∗ = ReLU

(
1
Vth

(Wa∗ + Fx∗ + b)
)

.

Theorem 2 can be similarly proved as the above proof for sequence convergence, by substituting the

ReLU function with σ(x) =


1, x > 1

x, 0 ≤ x ≤ 1

0, x < 0

. We omit repetitive details here.

Theorem 2. If the average inputs converge to an equilibrium point x[t] → x∗, and there exists
constant c and γ < 1 such that |u+

i (t)| ≤ c,∀i, t and ‖W‖2 ≤ γVth, then the average firing rates of
FSNN with discrete IF model will converge to an equilibrium point a[t] → a∗, which satisfies the

fixed-point equation a∗ = σ
(

1
Vth

(Wa∗ + Fx∗ + b)
)

.

D Proof of Theorem 3

Theorem 3. If the average inputs converge to an equilibrium point x[t] → x∗, and there exists
constant c and γ < 1 such that |uli

+
[t]| ≤ c,∀i, l, t and ‖W1‖2‖FN‖2 · · · ‖F2‖2 ≤ γV Nth , then the

average firing rates of multi-layer FSNN with discrete IF model will converge to equilibrium points
al[t]→ al

∗
, which satisfy the fixed-point equations a1∗ = f1

(
fN ◦ · · · ◦ f2(a1∗),x∗

)
and al+1∗ =

fl+1(al
∗
), where f1(a,x) = σ

(
1
Vth

(W1a + F1x + b1)
)
, fl+1(a) = σ

(
1
Vth

(Fl+1a + bl+1)
)

.
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Proof. When the multi-layer structure is considered, with similar definitions of average firing rates
al[t] for different layers and the separation uli[t] = uli

−
[t] + uli

+
[t], we have the equations:


a1[t+ 1] = σ

(
1

Vth

(
t

t+ 1
W1aN [t] + F1x[t] + b1

))
− 1

Vth

u1+
[t+ 1]

t+ 1
,

al+1[t+ 1] = σ

(
1

Vth

(
Fl+1al[t+ 1] + bl+1

))
− 1

Vth

ul+1+
[t+ 1]

t+ 1
, l = 1, · · · , N − 1.

(7)

Let f t+1
1 (a,x,u+) = σ

(
1
Vth

(
t
t+1W

1a + F1x + b1
))
− 1

Vth
u+

t+1 ,

f tl+1(a,u+) = σ
(

1
Vth

(
Fl+1a + bl+1

))
− 1

Vth
u+

t ,

f1(a,x) = σ
(

1
Vth

(W1a + F1x + b1)
)
, fl+1(a) = σ

(
1
Vth

(Fl+1a + bl+1)
)
.

Then a1[t+ 1] = f t+1
1

(
f tN

(
· · · f t2

(
a1[t],u2+

[t]
)
· · · ,uN+

[t]
)
,x[t],u1+

[t+ 1]
)

.

We have:

∥∥a1[t+ 1]− a1[t]
∥∥

=
∥∥∥f t+1

1

(
f tN

(
· · · f t2

(
a1[t],u2+

[t]
)
· · · ,uN+

[t]
)
,x[t],u1+

[t+ 1]
)

−f t1
(
f t−1
N

(
· · · f t−1

2

(
a1[t− 1],u2+

[t− 1]
)
· · · ,uN+

[t− 1]
)
,x[t− 1],u1+

[t]
)∥∥∥

≤
∥∥f1

(
fN
(
· · · f2

(
a1[t]

)
· · ·
)
,x∗
)
− f1

(
fN
(
· · · f2

(
a1[t− 1]

)
· · ·
)
,x∗
)∥∥

+
∥∥∥f t+1

1

(
f tN

(
· · · f t2

(
a1[t],u2 + [t]

)
· · · ,uN+

[t]
)
,x[t],u1+

[t+ 1]
)
− f1

(
fN
(
· · · f2

(
a1[t]

)
· · ·
)
,x∗
)∥∥∥

+
∥∥∥f t1 (f t−1

N

(
· · · f t−1

2

(
a1[t− 1],u2+

[t− 1]
)
· · · ,uN+

[t− 1]
)
,x[t− 1],u1+

[t]
)

−f1

(
fN
(
· · · f2

(
a1[t− 1]

)
· · ·
)
,x∗
)∥∥

≤
∥∥f1

(
fN
(
· · · f2

(
a1[t]

)
· · ·
)
,x∗
)
− f1

(
fN
(
· · · f2

(
a1[t− 1]

)
· · ·
)
,x∗
)∥∥

+
1

Vth

(∥∥∥∥ 1

t+ 1
W1f tN

(
· · · f t2

(
a1[t],u2+

[t]
)
· · · ,uN+

[t]
)∥∥∥∥

+
∥∥∥W1

(
f tN

(
· · · f t2

(
a1[t],u2+

[t]
)
· · · ,uN+

[t]
)
− fN

(
· · · f2

(
a1[t]

)
· · ·
))∥∥∥︸ ︷︷ ︸

A

+ ‖F (x[t]− x∗)‖+

∥∥∥∥∥u1+
[t+ 1]

t+ 1

∥∥∥∥∥
+

∥∥∥∥1

t
W1f t−1

N

(
· · · f t−1

2

(
a1[t− 1],u2+

[t− 1]
)
· · · ,uN+

[t− 1]
)∥∥∥∥

+
∥∥∥W1

(
f t−1
N

(
· · · f t−1

2

(
a1[t− 1],u2+

[t− 1]
)
· · · ,uN+

[t− 1]
)
− fN

(
· · · f2

(
a1[t− 1]

)
· · ·
))∥∥∥︸ ︷︷ ︸

B

+ ‖F (x[t− 1]− x∗)‖+

∥∥∥∥∥u1+
[t]

t

∥∥∥∥∥
)
.

(8)
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For the term A and B, they are bounded by:

A ≤ 1

Vth

(∥∥∥W1FN
(
f tN−1

(
· · · f t2

(
a1[t],u2+

[t]
)
· · · ,uN−1+

)
− fN−1

(
· · · f2

(
a1[t]

)
· · ·
))∥∥∥+

∥∥∥∥∥W1u
N+

[t]

t

∥∥∥∥∥
)

≤ · · · · · ·

≤ 1

Vth

∥∥∥∥∥W1u
N+

[t]

t

∥∥∥∥∥+ · · ·+ 1

V N−1
th

∥∥∥∥∥W1FN · · ·F3u
2+

[t]

t

∥∥∥∥∥ ,
(9)

and B has the same form as A by substituting t with t− 1.

Since ‖W1‖2‖FN‖2 · · · ‖F2‖2 ≤ γV Nth , we have:∥∥f1

(
fN
(
· · · f2

(
a1[t]

)
· · ·
)
,x∗
)
− f1

(
fN
(
· · · f2

(
a1[t− 1]

)
· · ·
)
,x∗
)∥∥

≤
∥∥∥∥ 1

Vth
W1

(
fN
(
· · · f2

(
a1[t]

)
· · ·
)
− fN

(
· · · f2

(
a1[t− 1]

)
· · ·
))∥∥∥∥

≤ · · · · · ·

≤
∥∥∥∥ 1

V Nth
W1FN · · ·F2

(
a1[t]− a1[t− 1]

)∥∥∥∥
≤ γ

∥∥a1[t]− a1[t− 1]
∥∥ .

(10)

And since t → ∞,x[t] → x∗, |uli
+

[t]| ≤ c,∀i, l, t, then ∀ε > 0,∃M such that when t > M , we
have: ∥∥a1[t+ 1]− a1[t]

∥∥ ≤ γ ∥∥a1[t]− a1[t− 1]
∥∥+

ε(1− γ)

2
. (11)

Then ‖a1[t+ 1]− a1[t]‖ < γt−M‖a1[M + 1]− a1[M ]‖+ ε
2 , and there exists M ′ such that when

t > M +M ′, ‖a1[t+ 1]− a1[t]‖ < ε. According to Cauchy’s convergence test, a1[t] converges to
a1∗ , which satisfies a1∗ = f1

(
fN ◦ · · · ◦ f2(a1∗),x∗

)
. Considering the limit, al+1[t] converges to

al+1∗ , which satisfies al+1∗ = fl+1(al
∗
).

E Derivation for the LIF Model

E.1 Continuous View

We follow the same notations as Section 4.1.1 and redefine W,F,b by absorbing τm into them. The
dynamics of membrane potentials are expressed as:

du

dt
= − 1

τm
u + Ws(t−∆td) + Fx(t) + b− Vths(t). (12)

Through integration, we have:

u(t) = W

∫ t−∆td

0

κ(t−∆td− τ)s(τ)dτ +F

∫ t

0

κ(t− τ)x(τ)dτ + tb−Vth
∫ t

0

κ(t− τ)s(τ)dτ,

(13)
where κ(τ) = exp(− τ

τm
) is the response kernel of the LIF model. Define the weighted average firing

rate as â(t) =
∫ t
0
κ(t−τ)s(τ)dτ∫ t
0
κ(t−τ)dτ

, and the weighted average inputs as x̂(t) =
∫ t
0
κ(t−τ)x(τ)dτ∫ t
0
κ(t−τ)dτ

. Then we
have the equation:

â(t) =
1

Vth

(∫ t−∆td
0

κ(τ)dτ∫ t
0
κ(τ)dτ

Wâ(t−∆td) + Fx̂(t) + b− u(t)∫ t
0
κ(τ)dτ

)
. (14)
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Similarly, we can divide u(t) into two parts ui(t) = u−i (t) + u+
i (t), and we have the equation with

the element-wise ReLU function and a bounded u+(t):

â(t) = ReLU

(
1

Vth

(∫ t−∆td
0

κ(τ)dτ∫ t
0
κ(τ)dτ

Wâ(t−∆td) + Fx̂(t) + b

))
− 1

Vth

u+(t)∫ t
0
κ(τ)dτ

. (15)

As
∫ t

0
κ(τ)dτ = τm

(
1− exp(− t

τm
)
)
→ τm, compared with the IF model, there could be random

error caused by u+(t)∫ t
0
κ(τ)dτ

which are not eliminated with time t→∞. Therefore when the weighted

average inputs converge to an equilibrium point x̂(t)→ x∗, the LIF model only gradually approxi-
mates an equilibrium with some random error, and the equilibrium state a∗ still follows the equation
a∗ = ReLU

(
1
Vth

(Wa∗ + Fx∗ + b)
)

. The error is:

e(t) =

∥∥∥∥ReLU
(

1

Vth
(Wâ(t) + Fx∗ + b)

)
− â(t)

∥∥∥∥
=

∥∥∥∥∥ReLU
(

1

Vth
(Wâ(t) + Fx∗ + b)

)
− ReLU

(
1

Vth

(∫ t−∆td
0

κ(τ)dτ∫ t
0
κ(τ)dτ

Wâ(t−∆td) + Fx̂(t) + b

))

+
1

Vth

u+(t)∫ t
0
κ(τ)dτ

∥∥∥∥∥
≤ 1

Vth

(
‖W (â(t)− â(t−∆td))‖+

∥∥∥∥∥
∫ t
t−∆td

κ(τ)dτ∫ t
0
κ(τ)dτ

Wâ(t−∆td)

∥∥∥∥∥+ ‖F (x̂(t)− x∗)‖+

∥∥∥∥∥ u+(t)∫ t
0
κ(τ)dτ

∥∥∥∥∥
)
.

(16)

When there exists a constant γ < 1 such that ‖W‖2 ≤ γVth, we have:
‖â(t)− â(t−∆td)‖

≤
∥∥∥∥ReLU

(
1

Vth
(Wâ(t−∆td) + Fx∗ + b)

)
− ReLU

(
1

Vth
(Wâ(t− 2∆td) + Fx∗ + b)

)∥∥∥∥
+

1

Vth

(∥∥∥∥∥
∫ t
t−∆td

κ(τ)dτ∫ t
0
κ(τ)dτ

Wâ(t−∆td)

∥∥∥∥∥+ ‖F (x̂(t)− x∗)‖+

∥∥∥∥∥ u+(t)∫ t
0
κ(τ)dτ

∥∥∥∥∥
+

∥∥∥∥∥
∫ t−∆td
t−2∆td

κ(τ)dτ∫ t−∆td
0

κ(τ)dτ
Wâ(t− 2∆td)

∥∥∥∥∥+ ‖F (x̂(t−∆td)− x∗)‖+

∥∥∥∥∥ u+(t−∆td)∫ t−∆td
0

κ(τ)dτ

∥∥∥∥∥
)

≤ γ ‖â(t−∆td)− â(t− 2∆td)‖

+
1

Vth

(∥∥∥∥∥
∫ t
t−∆td

κ(τ)dτ∫ t
0
κ(τ)dτ

Wâ(t−∆td)

∥∥∥∥∥+ ‖F (x̂(t)− x∗)‖+

∥∥∥∥∥ u+(t)∫ t
0
κ(τ)dτ

∥∥∥∥∥
+

∥∥∥∥∥
∫ t−∆td
t−2∆td

κ(τ)dτ∫ t−∆td
0

κ(τ)dτ
Wâ(t− 2∆td)

∥∥∥∥∥+ ‖F (x̂(t−∆td)− x∗)‖+

∥∥∥∥∥ u+(t−∆td)∫ t−∆td
0

κ(τ)dτ

∥∥∥∥∥
)
,

(17)
and

1

Vth
‖W (â(t)− â(t−∆td))‖ ≤ γ‖â(t)− â(t−∆td)‖. (18)

Since u+(t) is bounded by a constant c,
∫ t
t−∆td

κ(τ)dτ∫ t
0
κ(τ)dτ

→ 0 and x̂(t)→ x∗, there exists a constant c′

and M such that when t > M , the following holds:
‖â(t)− â(t−∆td)‖ ≤ γ‖â(t−∆td)− â(t− 2∆td)‖+ c′. (19)

Thus ‖â(t) − â(t −∆td)‖ is bounded by c′

1−γ when t is large enough. Plugging this and Eq. (18)
into Eq. (16), we get that the random error is bounded by a constant related with c, Vth, τm, γ. This
leads to Proposition 1.
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Proposition 1. If the weighted average inputs converge to an equilibrium point x̂(t) → x∗, and
there exists constant c and γ < 1 such that |u+

i (t)| ≤ c,∀i, t and ‖W‖2 ≤ γVth, then the weighted
average firing rates â(t) of FSNN with continuous LIF model gradually approximate an equilibrium

point a∗ with bounded random errors, which satisfies a∗ = ReLU
(

1
Vth

(Wa∗ + Fx∗ + b)
)

.

Although there would be random error, the remaining membrane potential of the LIF model will
gradually decrease if there is no positive input, which means the random error tend to be eliminated.
We can still view the FSNN with LIF model as approximately solving the fixed-point equilibrium
equation.

E.2 Discrete Perspective

The discrete update equation of membrane potentials under LIF model is:
u[t+ 1] = λu[t] + Ws[t] + Fx[t] + b− Vths[t+ 1]. (20)

Define the weighted average firing rate as â[t] =
∑t
τ=1 λ

t−τ s[τ ]∑t
τ=1 λ

t−τ and the weighted average inputs as

x̂[t] =
∑t
τ=0 λ

t−τx[τ ]∑t
τ=0 λ

t−τ , then through summation and consideration of the division of u[t+ 1], we have:

â[t+ 1] =
1

Vth

(∑t−1
i=0 λ

i∑t
i=0 λ

i
Wâ[t] + Fx̂[t] + b− u[t+ 1]∑t

i=0 λ
i

)
, (21)

â[t+ 1] = σ

(
1

Vth

(∑t−1
i=0 λ

i∑t
i=0 λ

i
Wâ[t] + Fx̂[t] + b

))
− 1

Vth

u+[t+ 1]∑t
i=0 λ

i
, (22)

where σ(x) =


1, x > 1

x, 0 ≤ x ≤ 1

0, x < 0

.

Proposition 2 is similarly derived as Proposition 1 by substituting the ReLU function with σ. We
omit repetitive details here.
Proposition 2. If the weighted average inputs converge to an equilibrium point x̂[t] → x∗, and
there exists constant c and γ < 1 such that |u+

i [t]| ≤ c,∀i, t and ‖W‖2 ≤ γVth, then the weighted
average firing rates â[t] of FSNN with discrete LIF model gradually approximate an equilibrium

point a∗ with bounded random errors, which satisfies a∗ = σ
(

1
Vth

(Wa∗ + Fx∗ + b)
)

.

E.3 Multi-layer Structure

When the multi-layer structure is considered, the discrete update equation of membrane potentials are
expressed as:{

u1[t+ 1] = λu1[t] + W1sN [t] + F1x[t] + b1 − Vths1[t+ 1],

ul+1[t+ 1] = λul+1[t] + Fl+1sl[t+ 1] + bl+1 − Vthsl+1[t+ 1], l = 1, 2, · · · , N − 1
(23)

Define the weighted average firing rates of different layers as âl[t] =
∑t
τ=1 λ

t−τ sl[τ ]∑t
τ=1 λ

t−τ and the weighted

average inputs as x̂[t] =
∑t
τ=0 λ

t−τx[τ ]∑t
τ=0 λ

t−τ , then through summation and consideration of the division of

ul[t+ 1], we have:
â1[t+ 1] = σ

(
1

Vth

(∑t−1
i=0 λ

i∑t
i=0 λ

i
W1âN [t] + F1x̂[t] + b1

))
− 1

Vth

u1+
[t+ 1]∑t
i=0 λ

i
,

âl+1[t+ 1] = σ

(
1

Vth

(
Fl+1âl[t+ 1] + bl+1

))
− 1

Vth

ul+1+
[t+ 1]∑t

i=0 λ
i

, l = 1, · · · , N − 1.

(24)

With similar techniques in the proof of Theorem 3 and Proposition 1, we can derive the Proposition 3
as the following. We omit repetitive details here.
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Proposition 3. If the weighted average inputs converge to an equilibrium point x̂[t] → x∗, and
there exists constant c and γ < 1 such that |uli

+
[t]| ≤ c, ∀i, l, t and ‖W1‖2‖FN‖2 · · · ‖F2‖2 ≤

γV Nth , then the weighted average firing rates âl[t] of multi-layer FSNN with discrete LIF
model gradually approximate equilibrium points al

∗
with bounded random errors, which

satisfy a1∗ = f1

(
fN ◦ · · · ◦ f2(a1∗),x∗

)
and al+1∗ = fl+1(al

∗
), where f1(a,x) =

σ
(

1
Vth

(W1a + F1x + b1)
)
, fl+1(a) = σ

(
1
Vth

(Fl+1a + bl+1)
)

.

F Implementation Details

In this section, we describe the details for training our model. We will first introduce some operations
in our model including restriction on the spectral norm and batch normalization, and then elaborate
the training settings for the experiments.

F.1 Restriction on Spectral Norm

As indicated in the theorems and propositions, a sufficient condition for the convergence of FSNN
is ‖W‖2 ≤ γVth or ‖W1‖2‖FN‖2 · · · ‖F2‖2 ≤ γV Nth , where γ < 1. To ensure the convergence of
the forward SNN computation and stabilize training, we propose to restrict the spectral norm of the
feedback connection weight matrix. Specifically, we re-parameterize W as:

W = α
W

‖W‖2
, (25)

where α is a learnable parameter and will be clipped in the range of [−c, c] (c is a constant), and the
spectral norm ‖W‖2 is similarly computed as the implementation of Spectral Normalization [6]. In
experiments, we will set Vth = 2 and c = 1, and for the multi-layer structure, we only restrict the
spectral norm of feedback connection weight W1. It works well in practice and the convergence is
illustrated in Section 5.4 and Section G.2.

F.2 Batch Normalization

Batch normalization (BN) [3] is a commonly adopted technique in ANNs, which accelerates the train-
ing by reducing the internal covariate shift and improves performance as well. For a d-dimensional
data x =

(
x(1) · · ·x(d)

)
, BN normalizes and transforms the data as:

x̂(k) = γ(k)x
(k) − E[x(k)]√

Var[x(k)]
+ β(k), (26)

where E[x(k)] and Var[x(k)] are statistics over the training data set, and γ(k), β(k) are learnable
parameters.

Note that when the statistics are fixed, BN is a simple linear transformation, and BN after a linear layer
can be absorbed into the parameters of this layer. For example, for the linear operation y = Wx+ b
(suppose y is one-dimensional for simplicity), let e, v denote the expectation and variance of y, then
ŷ = BN(y) is equivalent as a new linear operation ŷ = W̃x+ b̃, where W̃ = γ√

v
W, b̃ = b− γe

v + β.
Therefore, adding BN with fixed statistics after a convolution or fully-connected layer will not
influence the properties of SNNs and the conclusions for equilibrium convergence.

We add BN after each linear operation except the feedback layer, in the context of the fixed-
point equilibrium equation. For example, for the single-layer FSNN whose equation is a∗ =

ReLU
(

1
Vth

(Wa∗ + Fx∗ + b)
)

, we add BN after Fx∗; and for the multi-layer FSNN, we add BN

after F1x∗ and Fl+1al
∗
.

During forward SNN computation, the statistics of BN operations are fixed, i.e. we set BN into the
’eval’ mode which uses the previously calculated statistics; and during backward gradient calculation,
since it is decoupled from the forward computation (that means we will construct an additional
computational graph for it), we can follow the common setting of BN to leverage the mini-batch
estimated statistics and the overall statistics are updated, i.e. we set BN into the ’train’ mode in
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this computational graph. The statistics are for the (weighted) average inputs or firing rates. Since
the estimation of statistics for the forward SNN computation may be inaccurate in the first several
iterations, we will use a warmup for the learning rate to alleviate this problem.

F.3 Training Settings

F.3.1 Datasets

We conduct experiments on MNIST [5], Fashion-MNIST [10], N-MNIST [7], CIFAR-10 and CIFAR-
100 [4].

MNIST MNIST is a dataset of handwritten digits with 10 classes, which is composed of 60,000
training samples and 10,000 testing samples. Each sample is a 28 × 28 grayscale image. We
normalize the inputs based on the global mean and standard deviation, and convert the pixel value
into a real-valued input current at every time step. No data augmentation is applied.

The licence of MNIST is the MIT License. The MNIST database is constructed from NIST’s Special
Database 3 and Special Database 1 which contain binary images of handwritten digits [5]. The data
does not contain personally identifiable information or offensive content since it only consists of
handwritten digits.

Fashion-MNIST Fashion-MNIST is a dataset similar to MNIST and contains 28× 28 grayscale
images of clothing items. We use the same preprocessing as MNIST.

The licence of Fashion-MNIST is the MIT License. The data of Fahion-MNIST is collected from
the photographs of fashion products on the assortment on Zalando’s website [5]. The data does not
contain personally identifiable information or offensive content since it only consists of 10 kinds of
fashion products.

N-MNIST N-MNIST is a neuromorphic dataset that is converted from MNIST by a Dynamic
Version Sensor (DVS). It consists of spike trains triggered by the intensity change of pixels when
DVS scans the static MNIST images along given directions. Since the intensity can either increase
or decrease, there are two channels corresponding to ON- and OFF-event spikes. And the pixel
dimension is expanded to 34 × 34 due to the relative shift of images. Therefore, each sample is a
spike train pattern with the size of 34× 34× 2×T , where T is the temporal length. The original data
record 300ms with the resolution of 1µs. We follow the prepossessing of [11] to reduce the time
resolution by accumulating the spike train within every 3ms, and we will use the first 30 time steps.

The license of N-MNIST is the Creative Commons Attribution-ShareAlike 4.0 license. The data is
converted from MNIST and does not contain personally identifiable information or offensive content.

CIFAR-10 CIFAR-10 is a dataset of color images with 10 classes of objects, which is composed of
50,000 training samples and 10,000 testing samples. Each sample is a 32× 32× 3 color image. We
normalize the inputs based on the global mean and standard deviation, and apply random cropping
and horizontal flipping for data augmentation. The input pixel value is converted to a real-valued
input current at every time step as well.

CIFAR-100 CIFAR-100 is a dataset similar to CIFAR-10 except that there are 100 classes of
objects. It also consists of 50,000 training samples and 10,000 testing samples. We use the same
preprocessing as CIFAR-10.

The license of CIFAR-10 and CIFAR-100 is the MIT License. The data are labeled subsets of the 80
million tiny images datasets (collected from the web), which are labeled by students [4]. The data
does not contain personally identifiable information or offensive content, which is checked by the
classes and image samples.

F.3.2 Training Hyperparameters

For all our SNN models, we set Vth = 2. For the LIF model, we set λ = 0.95 for MNIST,
Fashion-MNIST and N-MNIST, while λ = 0.99 for CIFAR-10 and CIFAR-100.
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We train all our models by SGD with momentum for 100 epochs. We set the momentum as 0.9, the
batch size as 128, and the initial learning rate as 0.05. For MNIST, Fashion-MNIST, and N-MNIST,
the learning rate is decayed by 0.1 every 30 epochs, while for CIFAR-10 and CIFAR-100, it is
decayed by 0.1 at the 50th and 75th epoch. We also apply linear warmup for the learning rate in
the first 400 iterations for CIFAR-10 and CIFAR-100. We set the weight decay as 5 × 10−4, and
apply the variational dropout as in [1, 2] with dropout rate as 0.2. For MNIST, Fashion-MNIST,
CIFAR-10, and CIFAR-100, we solve the implicit differentiation by the Broyden’s method proposed
in [2] with the threshold as 30. For N-MNIST, we solve the implicit differentiation by the fixed-
point update scheme indicated in Section 3.2 for 30 iterations, and the update scheme is modified

as xT = 1
2

(
xT + (JTfθ |a∗)x

T +
(
∂L(a∗)
∂a∗

)T)
for acceleration. The initialization of parameters

follows [9], which first samples the weight parameters from the standard uniform distribution and
then normalize them for each output dimension. All experiments are repeated five times and we
report the mean, standard deviation, and the best results.

The code implementation is based on the PyTorch framework [8], and experiments are carried out on
one NVIDIA GeForce GTX 1080 GPU or one NVIDIA GeForce RTX 3090 GPU.

G Additional Experiment Results

G.1 Comparison between IF and LIF Model on CIFAR-10 and CIFAR-100

In this subsection, we supplement the comparison results of IF and LIF model on CIFAR-10 and
CIFAR-100, as shown in Table 1. It shows that the LIF model has similar performance compared
with the IF model, and slightly outperforms the IF model in most cases, especially when the number
of time steps is small. This also accords with the results on MNIST, Fashion-MNIST, and N-MNIST.
The possible reason is that the LIF model leverages temporal information of spike trains by encoding
weighted average firing rates. While each spike contributes equally to the average firing rate of the
IF model and thus the precision of firing rates is only 1

T , the weight for a spike of the LIF model is
different at time steps (the weight is λT−t), and therefore the weighted average firing rates could
encode more information with the same amount of time steps. When there is a relatively small
number of time steps, the convergence errors of IF and LIF model would be similar and will not
significantly affect the results. So the LIF model with temporal information may perform slightly
better.

Table 1: Comparison results of IF and LIF Model on CIFAR-10 and CIFAR-100.

CIFAR-10
Network structure Time steps Model Mean±Std Best

AlexNet-F 30 IF 91.73%±0.13% 91.85%
LIF 91.74%±0.09% 91.92%

AlexNet-F 100 IF 92.25%±0.27% 92.53%
LIF 92.03%±0.07% 92.15%

CIFARNet-F 30 IF 91.94%±0.14% 92.12%
LIF 92.08%±0.15% 92.23%

CIFARNet-F 100 IF 92.33%±0.15% 92.57%
LIF 92.52%±0.17% 92.82%

1 AlexNet-F: 96C3s-256C3-384C3s-384C3-256C3 (F96C3u)
2 CIFARNet-F: 128C3s-256C3-512C3s-1024C3-512C3 (F128C3u)

CIFAR-100
Network structure Time steps Model Mean±Std Best

CIFARNet-F 30 IF 71.56%±0.31% 72.10%
LIF 71.72%±0.22% 72.03%

CIFARNet-F 100 IF 73.07%±0.21% 73.43%
LIF 72.98%±0.13% 73.12%
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(b) N-MNIST: 64C5s (F64C5)
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(c) CIFAR-10: CIFARNet-F
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(d) CIFAR-100: CIFARNet-F
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(e) CIFAR-10: CIFARNet-F
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(f) CIFAR-100: CIFARNet-F

Figure 2: Convergence to the equilibrium of different models.
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G.2 Convergence to Equilibrium

In this subsection, we supplement the results of convergence to the equilibrium state for more datasets
and different scales of time steps. Figure 2 illustrates the convergence information on MNIST and N-
MNIST with the same network structure under 30 time steps, as well as the convergence information
on CIFAR-10 and CIFAR-100 with the same network structure under 100 and 1000 time steps. Since
the precision of firing rates under relatively few time steps is limited, there would be errors caused
by the precision. And the more the time steps are, the less the error should be. The difference norm
decreases with time steps under all settings, demonstrating the convergence to the equilibrium state
with the fixed-point equation. For N-MNIST, since the inputs are neuromorphic spikes rather than
static images at each time step (and there lacks valid information in the first few time steps), the
convergence is slower than on MNIST. Despite this, the (weighted) average firing rates do gradually
approach the equilibrium as the difference norm decreases, and the training based on the implicit
differentiation can work well as shown in the accuracy results. For the multi-layer structure, the
convergence error of the last layer would be larger than the first layer. For the LIF model, since there
would be random errors as indicated in the propositions, the convergence error would be larger than
the IF model at most time. Nevertheless, when the number of time steps is small, the difference is not
apparent. When the number of time steps comes to 1000, it shows that the error of IF model would
continuously decrease, while the error of LIF model may stay in a bounded range, which should be
caused by the random error. Despite these convergence errors, the accuracy results demonstrate that
the exact precision is not necessary for effective training based on the implicit differentiation, and we
can actually achieve satisfactory results with a small number of time steps.

H Influence of Time Steps

In this subsection, we further study the influence of time steps, i.e. how good the convergence to
equilibrium states needs to be for effective prediction and training. We first study the performance of
a pretrained model under different time steps. The results are in Table 2. It shows that the accuracy
will gradually decrease as the time step decreases, and when the time step is 5, the classification
totally fails. We also briefly analyze the total average firing rate under these conditions as in Table 2,
and it shows that the firing rate is very low when the time step is small. So the accuracy drop may
also be partly due to the insufficient spikes.

Table 2: Performance of a pretrained model under different time steps. The model is trained on
CIFAR-10 with AlexNet-F structure and LIF model, and the original time step is 30.

Time steps Accuracy Total average firing rate

5 10.67% 0.0016
10 74.39% 0.0046
15 87.07% 0.0059
20 90.16% 0.0063
25 91.33% 0.0065
30 91.82% 0.0066

Then to study the influence of time steps on training, we train and test our model with only 5 time
steps. The results are in Table 3. It shows that the training does not fail when the number of time steps
is 5, but there would be a significant performance drop, and the accuracy would decrease and fluctuate
in the latter part of training. It is probably because the gradient calculated by implicit differentiation
could still be a descent direction though not exact, and in the latter part, it may not be a descent
direction so the accuracy cannot be further improved.

Table 3: Performance of training the model under different time steps. The model is trained on
CIFAR-10 with AlexNet-F structure and LIF model.

Time steps Accuracy

5 83.09%
30 91.74%±0.09%
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I Discussion of Limitations and Social Impacts

This work mainly focuses on training feedback spiking neural networks for inputs that are convergent
in the context of average accumulated signals, as indicated in the assumptions in the theorems. This
holds for common pattern recognition tasks and common visual tasks, e.g. image classification,
whose inputs are static images or the alternative neuromorphic version with spikes. While for other
types of varying inputs, e.g. speech, it may require additional efforts to consider the definition and
utilization of equilibrium with time. One practically plausible method is to flatten the inputs to
treat the original time dimension as the channel dimension, and feed such data to the model at each
‘time step’. In this way, our theorems and method still hold. But the definition of ‘time step’ in this
method is not the true time, which may lack the biological plausibility and increase the computational
requirements. An interesting future work is to generalize the methodology to varying inputs.

As for social impacts, since this work focuses only on training methods for spiking neural networks,
there is no direct negative social impact. And we believe that the development of successful energy-
efficient SNN models could broader its applications and alleviate the huge energy consumption by
ANNs. Besides, understanding and improving the training of biologically plausible SNNs may also
contribute to the understanding of our brains and bridge the gap between biological neurons and
successful deep learning.
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