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A Dataset Details

A.1 Caltech-UCSD Birds-200-2011

Caltech-UCSD Birds-200-2011 (Birds) dataset consists of 11,788 images of 200 classes of birds
annotated with high-quality segmentation masks. Each image is further annotated with 15 part
locations, 312 binary attributes, and 1 bounding box. We use the provided bounding box to extract
a center square from the image, and scale it to 128 ˆ 128 pixels. Each scene contains exactly one
foreground object.

A.2 Stanford Dogs

Stanford Dogs (Dogs) dataset consists of 20,580 images of 120 classes annotated with bounding
boxes. We first use the provided bounding box to extract the center square, and then scale it to
128 ˆ 128 pixels. As stated in the paper, we approximate ground-truth masks for the pre-processed
images with Mask R-CNN [1], pre-trained on the MS COCO [2] dataset with a ResNet-101 [3]
backend. The pretrained model is acquired from the detectron2 [4] toolkit. We exclude the images
where no dog is detected. We then manually exclude those images where the foreground object
has occupied more than „ 90% of the image, those with poor masks, and those with significant
foreground distractors such as humans (see Fig. 1). The filtering strategy results in 5,024 images with
a clear foreground-background setup and high-quality mask.

Figure 1: Examples of excluded images. From left to right: (i) image with a foreground object that occupied too
much space, (ii) image with a low-quality mask, and (iii) image with significant foreground distractors.

A.3 Stanford Cars

Stanford Cars (Cars) dataset consists of 16,185 images of 196 classes annotated with bounding
boxes. Though also being primarily designed for fine-grained categorization, it has a much clearer
foreground-background setup compared with the Dogs dataset. We employ a similar process as used
for Dogs dataset to approximate the ground-truth masks, and only exclude those images where cars
are not properly detected. It finally produces 12,322 images for our experiments.

A.4 CLEVR6

CLEVR6 dataset is a subset of the original CLEVR dataset [5] with masks, generated by Greff et al.
[6]. We follow the evaluation protocol adopted by IODINE [6] and Slot-attention [7], which takes the
first 70K samples from CLEVR. These samples are then filtered to only include scenes with at most
6 objects. Additionally, we perform a center square crop of 192 ˆ 192 from the original 240 ˆ 320
image, and scale it to 128 ˆ 128 pixels. The resulting CLEVR6 dataset contains 3-6 foreground
objects that could be with partial occlusion and truncation in each visual scene.

A.5 Textured Multi-dSprites

Textured Multi-dSprites (TM-dSprites) dataset, which is based on the dSprites dataset [8] and
Textured MNIST [9], consists of 20,000 images with a resolution of 128 ˆ 128. Each image contains
2-3 random sprites, which vary in terms of shape (square, circle, or triangle), color (uniform saturated
colors), and position (continuous). The background regions are borrowed from Textured MNIST
dataset [9]. The textures for the background are randomly shifted samples from a bank of 20 sinusoidal
textures with different frequencies and orientations. We adopt a simpler foreground setting compared
with the vanilla Multi-dSprites dataset used in [6], i.e., the foreground objects are not occluded as the
dataset is designed to emphasize the background part. Some samples are presented in Fig. 2.
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Figure 2: Samples from TM-dSprites. From top to bottom: (1) observed images, (ii) background textures, and
(iii) ground-truth masks.

B Details on Models and Hyperparameters

Architecture As mentioned in the paper, we use the same overall architecture for different datasets
(while the size of latent variables may vary). The details for the generators and LEBMs are summarized
in the Table 1 and Table 2.

Dataset Foreground Background Pixel Re-assignment

Birds 256 256 512
Dogs 256 256 512
Cars 256 192 512
CLEVR6 256 2 256
TM-dSprites 256 4 1024

Table 1: Dimension of latent variables on each dataset.

Hyperparameters and Training Details For the Langevin dynamics sampling [10], we use K0 and
K1 to denote the number of prior and posterior sampling steps with step sizes s0 and s1 respectively.
Our hyperparameter choices are: K0 “ 60,K1 “ 40, s0 “ 0.4 and s1 “ 0.1. These are identical
across different datasets. During testing, we set the posterior sampling steps to 300 for Dogs and
Cars, and 2.5K, 5K and 5K for Birds, CLEVR6 and TM-dSprites respectively. The parameters of the
generators and LEBMs are initialized with orthogonal initialization [11]. The gain is set to 1.0 for all
the models. We use the ADAM optimizer [12] with β1 “ 0.5 and β2 “ 0.999. Generators are trained
with a constant learning rate of 0.0001, and LEBMs with 0.00002. We run experiments on a single
V100 GPU with 16GB of RAM and with a batch size of 48. We set the maximum training iterations
to 10K and run for at most 48hrs for each dataset.
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Layers In-Out size Comment

LEBM for Foreground/Background Models
Input: z D˚

Linear, LReLU 200
Linear, LReLU 200

Linear K:

LEBM for Pixel Re-assignment Model
Input: z D˚

Linear, LReLU 200
Linear, LReLU 200
Linear, LReLU 200

Linear 1
Generator for Foreground/Background Model and Re-assignment Model

Input: z D˚

Linear, LReLU 4 ˆ 4 ˆ 128 reshaped output
UpConv3x3Norm, LReLU 8 ˆ 8 ˆ 1024 stride 1 & padding 1
UpConv3x3Norm, LReLU 16 ˆ 16 ˆ 512 stride 1 & padding 1
UpConv3x3Norm, LReLU 32 ˆ 32 ˆ 256 stride 1 & padding 1
UpConv3x3Norm, LReLU 64 ˆ 64 ˆ 128 stride 1 & padding 1
UpConv3x3Norm, LReLU 128 ˆ 128 ˆ 64 stride 1 & padding 1

Conv3x3 128 ˆ 128 ˆ p3 ` 1q

128 ˆ 128 ˆ 2
RGB & Mask

Re-assignment grid
Auxiliary classifier for Foreground/Background Model
Input: x 128 ˆ 128 ˆ 3 generated image

Conv4x4Norm, LReLU 64 ˆ 64 ˆ 64 stride 2 & padding 1
Conv4x4Norm, LReLU 32 ˆ 32 ˆ 128 stride 2 & padding 1
Conv4x4Norm, LReLU 16 ˆ 16 ˆ 256 stride 2 & padding 1
Conv4x4Norm, LReLU 8 ˆ 8 ˆ 512 stride 2 & padding 1
Conv4x4Norm, LReLU 4 ˆ 4 ˆ 1024 stride 2 & padding 1

Conv4x4 1 ˆ 1 ˆ K:

Table 2: Architecture of the generators, LEBMs and auxiliary classifiers (see Appendix C.2). UpConv3x3Norm
denotes a Upsampling-Convolutional-InstanceNorm layer with a convolution kernel size of 3. Similarly,
Conv4x4Norm denotes a Convolutional-InstanceNorm layer with a kernel size of 4. LReLU denotes the
Leaky-ReLU activation function. The leak factor for LReLU is 0.2 in LEBMs and auxiliary classifiers, and
0.01 in generators. *D represents the dimensions of the latent variables for different datasets; see Table 1.
†K represents the pre-specified category number for latent variables. We use 200 for both the foreground
and background LEBMs on real-world datasets, and 30 and 10 in the foreground and background LEBMs on
multi-object datasets respectively.

C Details on Learning Objective and Regularization

C.1 Learning Objective

Derivation of Surrogate Learning Objective J pθq “ Ew„pβpw|x,zq rLpθqs is the conditional
expectation of w,

J pθq “ Ew„pβpw|x,zq rLpθqs

“ log pαpzq ` E

«

D
ÿ

i“1

2
ÿ

k“1

wik plog πik ` log pβk
pxi|zkqq

ff

“ log pαpzq `

D
ÿ

i“1

2
ÿ

k“1

E rwiks plog πik ` log pβk
pxi|zkqq ,

(1)

where E is the conditional expectation of w. Recall that wik P t0, 1u. The expectation becomes

E rwiks “ 0 ˆ ppwik “ 0|xi, zq ` 1 ˆ ppwik “ 1|xi, zq

“ γik,
(2)
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which is the posterior responsibility of wik. We can further decompose J pθq into

J pθq “ log pαpzq
looomooon

objective for LEBM

`

D
ÿ

i“1

2
ÿ

k“1

γik log πik

looooooooomooooooooon

foreground-background partitioning

`

D
ÿ

i“1

2
ÿ

k“1

γik log pβk
pxi|zkq

loooooooooooooomoooooooooooooon

objective for image generation

, (3)

as mentioned in the paper.

Understanding the Optimization Process Note that the surrogate learning objective is an expecta-
tion w.r.t z,

max
θ

Ez„pθpz|xq rJ pθqs , s.t. @i,
2

ÿ

k“1

πik “ 1, (4)

which is generally intractable to calculate. We therefore need to approximate the expectation by
sampling from the distributions, and calculating the Monte Carlo average. In practice, this can be
done by gradient-based MCMC sampling method, such as Langevin Dynamics [10].

Given x, we have pθpz|xq9pβpx|zqpαpzq. Note that

∇z log pβpx|zq “
1

pβpx|zq
∇zpβpx|zq

“

ż

w

pβpw|x, zq∇z log pβpx,w|zqdw

“ Ew„pβpw|x,zq r∇z log pβpx,w|zqs .

(5)

Therefore, the log-likelihood of surrogate target distribution for the Langevin dynamics at the t-th
step is

log Q̃pztq “ log pαpztq ` Ew„pβpw|x,ztq

«

D
ÿ

i“1

2
ÿ

k“1

wik plog πik ` log pβk
pxi|zk,tqq

ff

“ log pαpztq `

D
ÿ

i“1

2
ÿ

k“1

γik,t plog πik ` log pβk
pxi|zk,tqq ,

(6)

which has the same form as J pθq. However, instead of updating parameters θ, Langevin dynamics
updates the latent variables z with the calculated gradients.

The two-step learning process of the DRC models can be understood as follows: (1) in the first step,
the algorithm optimizes J by updating latent variables z, where the posterior responsibility γik
inferred at each step serves to gradually disentangle the foreground and background components, and
(2) in the second step, the updated z is fed again into the models to generate the observation x, where
the algorithm optimizes J by updating the model parameters θ.

It is worth mentioning that learning LEBMs requires an extra sampling step [13], as the gradients are
given by the following

δαpxq “ Epθpz|xq r∇αfαpzqs ´ Epαpzq r∇αfαpzqs , (7)

where the second terms should be computed by sampling with pαpzq. We term this as prior sampling
in the main paper.

Further Details on the Loss Functions For the generative models pβk
px|zkq, k “ 1, 2, we

assume that x “ gβk
pzkq ` ϵ, where gβk

pzkq, k “ 1, 2 are the generator networks for fore-
ground and background regions, and ϵ is random noise sampled from a zero-mean Gaussian or
Laplace distribution. Assuming a global fixed variance σ2 for Gaussian, we have log pβk

px|zkq “

´ 1
2σ2 }gβk

pzkq ´ x}2 ` C, k “ 1, 2, where C is a constant unrelated to βk and zk. Similarly
for Laplace distribution, we have log pβk

px|zkq “ ´ 1
λ |gβk

pzkq ´ x| ` C, k “ 1, 2. These two
log-likelihoods correspond to the MSE loss and L1 loss commonly used for image reconstruction,
respectively.
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C.2 Regularization

Pseudo Label Learning As mentioned in the paper, we exploit the symbolic vector y emitted by the
LEBM for additional regularization. Let the target distribution of yk be Pk given by pαk

py|zkq, k “

1, 2, which represents the distribution of symbolic vector for foreground and background regions
respectively. We can optimize the following objective as a regularization to our original learning
objective:

max
β,τ

Lpseudo-label “

2
ÿ

k“1

HpPk, Qkq, (8)

HpPk, Qkq “ ´xpαk
py|zkq, log qτkpy|gβk

pzkqqy, k “ 1, 2, (9)
where qτk , k “ 1, 2 represents the jointly trained auxiliary classifier network (see Appendix B for
architecture details) for foreground and background. gβk

pzkq, k “ 1, 2 represents the output of
generator network. We set the weight of this regularization term to 0.1 for all the models.

Total Variation norm (TV-norm) Total Variation norm [14] is commonly used for image denoising,
and has been extended as an effective technique for in-painting. We use TV-norm as a regularization
for learning the background generator.

min
β2

LTV-norm “
ÿ

h,w

ˆ

|
Bgβ2

pz2q

Bx
ph,wq| ` |

Bgβ2
pz2q

By
ph,wq|

˙

, (10)

where Bxgβ2
pz2qph,wq and Bygβ2

pz2qph,wq represent the horizontal and vertical image gradients at
the pixel coordinate ph,wq respectively. We set the weight of this regularization term to 0.01 for all
the models.

Orthogonal Regularization We use orthogonal regularization [15] for the convolutional layers
only. Let W be the flattened kernel weights of the convolutional layers, i.e., the size of W is C ˆ K
where C is the output channel number. The orthogonal regularization is calculated according to

min
β

Lorthogonal-reg “ }WWT d p1 ´ Iq}F , (11)

where d is the Hadamard product. I denotes the identity matrix, and 1 denotes the matrix filled with
ones. We set the weight of this regularization term to 0.1 for Birds models, and 1.0 for the rest of the
models.
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D Pytorch-style Code

We provide pytorch-style code to illustrate how the learning and inference in our model work.

Forward Pass In the forward pass, the model takes latent variables z, generates foreground and
background regions separately, and mixes them into the final image. Note that the pixel re-assignment
is applied to both background image and mask. We finds it useful to feed the intermediate feature of
background region into the generator for pixel re-assignment.

Listing 1: Forward pass of the DRC model.

def f o r w a r d ( z ) :
zf , zb , z s = z [ : , : ZF_DIM ] , \

z [ : , ZF_DIM: −ZS_DIM ] \
z [ : , −ZS_DIM : ]

### g e n e r a t i n g f o r e g r o u n d
fg , fm = f g _ n e t ( z f )

### g e n e r a t i n g background
bg , bm , b g _ f e a t = bg_ ne t ( zb )
s h u f f l i n g _ g r i d = s p _ n e t ( zs , b g _ f e a t . d e t a c h ( ) )
bg_shu f = F . g r i d _ s a m p l e ( bg , s h u f f l i n g _ g r i d )
bm_shuf = F . g r i d _ s a m p l e (bm , s h u f f l i n g _ g r i d )

### g e n e r a t i n g f o r e g r o u n d masks
p i = t o r c h . c a t ( [ fm_wp , bm_wp ] , dim = 1 ) . so f tmax ( dim =1)
p i _ f , p i_b = p i [ : , : 1 , . . . ] , p i [ : , 1 : , . . . ]

### m ix in g r e g i o n s
im_p = fg * p i _ f + bg_wp * p i_b
re turn im_p , fg , bg_shuf , p i _ f , p i_b , bg
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Sampling Latent Variables We employ Langevin Dynamics for sampling latent variables, which
iteratively updates the sample with the gradient computed against the likelihood. In the following
code, ebm_net stands for the LEBMs, which outputs the energy and the distribution paramters of the
symbolic vector y for the foreground and background regions.

Listing 2: Running Langevin Dynamics for prior and posterior sampling of the latent variables z.

def s a m p l e _ l a n g e v i n _ p r i o r ( z ) :
### l a n g e v i n p r i o r i n f e r e n c e
# o n l y l a t e n t v a r i a b l e s ’ z ’ are upda ted
f o r __ in range ( i n f e r _ s t e p _ K 0 ) :

z = z . r e q u i r e s _ g r a d _ ( True )

en , __ , __ = ebm_net ( z )
e _ l o g _ l k h d = en . sum ( ) + . 5 * z . s q u a r e ( ) . sum ( )

d_ebm_z = t o r c h . a u t o g r a d . g r ad ( e_ log_ lkhd , z ) [ 0 ]
z = z − 0 . 5 * ( s e l f . d e l t a _ 0 ** 2) * d_ebm_z \

+ s e l f . d e l t a _ 0 * t o r c h . r a n d n _ l i k e ( z )
re turn z

def s a m p l e _ l a n g e v i n _ p o s t e r i o r ( z , im_t ) :
### l a n g e v i n p o s t e r i o r i n f e r e n c e
# o n l y l a t e n t v a r i a b l e s ’ z ’ are upda ted
f o r __ in range ( i n f e r _ s t e p ) :

z = z . r e q u i r e s _ g r a d _ ( True )

im_p , fg , bg_shuf , p i _ f , p i_b , bg = f o r w a r d ( z )

### log −l k h d f o r LEBMs
en , __ , __ = ebm_net ( z )

### log −l k h d f o r g e n e r a t o r s
l o g _ p f = − F . l 1 _ l o s s ( fg , im_t , r e d u c t i o n = ’ none ’ )

/ ( 2 . * SIGMA ** 2)
log_pb = − F . l 1 _ l o s s ( bg_shuf , im_t , r e d u c t i o n = ’ none ’ )

/ ( 2 . * SIGMA ** 2)

# p o s t e r i o r r e s p o n s i b i l i t y
wi th t o r c h . no_grad ( ) :

ga_ f = p i _ f * l o g _ p f . exp ( ) /
( p i _ f * l o g _ p f . exp ( )

+ p i_b * log_pb . exp ( ) + 1e −8)
# o b j e c t i v e f o r image g e n e r a t i o n
e_z_ log_p = ga_ f . d e t a c h ( ) * \

( ( p i _ f + 1e − 8 ) . l o g ( ) + l o g _ p f ) \
+ ( 1 . − ga_ f . d e t a c h ( ) ) * \

( ( p i_b + 1e − 8 ) . l o g ( ) + log_pb )
# r e g u l a r i z a t i o n
tv_norm = t v _ l o s s ( bg_shu f )

j _ l o g _ l k h d = − e_z_ log_p . sum ( ) + tv_norm * . 0 1 + \
+ en . sum ( ) + . 5 * z . s q u a r e ( ) . sum ( )

d _ j _ z = t o r c h . a u t o g r a d . g r ad ( j _ l o g _ l k h d , z ) [ 0 ]
z = z − 0 . 5 * ( s e l f . d e l t a _ 1 ** 2) * d _ j _ z \

+ s e l f . d e l t a _ 1 * t o r c h . r a n d n _ l i k e ( z )
z = z . d e t a c h ( )

re turn z
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Updating Model Parameters Given the sampled latent variables z, we optimize the model param-
eters by minimizing the reconstruction error.

Listing 3: Updating model parameters.

def update_G ( im_t , fg , bg_shuf , p i _ f , p i_b , bg ,
z f _ l o g i t s , z b _ l o g i t s ) :

### o p t i m i z e r s f o r g e n e r a t o r n e t w o r k s
f g _ n e t _ o p t i m i z e r . z e r o _ g r a d ( )
b g _ n e t _ o p t i m i z e r . z e r o _ g r a d ( )
s p _ n e t _ o p t i m i z e r . z e r o _ g r a d ( )
### o p t i m i z e r s f o r a u x i l i a r y c l a s s i f i e r s
f c _ n e t _ o p t i m i z e r . z e r o _ g r a d ( )
b c _ n e t _ o p t i m i z e r . z e r o _ g r a d ( )

### R e g u l a r i z a t i o n s
# Pseudo − l a b e l f o r a d d i t i o n a l r e g u l a r i z a t i o n
f _ l o g i t s = f c _ n e t ( fg )
b _ l o g i t s = b c _ n e t ( bg )
hpq_f = c r o s s _ e n t ( z f _ l o g i t s , f _ l o g i t s )
hpq_b = c r o s s _ e n t ( z b _ l o g i t s , b _ l o g i t s )
# o r t h o g o n a l r e g u l a r i z a t i o n s
o r t h o _ r e g = o r t h o g o n a l _ r e g ( f g _ n e t ) + \

o r t h o g o n a l _ r e g ( bg _n e t )
# TV−norm
tv_norm = t v _ l o s s ( bg_shu f )

### log −l k h d f o r g e n e r a t o r s
l o g _ p f = − F . l 1 _ l o s s ( fg , im_t , r e d u c t i o n = ’ none ’ )

/ ( 2 . * SIGMA ** 2)
log_pb = − F . l 1 _ l o s s ( bg_shuf , im_t , r e d u c t i o n = ’ none ’ )

/ ( 2 . * SIGMA ** 2)

# p o s t e r i o r r e s p o n s i b i l i t y
wi th t o r c h . no_grad ( ) :

ga_ f = p i _ f * l o g _ p f . exp ( )
/ ( p i _ f * l o g _ p f . exp ( ) + p i_b * log_pb . exp ( ) + 1e −8)

# o b j e c t i v e f o r image g e n e r a t i o n
e_z_ log_p = ga_ f . d e t a c h ( ) * ( ( p i _ f + 1e − 8 ) . l o g ( ) + l o g _ p f ) \

+ ( 1 . − ga_ f . d e t a c h ( ) ) * ( ( p i_b + 1e − 8 ) . l o g ( ) + log_pb )

G_loss = − e_z_ log_p . mean ( ) + tv_norm * . 0 1 + \
hpq_f * . 1 + hpq_b * . 1 + o r t h o _ r e g * 1

G_loss . backward ( )
f g _ n e t _ o p t i m i z e r . s t e p ( )
b g _ n e t _ o p t i m i z e r . s t e p ( )
s p _ n e t _ o p t i m i z e r . s t e p ( )

f c _ n e t _ o p t i m i z e r . s t e p ( )
b c _ n e t _ o p t i m i z e r . s t e p ( )

def upda te_E ( en_pos , en_neg ) :
ebm_op t imize r . z e r o _ g r a d ( )

ebm_loss = en_pos . mean ( ) − en_neg . mean ( )
ebm_loss . backward ( )

ebm_op t imize r . s t e p ( )
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def l e a r n ( zp , zn , im_t ) :
### 1 . Sampl ing l a t e n t v a r i a b l e s
zp = s a m p l e _ l a n g e v i n _ p o s t e r i o r ( zp )
zn = s a m p l e _ l a n g e v i n _ p r i o r ( zn )

### 2 . Updat ing t h e p a r a m e t e r s
en_pos , z p f _ l o g i t s , z p b _ l o g i t s = ebm_net ( zp )
en_neg , z n f _ l o g i t s , z n b _ l o g i t s = ebm_net ( zn )
# u pd a t e LEBMs
upda te_E ( en_pos , en_neg )

im_p , fg , bg_shuf , p i _ f , p i_b , bg = f o r w a r d ( zp )
# u pd a t e t h e g e n e r a t o r s
update_G ( im_t , fg , bg_shuf , p i _ f , p i_b , bg ,

z f _ l o g i t s , z b _ l o g i t s )
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E Evaluation Protocols

Intersecion of Union (IoU) The IoU score measures the overlap of two regions A and B by
calculating the ratio of intersection over union, according to

IoUpA,Bq “
|A X B|

|A Y B|
, (12)

where we use the inferred mask and ground-truth mask as A and B respectively for evaluation.

Dice (F1) score Similarly, the Dice (F1) score is

DicepA,Bq “
2|A X B|

|A| ` |B|
. (13)

Higher is better for both scores.

Evalution As mentioned in the paper, IODINE [6] and Slot-attention [7] are designed for segment-
ing complex multi-object scenes using slot-based object representations. Ideally, the output of these
models consists of masks for each individual object, while the background is viewed as a virtual
“object” as well. In practice, however, it is possible that the model distributes the background over
all the slots as mentioned in Locatello et al. [7]. Taking both cases into consideration (see Fig. 3
and Fig. 4), we propose two approaches to convert the multiple output masks into a foreground-
background partition, and report the best results of these two options: (1) we compute the scores by
making each mask as the background mask at a time, and then choose the best one; this works better
when the background is treated as a virtual "object"; (2) we threshold and combine all the masks into
a foreground mask; this is for when background is distributed to all slots.

Figure 3: An example situation when using each individual mask as the background mask gives higher scores.
Note that if we threshold the output of each individual slot and compose them, the result would be the mask
shown in the last column.

Figure 4: An example situation when thresholding&combining the output of each individual slot gives higher
scores. We can see from the last column that the combined mask fits the foreground objects well.
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F Additional Illustrations and Baseline Results

F.1 More Examples

We provide more foreground extraction results of our model for each dataset; see Fig. 5, Fig. 6, Fig. 7
and Fig. 8. From top to bottom, we display: (i) observed images, (ii) generated images, (iii) masked
generated foregrounds, (iv) generated backgrounds, (v) ground-truth foreground masks, and (vi)
inferred foreground masks in each figure.

F.2 Failure Modes

We provide examples for illustrating typical failure modes of the proposed model; see Fig. 9. On
Birds dataset, we observe that the method can perform worse on samples where the foreground object
has colors and textures quite similar to the background regions. Although the method can still capture
the rough shape of the foreground object, some details can be missing. On TM-dSprites dataset, we
observe that the method may occasionally miss one of the foreground objects. We conjecture that the
problem can be mitigated with more powerful generator and further fine-tuning on this dataset.

F.3 Baseline Results

GrabCut We provide results of GrabCut [16] on Birds dataset and TM-dSprites dataset, shown in
Fig. 10. We can see that GrabCut algorithm may fail when the foreground object and background
region have moderately similar colors and textures. On TM-dSprites dataset, GrabCut algorithm
outperforms other baselines, but is still inferior to the proposed method and exhibits a similar failure
pattern.

ReDO We provide results of ReDO [17] on Birds dataset and TM-dSprites dataset, shown in
Fig. 11. ReDO overall performs better than GrabCut on Birds dataset, while it may fail when the
background regions become more complex. We can also observe that ReDO relies heavily on the
pixel intensities for foreground-background grouping on TM-dSprites dataset.

IODINE On Birds dataset, we observe that IODINE [6] tends to use color as a strong cue for
segmentation, see Fig. 12. On TM-dSprites dataset, IODINE is distracted by the background; see
Fig. 13. These two findings are consistent with those reported in [6];

Slot-Attention On Birds dataset, Slot-attention learns to roughly locate the position of foreground
objects, but mostly fails to provide foreground masks when the background region becomes complex;
see Fig. 14. Similarly, we can observe that Slot-Attention tends to use color as a strong cue for
segmentation. On TM-dSprites dataset, Slot-attention is distracted by the background; see Fig. 15.
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Figure 5: Additional foreground extraction results on Birds dataset.
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Figure 6: Additional foreground extraction results on Dogs dataset.
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Figure 7: Additional foreground extraction results on Cars dataset.
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Figure 8: Additional foreground extraction results on CLEVR6 and TM-dSprites datasets.
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Figure 9: Typical failure modes on Birds and TM-dSprites.

Figure 10: Results of GrabCut on Birds and TM-dSprites datasets. The first three columns are results from Birds
dataset, and the last three are from TM-dSprites. From left to right, we display the observed image, ground-truth
mask, and the foreground extraction results respectively.
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Figure 11: Results of ReDO on Birds and TM-dSprites datasets. The first four columns are results from Birds
dataset, and the last four are from TM-dSprites. From left to right, we display the observed image, ground-truth
mask, mask from the first output channel and from the second channel respectively.

Figure 12: Results of IODINE on Birds datasets. We provide the observed image, mask from the first slot and
from the second slot respectively.
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Figure 13: Results of IODINE on TM-dSprites datasets. We provide the observed image and masks from four
object slots respectively.

Figure 14: Results of Slot-Attention on Birds datasets. We provide the observed image, mask from the first slot
and from the second slot respectively.
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Figure 15: Results of Slot-Attention on TM-dSprites datasets. We provide the observed image and masks from
four object slots respectively.
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G Further Discussion

G.1 Preliminary Analysis of Real-world Datasets

We provide preliminary analysis of the statistics of the three real-world datasets. To measure the
similarity of colors and textures for these datasets, we calculate the image histogram for the foreground
objects and background regions of each dataset; see Fig. 16. To probe the similarity of shape
distributions, we also provide the heatmap of foreground masks, as shown in Fig. 17. The heatmaps
are calculated by overlapping the ground-truth masks and normalizing the summarized intensities
with the maximum values. Despite the apparent difference in Birds vs Dogs and Cars, we can see
that the data distribution of Birds dataset is more similar to that of Dogs dataset than to that of Cars
dataset. We can also observe the similarity between the distributions of Dogs and Cars datasets.
This could partly explain why the proposed method shows relatively strong performance on objects
from unseen categories, i.e., it effectively combines the colors, textures and shapes for foreground
extraction.
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Figure 16: Image histograms for foreground objects and background regions from each dataset.
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Figure 17: Heatmaps of ground-truth masks for each dataset.

G.2 Possible Extension to Multi-Object Segmentation

Figure 18: Preliminary results on learning slot-based object representation.
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Figure 19: Failure modes of energy-based slot representation model.

We explore the possibility of using our model for segmenting and disentangling multiple objects.
As shown in Fig. 18, the proposed method can disentangle the foreground objects, while providing
explicit identification of the background region. However, we find that the model occasionally
distributes a single object into several slots based on the difference in texture and shading; see Fig. 19.
We conjecture that this is due to the lack of objectness modeling. We would like to investigate more
on this direction in future works.

G.3 Prior Sampling Results on Birds Dataset

Figure 20: Prior sampling results on Birds dataset.

We provide preliminary results of sampling from the learned energy-based priors, as shown in Fig. 20.
Of note, the generated prior samples are generally less realistic compared with the posterior samples,
as prior sampling does not involve the region competition between foreground and background
components, which may lead to worse separation and the generation of foreground and background
regions. We would further explore generating foreground and background in future work.
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