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Abstract

The (partial) ranking loss is a commonly used evaluation measure for multi-label
classification, which is usually optimized with convex surrogates for computational
efficiency. Prior theoretical efforts on multi-label ranking mainly focus on (Fisher)
consistency analyses. However, there is a gap between existing theory and practice
— some inconsistent pairwise losses can lead to promising performance, while
some consistent univariate losses usually have no clear superiority in practice. To
take a step towards filling up this gap, this paper presents a systematic study from
two complementary perspectives of consistency and generalization error bounds of
learning algorithms. We theoretically find two key factors of the distribution (or
dataset) that affect the learning guarantees of algorithms: the instance-wise class
imbalance and the label size c. Specifically, in an extremely imbalanced case, the
algorithm with the consistent univariate loss has an error bound of O(c), while
the one with the inconsistent pairwise loss depends on O(

√
c) as shown in prior

work. This may shed light on the superior performance of pairwise methods in
practice, where real datasets are usually highly imbalanced. Moreover, we present
an inconsistent reweighted univariate loss-based algorithm that enjoys an error
bound of O(

√
c) for promising performance as well as the computational efficiency

of univariate losses. Finally, experimental results confirm our theoretical findings.

1 Introduction

Multi-Label Classification (MLC) [1] is an important task, in which each instance is associated with
multiple labels simultaneously. It has been widely applied to text categorization [2], bioinformatics [3],
multimedia annotation [4], information retrieval [5]. Various measures [6, 7] have been developed to
evaluate MLC’s performance from diverse aspects owing to its complexity. Among them, the ranking
loss (RL) (or partial ranking loss, PRL) [2, 8] is a commonly used measure in practice (or in theory).
Formally, the RL calculates the fraction of pairs that a positive label does not precede a negative
label according to the rank given by a score function (or predictor). Minimizing such a loss is usually
referred to as Multi-Label Ranking (MLR) [9], which is the consideration in this paper.

Since RL is non-convex and discontinuous, existing methods [6] seek to optimize certain convex
surrogate losses for computational efficiency. These surrogate losses can be divided into two main
categories: pairwise ones [8] and univariate ones [9], which have their own advantages and limitations
in terms of computational costs, theory and empirical performance.
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School of AI, Renmin University of China. The work was done when they were at Tsinghua University.
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Table 1: Summary of the main theoretical results. Contributions of this paper are highlighted in red.

Algorithm Surrogate loss Generalization bound Consistencya Computationextremely imbalanced balanced

Apa pairwise (Lpa) R̂pa
S (f) +O(

√
c
n
) R̂pa

S (f) +O(
√

1
n
) × O(c2)

Au1 univariate (Lu1 ) cR̂u1
S (f) +O(

√
c2

n
) 2R̂u1

S (f) +O(
√

1
n
) × O(c)

Au2 univariate (Lu2 ) (c− 1)R̂u2
S (f) +O(

√
c2

n
) c

2
R̂u2

S (f) +O(
√

1
n
)

√b O(c)

Au3 reweighted univariate (Lu3 ) R̂u3
S (f) +O(

√
c
n
) R̂u3

S (f) +O(
√

1
n
) × O(c)

Au4 reweighted univariate (Lu4 ) R̂u4
S (f) +O(

√
c2

n
) R̂u4

S (f) +O(
√

1
n
) × O(c)

aThis is in terms of the PRL. Besides, these surrogate losses are all inconsistent w.r.t. the RL.
bThis is for the cases where the base loss is the exponential, logistic, least squared or squared hinge loss.

Computationally, the pairwise losses, defined over pairs of positive and negative labels, have a com-
plexity depending on O(c2) (c is the number of labels), while the univariate ones enjoy a complexity
depending on O(c). The superiority of the latter is significant when c is large. Theoretically, the
pairwise losses are not (Fisher) consistent w.r.t. the RL or the PRL [8], while, remarkably, certain
univariate ones are consistent w.r.t. the PRL [9, 8]. Empirically, however, the consistent univariate
losses usually have no significant superiority compared to the inconsistent pairwise losses [9]. In fact,
we observed that the former under-perform the latter on 10 MLR benchmarks (see results in Table 3).
Towards filling the gap between the existing theory and practice, this paper attempts to rigorously
answer the following questions: Why inconsistent pairwise losses usually achieve better performance
than consistent univariate losses in practice? How to improve the univariate loss, which is preferable
due to its computational efficiency? A natural explanation of this gap is that although the (Fisher)
consistency [10, 11] provides valuable insights in the asymptotic cases, it cannot fully characterize
the behaviour of a surrogate loss when the number of training samples is not sufficiently large and
the hypothesis space is not realizable.

Therefore, this paper presents a systematic study in a complementary perspective of generalization
error bounds [12] besides the consistency. We theoretically find two key factors of the distribution (or
dataset) that affect the learning guarantees of algorithms: the instance-wise class imbalance and the
label number c. Given extremely imbalanced data (i.e., the worst case), we prove that the consistent
univariate losses based algorithms lead to an error bound ofO(c) while the pairwise losses based ones
enjoy an error bound depending on O(

√
c) [13], which explains the empirical behaviour better on

real datasets which are usually highly imbalanced (see Table 3). Further, we present two reweighted
surrogate univariate losses that employ carefully designed penalties for positive and negative labels.
Then, we analyze their consistency and generalization bounds of the corresponding algorithms.
Surprisingly, though not consistent, one of them enjoys an error bound depending on O(

√
c) in the

worst case, which is nearly the same as the pairwise losses, and retains the computational efficiency.
For balanced data (i.e., the best case), we also find that all these surrogate univariate losses share the
same learning guarantees, with no dependence on c which is the same as the surrogate pairwise ones.
Notably, in this case, these bounds are different from the classical probably approximately correct
(PAC) ones [14, 12, 15] which hold for all distributions (i.e. the worst case). Our main theoretical
results are summarized in Table 1. Experimental results also confirm our theoretical findings.

2 Preliminaries

In this section, we first introduce the problem setting of MLC and MLR. Then, we present the
evaluation measures, risk, and regret of MLR.

Notations. Let boldface lower and capital case letters denote vectors (e.g., a) and matrices (e.g., A)
respectively. For a matrix A, ai, aj and aij denote its i-th row, j-th column, and (i, j)-th element
respectively. For a vector a, ai denote its i-th element. For a set, | · | denotes the cardinality. [[π]]
denotes the indicator function, i.e., [[π]] = 1 if the proposition π holds and 0 otherwise.
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2.1 Problem Setting

Let x ∈ X ⊂ Rd and y ∈ Y ⊂ {−1,+1}c denote the input and output respectively, where d is the
feature dimension, c is the label size. yj = 1 (or−1) indicates that the associated j-th label is relevant
(or irrelevant). Given a training set S = {(xi,yi)}ni=1 of n samples i.i.d. drawn from a distribution
P over X × Y , the original goal of MLC is to learn a multi-label classifier H : Rd → {−1,+1}c.
To solve MLC, a common approach is to first learn a vector-based score function (or predictor)
f = [f1, ..., fc] : Rd → Rc and then get the classifier H by a thresholding function. Multi-Label
Ranking (MLR) aims to learn the best predictor from the finite training data in terms of some
ranking-based measures, which is our consideration in this paper.

2.2 Evaluation Measures

To evaluate the performance of different approaches for MLR, many measures have been developed.
Here we focus on two widely-used measures in practice (or theory), which are defined below.3

Ranking Loss (RL):

L0/1
r (f(x),y) =

1

|S+
y ||S−y |

∑
(p,q)∈S+

y ×S−
y

[[fp(x) ≤ fq(x)]], (1)

where S+
y (or S−y ) denotes the relevant (or irrelevant) label index set induced by y.

Partial Ranking Loss (PRL):4

L0/1
pr (f(x),y) =

1

|S+
y ||S−y |

∑
(p,q)∈S+

y ×S−
y

[
[[fp(x) < fq(x)]] +

1

2
[[fp(x) = fq(x)]]

]
. (2)

Note that the only difference between these two measures is the penalty when fp(x) = fq(x)

holds. Besides, it is easy to verify that RL upper bounds PRL, i.e. L0/1
pr (f(x),y) ≤ L0/1

r (f(x),y).
Although these two measures are almost the same in practice for the evaluation of one algorithm, they
have different consistency properties for some surrogate losses theoretically [8].

2.3 Risk and Regret

Since RL is non-convex and discontinuous, often leading to NP-hard problems [16], it is optimized
with convex surrogates in practice for computational efficiency. Define a surrogate loss Lφ : Rc ×
{−1,+1}c → R+, where φ indicates the specific surrogate loss and will be detailed in the next
section. Besides, define a vector-based predictor class F = {f : X → Rc}. For a predictor f ∈ F ,
its true (0/1) expected risk, surrogate expected risk, and surrogate empirical risk are defined as:

R0/1(f) = E
(x,y)∼P

[L0/1(f(x),y)], Rφ(f) = E
(x,y)∼P

[Lφ(f(x),y)], R̂S(f) =
1

n

n∑
i=1

Lφ(f(xi),yi).

Besides, we use a superscript (i.e., pr or r) to distinguish the risks for specific measures. Further, for
convenience, we denote the expected risk conditioned on an instance x (i.e., the conditional risk) as:

R(f |x) = E
y∼P (y|x)

[L(f(x),y)|x] =
∑
y

L(f(x),y)P (y|x), (3)

where L denotes the true or surrogate loss. Thus, the expected risk of f is R(f) = Ex∼P (x)[R(f |x)].

For each x, given the conditional distribution P (y|x), we can get its optimal predictions as follows:5

f∗(x) = arg min
a∈Rc

∑
y

L(a,y)P (y|x), (4)

where f∗ is called the Bayes predictor w.r.t. the loss L. Besides, the expected risk of f∗ (i.e., R(f∗))
is called the Bayes risk, which is the minimal expected risk w.r.t. the loss L and denoted by R∗ for

3Our definition is over one sample and can be averaged over multiple samples.
4Minimizing the PRL is equivalent to maximize the instance-AUC.
5Notably, the optimal predictions can be not just one value but a set with many elements that share the same

minimal conditional risk.
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convenience. Then, we can define the regret (a.k.a. excess risk) of a predictor f w.r.t. the true and
surrogate loss as follows.

Reg0/1(f) = R0/1(f)−R∗0/1, Regφ(f) = Rφ(f)−R∗φ. (5)
Besides, we also use a superscript (i.e., pr or r) to distinguish the regrets for specific measures.
Moreover, let f̂n denote the learned predictor from finite training data S. Note that our goal is to find
a predictor f̂n that achieves the minimal true regret (i.e. Reg0/1(f̂n)) as possible as it can.

3 Methods

In this section, we first introduce several specific surrogate losses. Then, we present their associated
learning algorithms.

3.1 Surrogate Losses

To optimize the RL, it is natural to employ the convex surrogate pairwise loss [2, 3, 17, 18] as:

Lpa(f(x),y) =
1

|S+
y ||S−y |

∑
(p,q)∈S+

y ×S−
y

`(fp(x)− fq(x)). (6)

where the base (margin-based) convex loss `(z) can be defined in various popular forms, such
as the exponential loss `(z) = e−z , the logistic loss `(z) = ln(1 + e−z), the hinge loss `(z) =
max{0, 1 − z}, and squared hinge loss `(z) = (max{0, 1 − z})2. A common property is that the
base convex surrogate loss upper bounds the original 0/1 loss,6 i.e., [[z ≤ 0]] ≤ `(z).

Besides, the surrogate univariate loss, which primarily aims to optimize Hamming loss [19, 13], can
also be viewed as a surrogate loss for the RL, which is defined as follows:

Lu1(f(x),y) =
1

c

c∑
j=1

`(yjfj(x)). (7)

Notably, Lu1 cannot strictly upper bound the RL, i.e. L0/1
r (f(x),y) � Lu1(f(x),y). Previous work

presents the consistent surrogate univariate loss [9, 8] w.r.t. PRL, which is defined as follows:

Lu2(f(x),y) =
1

|S+
y ||S−y |

c∑
j=1

`(yjfj(x)). (8)

Again, the consistent surrogate loss Lu2
cannot strictly upper bound the RL either. Notably, when the

surrogate loss strictly upper bounds the 0/1 loss, the true (0/1) risk can be upper bounded by the
surrogate risk too, which is crucial for its generalization analysis. Thus, we present two reweighted
convex surrogate univariate losses, which strictly upper bound RL and PRL, defined as below.

Lu3
(f(x),y) =

∑
p∈S+

y
`(ypfp(x))

|S+
y |

+

∑
q∈S−

y
`(yqfq(x))

|S−y |
, (9)

Lu4(f(x),y) =
1

min{|S+
y |, |S−y |}

c∑
j=1

`(yjfj(x)). (10)

For a clear presentation, we will formally discuss their relationships in the next section.

3.2 Learning Algorithms

In the following, we consider the kernel-based learning algorithms which have been widely used
in practice [3, 19, 20, 21, 22] and in theory [13] for MLC. Besides, our following analyses can be
extended to other forms of hypothesis class, such as neural networks [23]. Let H be a reproducing
kernel Hilbert space (RKHS) induced by the kernel function κ, where κ : X × X → R is a Positive
Definite Symmetric (PDS) kernel. Let Φ : X → H be a feature mapping associated with κ. The
kernel-based hypothesis class can be defined as follows.

F =

{
x 7→W>Φ(x) : W = (w1, . . . ,wc)

>, ‖W‖ ≤ Λ

}
, (11)

6The original logistic loss can be easily changed to `(z) = log2(1 + 2−z) to satisfy this condition.
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where ‖W‖ denotes ‖W‖H,2 = (
∑c
j=1 ‖wj‖2H)1/2 for convenience.

Here we consider the following five learning algorithms with the corresponding aforementioned
surrogate losses. They can be formulated as follows with λ denoting a trade-off hyper-parameter:

Apa : min
W

1

n

n∑
i=1

Lpa(f(xi),yi) + λ‖W‖2, (12)

Auk : min
W

1

n

n∑
i=1

Luk
(f(xi),yi) + λ‖W‖2, k = 1, 2, 3, 4. (13)

4 Theoretical Analyses

In this section, we present generalization error bounds of the learning algorithms presented before
and consistency analyses of the corresponding surrogate losses.

Consistency analyses aim to answer the question of whether the (0/1) expected risk of the learned
function converges to the Bayes risk [11, 8] when samples goes to infinity. It can provide valuable
insights for learning from infinite (or relatively large) data with an unconstrained hypothesis class.
In comparison, generalization bounds may offer more insights for learning from finite data with a
constrained hypothesis class. It is possible to analyze the finite sample case in the perspective of
consistency if a regret bound holds. However, we argue that it typically results in a looser bound w.r.t.
c (i.e. O(c

√
c)) compared to the generalization bound as detailed in Appendix A.

4.1 Generalization Analyses

Technically, we mainly utilize the Rademacher complexity [24] and the vector-contraction in-
equality [25], following the recent work [13]. Note that, advanced techniques [26], such as local
Rademacher complexity [27] can be utilized to get tighter bound w.r.t. n (i.e. O( 1

n )) by modifying
the algorithm. But this is not our focus and we aim to analyze learning guarantees of these algorithms
in the same framework and compare them fairly. Besides, we find that their learning guarantees are
much dependent on the distribution imbalance. Thus, we first give the following definition.
Definition 1 (Instance-wise class balanced and extremely imbalanced distribution). For a distribution
P for MLC, it is said to be instance-wise class balanced if for any (x,y) sampled from P , |S+

y | =
|S−y | holds; it is said to be instance-wise class extremely imbalanced if for any (x,y) sampled from
P , |S+

y | = 1 or |S−y | = 1 holds.7

Then, we introduce the common mild assumptions for the subsequent analyses.
Assumption 1 (The common assumptions).

(1) The hypothesis class is defined in Eq.(11).
(2) The training dataset S = {(xi,yi)}ni=1 is sampled i.i.d. from the distribution P , where ∃ r > 0,

it satisfies κ(x,x) ≤ r2 for all x ∈ X .
(3) The base (convex) loss `(z) is ρ-Lipschitz continuous and bounded by B. 8

Then we provide the properties (including the Lipschitz constants) of surrogate losses (See Appendix
B.1). The Lipschitz constants of surrogates characterize the relationship between the Rademacher
complexities [24] of the loss class and the hypothesis class based on the vector-contraction inequal-
ity [25], which plays a central role in the generalization analysis. Next, we analyze the relationship
between true and surrogate losses as follows, which to prove learning guarantees of algorithms.
Lemma 1 (The relationship between true and surrogate losses; full proof in Appendix B.2). For the
RL and its surrogate losses, the following inequalities hold for any f ∈ F and any sample (x,y):
L0/1
r (f(x),y) ≤ Lpa(f(x),y) ≤ Lu3

(f(x),y) ≤ Lu4
(f(x),y) ≤ (c− 1)Lu2

(f(x),y), (14)

min{|S+
y |, |S−y |}Lu2(f(x),y) ≤ Lu3(f(x),y) ≤ max{|S+

y |, |S−y |}Lu2(f(x),y). (15)

7In this paper we call them balanced or extremely imbalanced distribution (or dataset) for short.
8Note that, the widely-used hinge and logistic loss are both 1-Lipschitz continuous. Although the exponential,

and squared hinge losses are not globally Lipschitz continuous, they are locally Lipschitz continuous.
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Besides, note that Lu2
cannot strictly upper bound L0/1

r and Lpa, i.e.,

L0/1
r (f(x),y) � Lu2

(f(x),y), Lpa(f(x),y) � Lu2
(f(x),y).

From this lemma, we can observe that when an algorithm minimizes Lu2 , it also optimizes an upper
bound of L0/1

r (or Lpa) which depends on O(c). Besides, Lu3 and Lu4 strictly upper bound L0/1
r (or

Lpa). These upper bounds of L0/1
r (or Lpa) would help to give learning guarantees of corresponding

learning algorithms w.r.t. the (partial) ranking loss in the subsequent analyses. Furthermore, we can
get the relationship between true and surrogate expected risks as follows.

Lemma 2 (The relationship between true and surrogate expected risks; full proof in Appendix B.3).
For any f ∈ F and any distribution P , the following inequalities hold:

Rpr0/1(f) ≤ Rr0/1(f) ≤ Rpa(f) ≤ Ru3
(f) ≤ Ru4

(f) ≤ (c− 1)Ru2
(f), (16)

Rr0/1(f) � Ru2
(f), Rpa(f) � Ru2

(f). (17)

Remark 1. From this lemma, we can see that, among the surrogate expected risks, the pairwise
surrogate expected risk Rpa provides the tightest upper bound of the true expected risk for the same
hypothesis. Thus, to study the learning guarantees of algorithms w.r.t. L0/1

r (or L0/1
pr ), we can first

analyze their counterparts w.r.t. Lpa. 9

From above analyses, we find the instance-wise class imbalance affects the Lipschitz constants of the
surrogates and the relationship between these surrogates. Besides, it is hard to fully characterize the
imbalance in real data. Thus, we consider two extremely cases w.r.t. the imbalance in the following.

4.1.1 The extremely imbalanced distribution (worst case)

In this section, we analyze the learning guarantees of these algorithms for the extremely imbalanced
distribution. In this case, the Lipschitz constants (See Lemma B.1 in Appendix B.1) of the surrogates
are largest. Therefore, these error bounds can be viewed as the worst cases and thus hold for all the
distributions just like the classical probably approximately correct (PAC) bounds [14, 12, 15].

First, we analyze the learning guarantee of Au2 , as follows.

Theorem 1 (Learning guarantee of Au2 for extremely imbalanced distribution (worst case)). Assume
the loss Lφ = (c− 1)Lu2 , where Lu2 is defined in Eq.(8). Besides, Assumption 1 holds and suppose
P is extremely imbalanced. Then, for any δ > 0, with probability at least 1− δ over S, the following
generalization bound holds for all f ∈ F:

Rr0/1(f) ≤ Rpa(f) ≤ (c− 1)Ru2
(f) ≤ (c− 1)R̂u2

S (f) + 2
√

2ρc

√
Λ2r2

n
+ 3Bc

√
log 2

δ

2n
. (18)

The full proof is in Appendix B.3.1. From this theorem, we can see that Au2 has a learning guarantee
w.r.t. Lpa (or L0/1

r ) which depends on O(c).

Then, we provide the learning guarantee of Au3 in the following theorem.

Theorem 2 (Learning guarantee of Au3 for extremely imbalanced distribution (worst case)). Assume
the loss Lφ = Lu3

, where Lu3
is defined in Eq.(9). Besides, Assumption 1 holds and suppose P is

extremely imbalanced. Then, for any δ > 0, with probability at least 1 − δ over S, the following
generalization bound holds for all f ∈ F:

Rr0/1(f) ≤ Rpa(f) ≤ Ru3(f) ≤ R̂u3

S (f) + 4
√

2ρ

√
cΛ2r2

n
+ 6B

√
log 2

δ

2n
. (19)

The full proof is in Appendix B.3.2. From this theorem, remarkably, we can see that Au3 has a
learning guarantee w.r.t. Lpa (or L0/1

r ) which depends on O(
√
c), which enjoys the same order as

the algorithm Apa [13]. Moreover, we find that the learning guarantee of Au4 w.r.t. Lpa (or L0/1
r )

depends on O(c) (See Appendix B.3.3).

9Note that, instead of directly bounding the 0/1 risk, we can treat our results as the upper bounds of the
pairwise risk, allowing it greater than 1.
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4.1.2 The balanced distribution (best case)

Here we analyze the learning guarantees of algorithms for balanced distributions. In this case, the
Lipschitz constants (See Lemma B.1 in Appendix B.1) of the surrogates are smallest. Thus, these
error bounds can be viewed as the best case over all distributions, which is different from the classical
PAC bounds that hold for all distributions. First, we can find that all algorithms with the univariate
losses are exactly the same, which should share the same learning guarantee, and it is confirmed by
the following theorem.

Theorem 3 (Learning guarantee ofAuk , k = 1, 2, 3, 4 for balanced distribution (best case); full proof
in Appendix B.4.1). Assume the loss Lφ = 2Lu1

= c
2Lu2

= Lu3
= Lu4

, where they are defined in
Section 3.1. Besides, Assumption 1 holds and suppose P is balanced. Then, for any δ > 0, with
probability at least 1− δ over S, the following generalization bound holds for all f ∈ F:

Rr0/1(f) ≤ Rpa(f) ≤ Ru3
(f) =

c

2
Ru2

(f) ≤ c

2
R̂u2

S (f) + 4
√

2ρ

√
Λ2r2

n
+ 6B

√
log 2

δ

2n
, (20)

where 2R̂u1

S (f) = c
2 R̂

u2

S (f) = R̂u3

S (f) = R̂u4

S (f).

From Theorem 3, we can observe that the model complexity term in this bound has no dependence
on c. Notably, the same learning guarantee for these learning algorithms also confirms the validity of
our analyses and the tightness of these bounds. Moreover, Apa also has an error bound independent
of c for balanced distribution (see Appendix B.4.2).

4.1.3 Comparison

For generalization analyses, a tighter upper bound usually suggests probably better performance [12]10.
In this paper, all algorithms are analyzed in the same framework and we also consider the extremely
imbalanced case where the upper bounds of the Lipschitz constants in different surrogates are tight.
Given that the MLC distributions (or datasets) are usually highly imbalanced, it is relatively safe to
evaluate the performance of the algorithms in theory by comparing their upper bounds.

We now compare the algorithms considering the cases with (approximately) imbalanced distributions.

• Apa vs Au2 . Apa usually has a tighter bound than Au2 . In particular, given the same
hypothesis space, it is usually easier to train R̂paS than other univariate losses, making R̂paS
smaller than others including R̂u2

S .11 Besides, for the model complexity terms (i.e. the last
two terms), Apa has an error bound of O(

√
c) while Au2 depends on O(c).

• Au3 vs Au2 . Similarly, we argue that Au3 usually has a tighter bound than Au2 . For the
first risk term, (c− 1)R̂u2

S is usually comparable or even larger than R̂u3

S .12 For the model
complexity term, Au3 has an error bound of O(

√
c) while Au2 depends on O(c).

Overall, the tighter bound of Apa (and Au3 ) than Au2 indicates that Apa (and Au3 ) would probably
perform better than Au2 , especially for a large label space (See Fig. 3 in Appendix E). Experimental
results on imbalanced benchmark datasets in Table 3 confirm our analyses.

In contrast, given balanced distributions, Au2 and Au3 share the same learning guarantee. Thus, in
approximately balanced cases, Au2 perform probably similarly to Au3 .

Note that our aforementioned formal generalization analyses are mainly for two extreme cases about
the distribution imbalance. As for the in-between cases of the imbalance, it is indeed highly nontrivial
to consider a continuous changing imbalance level of the distribution when instances may have
different numbers of positive labels, and we leave it as an important future direction.

Nevertheless, our framework can be applied to the cases where each instance has the same number of
positive labels, denoted as cp (See Appendix B.5 for details). Here we set cmin = min{cp, c− cp}
for the clarity of following discussions. cmin

c directly reflects the imbalance level of the distribution.

10When comparing bounds, it is usually more reasonable to compare the order of dependent variables rather
than comparing the absolute values.

11Although we can not formally express the claim, we empirically observed it in experiments.
12In some cases, the first risk term may be bigger than 1 but we can still take insights from the error bound

through the dependent variables of the model complexity.
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Note that the extremely imbalanced case (cp = 1 or cp = c − 1) and the balanced one (cp = c/2)
are included. According to these results, we can observe that Apa has an error bound of O(

√
c

cmin
)

that is the same as Au3 , while Au2 depends on O( c
cmin

). Therefore, in an imbalanced case (not
necessarily the extremely imbalanced ones), Apa and Au2 usually have better bounds than Au3 ,
which probably indicates their better performance over Au3 in practice.

Besides, when c is in an extreme scale, such as millions or more, the O(c) computational time
complexity for loss functions is prohibitive, and practitioners often resort to various negative sampling
methods. While this is not the focus of this paper, our theoretical results indeed indicate that the
univariate loss Lu3 would probably enjoy better performance than other univariate ones w.r.t. (partial)
ranking loss, thus its estimator by use of negative sampling methods may be preferred in practice.

4.2 Consistency Analyses

Following [9, 8], we consider the general partial ranking loss as follows:

L0/1
gpr(f(x),y) = αy

∑
(p,q)∈S+

y ×S−
y

[
[[fp(x) < fq(x)]] +

1

2
[[fp(x) = fq(x)]]

]
, (21)

where αy is a positive penalty. Note that the losses in Eq. (2) is a special case of Eq. (21) with
αy = 1

|S+
y ||S−

y |
respectively. The general ranking loss can be defined in a similar way as Eq. (21).

For clarity and generality, we define the general reweighted univariate surrogate loss as follows:

Lu(f(x),y) =

c∑
j=1

([[yj = +1]]β+
y + [[yj = −1]]β−y )`(yjfj(x)), (22)

where β+
y and β−y are penalties for the positive and negative labels respectively. We assume β+

y β
−
y >

0 for convenience in our analyses. Note that the penalties can be different and all univariate surrogate
losses presented in Section 3.1 are special cases of Eq. (22). (See Table 2 for details.)

Let BL(x, P (y|x)) denote the set of the Bayes predictors of a loss L given a sample x and a
conditional distribution P (y|x). Remarkably, [8] provided a sufficient and necessary condition for
determining whether a surrogate loss to be (Fisher) consistent w.r.t. the (partial) ranking loss or
not (See Lemma 3 in Appendix C). Checking the consistency of a new surrogate loss using Lemma 3
takes additional efforts, because one has to enumerate all conditional distributions. For the loss in
Eq. (22), we present more intuitive characterization that only involves the penalties in Theorem 4,
considering various base losses (See Proposition 1 in Appendix C for the results of the Hinge loss):
Theorem 4 (Necessary condition for the consistency of Eq. (22) w.r.t. Eq. (21) with exponential,
logistic or squared hinge loss). A general reweighted univariate surrogate loss in Eq. (22) with
`(z) = e−z , `(z) = ln(1 + e−z) or `(z) = (max{0, 1− z})2 is consistent w.r.t. the general partial
ranking loss in Eq. (21) only if ∃τ > 0, β+

y β
−
y = τα2

y for all y such that 1−c ≤
∑

1≤j≤c yj ≤ c−1.

For clarity, see full proof in Appendix C. When c ≤ 3, the penalties ofLu1
, Lu3

andLu4
may coincide

with that of Lu2 up to a multiplicative constant. When c ≥ 4, it is straightforward to construct counter
examples that violate the necessary condition in Theorem 4 and obtain the Corollary 1 as follows.
Corollary 1 (Inconsistency of Lu1

, Lu3
and Lu4

w.r.t. Eq. (2) with exponential, logistic or squared
hinge loss). If c ≥ 4, Lu1

, Lu3
and Lu4

with `(z) = e−z or `(z) = ln(1 + e−z) or `(z) =
(max{0, 1− z})2 are inconsistent w.r.t. the partial ranking loss in Eq. (2).

Table 2: The penalties of the specific univariate losses
w.r.t. the general reweighted form in Eq. (22).

Loss Lu1 Lu2 Lu3 Lu4

1/β+
y c |S+

y ||S−y | |S+
y | min{|S+

y |, |S−y |}
1/β−y c |S+

y ||S−y | |S−y | min{|S+
y |, |S−y |}

We further show the inconsistency of
the general reweighted univariate loss in
Eq. (22) w.r.t. the general partial ranking
loss in Eq. (21) with hinge loss. Note that
this includes the inconsistency of Lu1 , Lu3

and Lu4 w.r.t. Eq. (2).

An immediate conclusion from Corollary 1
is that Lu1

, Lu3
and Lu4

are inconsis-
tent w.r.t. the RL in Eq. (1) because
B
L

0/1
r

(x, P (y|x)) ⊂ B
L

0/1
pr

(x, P (y|x)) [8].

8



Compared to existing work [9, 8], although Theorem 4 is negative, it considers surrogate losses in a
more general reweighted form, i.e. Eq. (22), which may be of independent interest.

5 Related Work

Here we mainly review the theoretical work relevant to this paper in MLC and MLR.

Consistency. [8] studied the consistency of various surrogate losses w.r.t. Hamming and (partial)
ranking loss. Remarkably, [9] presented an explicit regret bound w.r.t. partial ranking loss for Lu2

.
Extensive work investigated the consistency w.r.t. other measures, especially the F-measure. For
instance, [28] provided justifications and connections w.r.t. the F-measure using the empirical utility
maximization (EUM) framework and the decision-theoretic approach (DTA) in binary classification,
which were applied to the optimization of the macro-F measure in MLC. Further, [29] studied
connections and differences between these two frameworks and clarified the notions of consistency
w.r.t. many complex measures (e.g., the Jaccard measure) in binary classification.13 Besides, prior
work [30, 31] studied the consistency of the F-measure in MLC from the DTA perspective via
different approaches to estimate the conditional distribution P (y|x). [32] devoted to the study of
consistent multi-label classifiers w.r.t. various measures under the EUM framework. [33] investigated
the multi-label consistency of various reduction methods w.r.t. precision@k and recall@k measures.

Generalization analysis. [13] studied the generalization bounds of the algorithms based on Lpa and
Lu1

w.r.t. the ranking loss besides the Hamming loss and Subset Accuracy.

Technically, our generalization and consistency analyses for MLC mainly follow the prior work [13]
and [8], respectively.

We mention that a specific form of Eq. (9) with base hinge loss has been used as a part of prior
work [34], which achieves excellent empirical results in MLC. In comparison, this paper considers
a more general form of such reweighted surrogate losses and provides formal consistency and
generalization analyses, which have not been investigated in the literature to our knowledge.

6 Experiments

As a theoretical work, the primary goal of experiments is to corroborate our theoretical findings
rather than showing the empirical superiority of the proposed algorithm. Therefore, we evaluate all
algorithms in Section 3 w.r.t. the ranking loss on 10 widely-used benchmark datasets with various
domains and sizes of label and data. The detailed statistics and access of these datasets are given in
Appendix D. For all algorithms, we utilize linear models with the base logistic loss for simplicity and
fair comparison. Besides, we use the same efficient stochastic algorithm (i.e. SVRG-BB [35]) to solve
these convex optimization problems. Moreover, we search the hyper-parameter λ for all algorithms
from a wide range of {10−8, 10−7, · · · , 102} using 3-fold cross validation on each dataset.14

The experimental results are summarized in Table 3 (see Appendix E for complete results with
standard deviations). First, we observe that Apa and Au3 outperform the others especially Au2 on
almost all benchmarks. It verifies our generalization analyses: in extremely imbalanced distributions
case, Apa and Au3 usually have tighter bound than others, especially Au2 , where benchmarks are
usually highly imbalanced as shown in Appendix E (Fig. 2). Besides, such results do not contradict
with the consistency results since two assumptions in consistency analyses are violated in the real
settings. The first one is that the Bayes predictor may not be linear and the second one is that the
number of samples may not be sufficient to achieve the Bayes predictor, which explains the relatively
weaker results of Au2 .

To further study the effect of c, we evaluate Au2 and Au3 on highly imbalanced semi-synthetic
datasets with randomly selected c based on the delicious dataset (See Fig. 3 in Appendix E for details).

13Note that, our generalization and consistency analyses are both under the EUM framework.
14Our code is available at https://github.com/GuoqiangWoodrowWu/MLR-theory.
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Table 3: Ranking loss of all five algorithms on benchmark datasets. On each dataset, the top two
algorithms are highlighted in bold and the top one is labelled with †. The number in the parentheses
denotes the label size c of the corresponding dataset. Besides, “-” means that Apa takes more than a
week using a 48-core CPU server on the delicious dataset (see Fig. 1 in Appendix E for quantitative
results).

Dataset Apa Au1 Au2 Au3 Au4

emotions(6) 0.1511† 0.1538 0.1587 0.1530 0.1616
image(5) 0.1625† 0.1642 0.1653 0.1645 0.1678
scene(6) 0.0696† 0.0809 0.0821 0.0768 0.0806
yeast(14) 0.1766† 0.1768 0.1785 0.1767 0.1816
enron(53) 0.0682† 0.0724 0.0696 0.0698 0.0715
rcv1-subset1(101) 0.0361† 0.0418 0.0392 0.0368 0.0391
bibtex(159) 0.0516 0.0545 0.0551 0.0401† 0.0538
corel5k(374) 0.1081 0.1091 0.1099 0.1063† 0.1096
mediamill(101) 0.0395 0.0402 0.0412 0.0389† 0.0405
delicious(983) - 0.0960 0.0974 0.0946† 0.0978

Time complexity O(c2) O(c) O(c) O(c) O(c)

We find that Au3 would probably perform better than Au2 with larger c, which also confirms our
theoretical findings: in the extremely imbalanced case, Au3 has tighter bound than Au2 w.r.t. c. 15

Furthermore, to study whether the upper bound for the generalization error can reflect on the true
generalization error reasonably well, we conduct experiments on the semi-synthetic delicious datasets,
where the result is shown in Appendix E (Table 3). We find that despite the absolute values of
probabilistic upper bounds (PUB) might not reflect on the true generalization error reasonably well,
the PUB (and expected surrogate pairwise risk) can still offer valuable insights into these learning
algorithms under the same analysis framework (See Appendix E for details).

7 Conclusion and Discussion

This paper presents a systematic study from two complementary perspectives of consistency and gen-
eralization bounds of algorithms in multi-label ranking. Theoretically, we find that the instance-wise
class imbalance and the label size of the datasets play an important role in their learning guarantees.
In particular, for the extremely imbalanced case, existing algorithms with consistent univariate losses
have an error bound of O(c) while the ones with inconsistent pairwise losses depend on O(

√
c) [13],

which can explain the superior performance of pairwise methods on highly imbalanced datasets in
practice. Moreover, we present one inconsistent reweighted surrogate univariate loss-based algorithm
which enjoys an error bound O(c) which is nearly the same as the pairwise ones. For the balanced
case, all the algorithms with the univariate losses share the same error bound with no dependence
on c, which is the same as the pairwise ones. Finally, empirical results corroborate our theoretical
findings.

For generalization analyses, we consider two extreme cases about the instance-wise class imbalance
of the data distribution, and it may be better for fine-grained analyses through integrating other
properties of the distribution. Besides, how to make these bounds tighter will inspire new learning
algorithms. For the consistency analyses, we only consider classical Fisher consistency, and it may
be better to take the hypothesis set into account, such as H-consistency [36].
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