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Abstract

Attention is sparse in vision transformers. We observe the final prediction in
vision transformers is only based on a subset of most informative tokens, which is
sufficient for accurate image recognition. Based on this observation, we propose a
dynamic token sparsification framework to prune redundant tokens progressively
and dynamically based on the input. Specifically, we devise a lightweight prediction
module to estimate the importance score of each token given the current features.
The module is added to different layers to prune redundant tokens hierarchically. To
optimize the prediction module in an end-to-end manner, we propose an attention
masking strategy to differentiably prune a token by blocking its interactions with
other tokens. Benefiting from the nature of self-attention, the unstructured sparse
tokens are still hardware friendly, which makes our framework easy to achieve
actual speed-up. By hierarchically pruning 66% of the input tokens, our method
greatly reduces 31% ∼ 37% FLOPs and improves the throughput by over 40%
while the drop of accuracy is within 0.5% for various vision transformers. Equipped
with the dynamic token sparsification framework, DynamicViT models can achieve
very competitive complexity/accuracy trade-offs compared to state-of-the-art CNNs
and vision transformers on ImageNet. Code is available at https://github.com/
raoyongming/DynamicViT.

1 Introduction

These years have witnessed the great progress in computer vision brought by the evolution of CNN-
type architectures [12, 18]. Some recent works start to replace CNN by using transformer for many
vision tasks, like object detection [36, 20] and classification [25]. Just like what has been done to the
CNN-type architectures in the past few years, it is also desirable to accelerate the transformer-like
models to make them more suitable for real-time applications.

One common practice for the acceleration of CNN-type networks is to prune the filters that are of less
importance. The way input is processed by the vision transformer and its variants, i.e. splitting the
input image into multiple independent patches, provides us another orthogonal way to introduce the
sparsity for the acceleration. That is, we can prune the tokens of less importance in the input instance,
given the fact that many tokens contribute very little to the final prediction. This is only possible for
the transformer-like models where the self-attention module can take the token sequence of variable
length as input, and the unstructured pruned input will not affect the self-attention module, while
dropping a certain part of the pixels can not really accelerate the convolution operation since the
unstructured neighborhood used by convolution would make it difficult to accelerate through parallel
computing. Since the hierarchical architecture of CNNs with structural downsampling has improved
model efficiency in various vision tasks, we hope to explore the unstructured and data-dependent
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Figure 1: Illustration of our main idea. CNN models usually leverage the structural downsam-
pling strategy to build hierarchical architectures as shown in (a). unstructured and data-dependent
downsampling method in (b) can better exploit the sparsity in the input data. Thanks to the nature
of the self-attention operation, the unstructured token set is also easy to accelerate through parallel
computing. (c) visualizes the impact of each spatial location on the final prediction in the DeiT-S
model [25] using the visualization method proposed in [3]. These results demonstrate the final
prediction in vision transformers is only based on a subset of most informative tokens, which suggests
a large proportion of tokens can be removed without hurting the performance.

downsampling strategy for vision transformers to further leverage the advantages of self-attention
(our experiments also show unstructured sparsification can lead to better performance for vision
transformers compared to structural downsampling). The basic idea of our method is illustrated in
Figure 1.

In this work, we propose to employ a lightweight prediction module to determine which tokens to be
pruned in a dynamic way, dubbed as DynamicViT. In particular, for each input instance, the prediction
module produces a customized binary decision mask to decide which tokens are uninformative and
need to be abandoned. This module is added to multiple layers of the vision transformer, such that
the sparsification can be performed in a hierarchical way as we gradually increase the amount of
pruned tokens after each prediction module. Once a token is pruned after a certain layer, it will not
be ever used in the feed-forward procedure. The additional computational overhead introduced by
this lightweight module is quite small, especially considering the computational overhead saved by
eliminating the uninformative tokens.

This prediction module can be optimized jointly in an end-to-end manner together with the vision
transformer backbone. To this end, two specialized strategies are adopted. The first one is to adopt
Gumbel-Softmax [15] to overcome the non-differentiable problem of sampling from a distribution so
that it is possible to perform the end-to-end training. The second one is about how to apply this learned
binary decision mask to prune the unnecessary tokens. Considering the number of zero elements
in the binary decision mask is different for each instance, directly eliminating the uninformative
tokens for each input instance during training will make parallel computing impossible. Moreover,
this would also hinder the back-propagation for the prediction module, which needs to calculate the
probability distribution of whether to keep the token even if it is finally eliminated. Besides, directly
setting the abandoned tokens as zero vectors is also not a wise idea since zero vectors will still affect
the calculation of the attention matrix. Therefore, we propose a strategy called attention masking
where we drop the connection from abandoned tokens to all other tokens in the attention matrix based
on the binary decision mask. By doing so, we can overcome the difficulties described above. We
also modify the original training objective of the vision transformer by adding a term to constrain
the proportion of pruned tokens after a certain layer. During the inference phase, we can directly
abandon a fixed amount of tokens after certain layers for each input instance as we no longer need to
consider whether the operation is differentiable, and this will greatly accelerate the inference.
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We illustrate the effectiveness of our method on ImageNet using DeiT [25] and LV-ViT [16] as
backbone. The experimental results demonstrate the competitive trade-off between speed and
accuracy. In particular, by hierarchically pruning 66% of the input tokens, we can greatly reduce 31%
∼ 37% GFLOPs and improve the throughput by over 40% while the drop of accuracy is within 0.5%
for all different vision transformers. Our DynamicViT demonstrates the possibility of exploiting the
sparsity in space for the acceleration of transformer-like model. We expect our attempt to open a new
path for future work on the acceleration of transformer-like models.

2 Related Work

Vision transformers. Transformer model is first widely studied in NLP community [26]. It proves
the possibility to use self-attention to replace the recurrent neural networks and their variants. Recent
progress has demonstrated the variants of transformers can also be a competitive alternative to CNNs
and achieve promising results on different vision tasks including image classification [8, 25, 20, 35,
23], object detection [2], semantic segmentation [34, 5] and 3D analysis [31, 33]. DETR [2] is the
first work to apply the transformer model to vision tasks. It formulates the object detection task as
a set prediction problem and follows the encoder-decoder design in the transformer to generate a
sequence of bounding boxes. ViT [8] is the first work to directly apply transformer architecture on
non-overlapping image patches for the image classification task, and the whole framework contains
no convolution operation. Compared to CNN-type models, ViT can achieve better performance with
large-scale pre-training. It is really preferred if the architecture can achieve the state-of-the-art without
any pre-training. DeiT [25] proposes many training techniques so that we can train the convolution-
free transformer only on ImageNet1K [7] and achieve better performance than ViT. LV-ViT [16]
further improves the performance by introducing a new training objective called token labeling. Both
ViT and its follow-ups split the input image into multiple independent image patches and transform
these image patches into tokens for further process. This makes it feasible to incorporate the sparsity
in space dimension for these transformer-like models.

Model acceleration. Model acceleration techniques are important for the deployment of deep
models on edge devices. There are many techniques can be used to accelerate the inference speed of
deep model, including quantization [9, 27], pruning [13, 22], low-rank factorization [30], knowledge
distillation [14, 19] and so on. There are also many works aims at accelerating the inference speed of
transformer models. For example, TinyBERT [17] proposes a distillation method to accelerate the
inference of transformer. Star-Transformer [10] reduces quadratic space and time complexity to linear
by replacing the fully connected structure with a star-shaped topology. However, all these works
focus on NLP tasks, and few works explore the possibility of making use of the characteristic of
vision tasks to accelerate vision transformer. Furthermore, the difference between the characteristics
of Transformer and CNN also makes it possible to adopt another way for acceleration rather than the
methods used for CNN acceleration like filter pruning [13], which removes non-critical or redundant
neurons from a deep model. Our method aims at pruning the tokens of less importance instead of the
neurons by exploiting the sparsity of informative image patches.

3 Dynamic Vision Transformers

3.1 Overview

The overall framework of our DynamicViT is illustrated in Figure 2. Our DynamicViT consists of a
normal vision transformer as the backbone and several prediction modules. The backbone network
can be implemented as a wide range of vision transformer (e.g., ViT [8], DeiT [25], LV-ViT [16]).
The prediction modules are responsible for generating the probabilities of dropping/keeping the
tokens. The token sparsification is performed hierarchically through the whole network at certain
locations. For example, given a 12-layer transformer, we can conduct token sparsification before the
4th, 7th, and 10th blocks. During training, the prediction modules and the backbone network can be
optimized in an end-to-end manner thanks to our newly devised attention masking strategy. During
inference, we only need to select the most informative tokens according to a predefined pruning ratio
and the scores computed by the prediction modules.
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Figure 2: The overall framework of the proposed approach. The proposed prediction module is
inserted between the transformer blocks to selectively prune less informative token conditioned on
features produced by the previous layer. By doing so, less tokens are processed in the followed layers.

3.2 Hierarchical Token Sparsification with Prediction Modules

An important characteristic of our DynamicViT is that the token sparsification is performed hierarchi-
cally, i.e., we gradually drop the uninformative tokens as the computation proceeds. To achieve this,
we maintain a binary decision mask D̂ ∈ {0, 1}N to indicate whether to drop or keep each token,
where N = HW is the number of patch embeddings2. We initialize all elements in the decision
mask to 1 and update the mask progressively. The prediction modules take the current decision D̂
and the tokens x ∈ RN×C as input. We first project the tokens using an MLP:

zlocal = MLP(x) ∈ RN×C′
, (1)

where C ′ can be a smaller dimension and we use C ′ = C/2 in our implementation. Similarly, we
can compute a global feature by:

zglobal = Agg(MLP(x), D̂) ∈ RC′
, (2)

where Agg is the function which aggregate the information all the existing tokens and can be simply
implemented as an average pooling:

Agg(u, D̂) =

∑N
i=1 D̂iui∑N
i=1 D̂i

, u ∈ RN×C′
. (3)

The local feature encodes the information of a certain token while the global feature contains the
context of the whole image, thus both of them are informative. Therefore, we combine both the local
and global features to obtain local-global embeddings and feed them to another MLP to predict the
probabilities to drop/keep the tokens:

zi = [zlocali , zglobali ], 1 ≤ i ≤ N, (4)

π = Softmax(MLP(z)) ∈ RN×2, (5)

where πi,0 denotes the probability of dropping the i-th token and πi,1 is the probability of keeping it.
We can then generate current decision D by sampling from π and update D̂ by

D̂← D̂�D, (6)

where � is the Hadamard product, indicating that once a token is dropped, it will never be used.

2We omit the class token for simplicity, while in practice we always keep the class token (i.e., the decision
for class token is always “1”).
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3.3 End-to-end Optimization with Attention Masking

Although our target is to perform token sparsification, we find it non-trivial to implement in practice
during training. First, the sampling from π to get binary decision mask D is is non-differentiable,
which impedes the end-to-end training. To overcome this, we apply the Gumbel-Softmax tech-
nique [15] to sample from the probabilities π:

D = Gumbel-Softmax(π)∗,1 ∈ {0, 1}N , (7)

where we use the index “1” because D represents the mask of the kept tokens. The output of Gumbel-
Softmax is a one-hot tensor, of which the expectation equals π exactly. Meanwhile, Gumbel-Softmax
is differentiable thus makes it possible for end-to-end training.

The second obstacle comes when we try to prune the tokens during training. The decision mask D̂ is
usually unstructured and the masks for different samples contain various numbers of 1’s. Therefore,
simply discarding the tokens where D̂i = 0 would result in a non-uniform number of tokens for
samples within a batch, which makes it hard to parallelize the computation. Thus, we must keep the
number of tokens unchanged, while cut down the interactions between the pruned tokens and other
tokens. We also find that merely zero-out the tokens to be dropped using the binary mask D̂ is not
feasible, because in the calculation of self-attention matrix [26]

A = Softmax

(
QKT

√
C

)
(8)

the zeroed tokens will still influence other tokens through the Softmax operation. To this end, we
devise a strategy called attention masking which can totally eliminate the effects of the dropped
tokens. Specifically, we compute the attention matrix by:

P = QKT /
√
C ∈ RN×N , (9)

Gij =

{
1, i = j,

D̂j , i 6= j.
1 ≤ i, j ≤ N, (10)

Ãij =
exp(Pij)Gij∑N

k=1 exp(Pik)Gik

, 1 ≤ i, j ≤ N. (11)

By Equation (10) we construct a graph where Gij = 1 means the j-th token will contribute to the
update of the i-th token. Note that we explicitly add a self-loop to each token to improve numerically
stability. It is also easy to show the self-loop does not influence the results: if D̂j = 0, the j-th
token will not contribute to any tokens other than itself. Equation (11) computes the masked attention
matrix Ã, which is equivalent to the attention matrix calculated by considering only the kept tokens
but has a constant shape N ×N during training.

3.4 Training and Inference

We now describe the training objectives of our DynamicViT. The training of DynamicViT includes
training the prediction modules such that they can produce favorable decisions and fine-tuning the
backbone to make it adapt to token sparsification. Assuming we are dealing with a minibatch of B
samples, we adopt the standard cross-entropy loss:

Lcls = CrossEntropy(y, ȳ), (12)

where y is the prediction of the DynamicViT (after softmax) and ȳ is the ground truth.

To minimize the influence on performance caused by our token sparsification, we use the original
backbone network as a teacher model and hope the behavior of our DynamicViT as close to the
teacher model as possible. Specifically, we consider this constraint from two aspects. First, we make
the finally remaining tokens of the DynamicViT close to the ones of the teacher model, which can be
viewed as a kind of self-distillation:

Ldistill =
1∑B

b=1

∑N
i=1 D̂

b,S
i

B∑
b=1

N∑
i=1

D̂b,S
i (ti − t′i)

2, (13)
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Table 1: Main results on ImageNet. We apply our method on three representative vision transform-
ers: DeiT-S, LV-ViT-S and LV-ViT-M. DeiT-S [25] is a widely used vision transformer with the
simple architecture. LV-ViT-S and LV-ViT-M [16] are the state-of-the-art vision transformers. We
report the top-1 classification accuracy, theoretical complexity in FLOPs and throughput for different
ratio ρ. The throughput is measured on a single NVIDIA RTX 3090 GPU with batch size fixed to 32.

Base Model Metrics Keeping Ratio ρ at each stage

1.0 0.9 0.8 0.7

DeiT-S [25]
ImageNet Acc. (%) 79.8 79.8 (-0.0) 79.6 (-0.2) 79.3 (-0.5)
GFLOPs 4.6 4.0 (-14%) 3.4 (-27%) 2.9 (-37%)
Throughput (im/s) 1337.7 1524.8 (+14%) 1774.6 (+33%) 2062.1 (+54%)

LV-ViT-S [16]
ImageNet Acc. (%) 83.3 83.3 (-0.0) 83.2 (-0.1) 83.0 (-0.3)
GFLOPs 6.6 5.8 (-12%) 5.1 (-22%) 4.6 (-31%)
Throughput (im/s) 993.3 1108.3 (+12%) 1255.6 (+26%) 1417.6 (+43%)

LV-ViT-M [16]
ImageNet Acc. (%) 84.0 83.9 (-0.1) 83.9 (-0.1) 83.8 (-0.2)
GFLOPs 12.7 11.1 (-13%) 9.6 (-24%) 8.5 (-33%)
Throughput (im/s) 589.5 688.5 (+17%) 791.2 (+34%) 888.2 (+50%)

where ti and t′i denotes the i-th token after the last block of the DynamicViT and the teacher model,
respectively. D̂b,s is the decision mask for the b-th sample at the s-th sparsification stage. Second,
we minimize the difference of the predictions between our DynamicViT and its teacher via the KL
divergence:

LKL = KL (y‖y′) , (14)

where y′ is the prediction of the teacher model.

Finally, we want to constrain the ratio of the kept tokens to a predefined value. Given a set of target
ratios for S stages ρ = [ρ(1), . . . , ρ(S)], we utilize an MSE loss to supervise the prediction module:

Lratio =
1

BS

B∑
b=1

S∑
s=1

(
ρ(s) − 1

N

N∑
i=1

D̂b,s
i

)2

. (15)

The full training objective is a combination of the above objectives:

L = Lcls + λKLLKL + λdistillLdistill + λratioLratio, (16)

where we set λKL = 0.5, λdistill = 0.5, λratio = 2 in all our experiments.

During inference, given the target ratio ρ, we can directly discard the less informative tokens via the
probabilities produced by the prediction modules such that only exact ms = bρsNc tokens are kept
at the s-th stage. Formally, for the s-th stage, let

Is = argsort(π∗,1) (17)

be the indices sorted by the keeping probabilities π∗,1, we can then keep the tokens of which the
indices lie in Is1:ms while discarding the others. In this way, our DynamicViT prunes less informative
tokens dynamically at runtime, thus can reduce the computational costs during inference.

4 Experimental Results

In this section, we will demonstrate the superiority of the proposed DynamicViT through extensive
experiments. In all of our experiments, we fix the number of sparsification stages S = 3 and apply
the target keeping ratio ρ as a geometric sequence [ρ, ρ2, ρ3] where ρ ranges from (0, 1). During
training DynamicViT models, we follow most of the training techniques used in DeiT [25]. We
use the pre-trained vision transformer models to initialize the backbone models and jointly train the
whole model for 30 epochs. We set the learning rate of the prediction module to batch size

1024 × 0.001 and
use 0.01× learning rate for the backbone model. We fix the weights of the backbone models in the
first 5 epochs. All of our models are trained on a single machine with 8 GPUs. Other training setups
and details can be found in the supplementary material.
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Figure 3: Model complexity (FLOPs) and top-1 ac-
curacy trade-offs on ImageNet. We compare Dynam-
icViT with the state-of-the-art image classification
models. Our models achieve better trade-offs com-
pared to the various vision transformers as well as
carefully designed CNN models.

Figure 4: Comparison of our dynamic token sparsi-
fication method with model width scaling. We train
our DynamicViT based on DeiT models with embed-
ding dimension varying from 192 to 384 and fix ratio
ρ = 0.7. We see dynamic token sparsification is more
efficient than commonly used model width scaling.

4.1 Main results

One of the most advantages of the DynamicViT is that it can be applied to a wide range of vision
transformer architectures to reduce the computational complexity with minor loss of performance. In
Table 1, we summarize the main results on ImageNet [7] where we evaluate our DynamicViT used
three base models (DeiT-S [25], LV-ViT-S [16] and LV-ViT-M [16]). We report the top-1 accuracy,
FLOPs, and the throughput under different keeping ratios ρ. Note that our token sparsification
is performed hierarchically in three stages, there are only bNρ3c tokens left after the last stage.
The throughput is measured on a single NVIDIA RTX 3090 GPU with batch size fixed to 32.
We demonstrate that our DynamicViT can reduce the computational costs by 31% ∼ 37% and
accelerate the inference at runtime by 43% ∼ 54%, with the neglectable influence of performance
(−0.2% ∼ −0.5%).

4.2 Comparisons with the-state-of-the-arts

In Table 2, we compare the DynamicViT with the state-of-the-art models in image classification,
including convolutional networks and transformer-like architectures. We use the DynamicViT with
LV-ViT [16] as the base model and use the “/ρ” to indicate the keeping ratio. We observe that
our DynamicViT exhibits favorable complexity/accuracy trade-offs at all three complexity levels.
Notably, we find our DynamicViT-LV-M/0.7 beats the EfficientNet-B5 [24] and NFNet-F0 [1], which
are two of the current state-of-the-arts CNN architectures. This can also be shown clearer in Figure 3,
where we plot the FLOPS-accuracy curve of DynamicViT series (where we use DyViT for short),
along with other state-of-the-art models. We can also observe that DynamicViT can achieve better
trade-offs than LV-ViT series, which strongly demonstrates the effectiveness of our method.

4.3 Analysis

DynamicViT for model scaling. The success of EfficientNet [24] shows that we can obtain a
model with better complexity/accuracy tradeoffs by scaling the model along different dimensions.
While in vision transformers, the most commonly used method to scale the model is to change the
number of channels, our DynamicViT provides another powerful tool to perform token sparsification.
We analysis this nice property of DynamicViT in Figure 4. First, we train several DeiT [25] models
with the embedding dimension varying from 192 (DeiT-Ti) to 384 (DeiT-S). Second, we train our
DynamicViT based on those models with the keeping ratio ρ = 0.7. We find that after performing
token sparsification, the complexity of the model is reduced to be similar to its variant with a smaller
embedding dimension. Specifically, we observe that by applying our DynamicViT to DeiT-256, we
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Table 2: Comparisons with the state-of-the-arts on ImageNet. We compare our DynamicViT
models with state-of-the-art image classifciation models with comparable FLOPs and number of
parameters. We use the DynamicViT with LV-ViT [16] as the base model and use the “/ρ” to indicate
the keeping ratio. We also include the results of LV-ViT models as references.

Model Params (M) GFLOPs Resolution Top-1 Acc (%)

DeiT-S [25] 22.1 4.6 224 79.8
PVT-Small [28] 24.5 3.8 224 79.8
CoaT Mini [29] 10.0 6.8 224 80.8
CrossViT-S [4] 26.7 5.6 224 81.0
PVT-Medium [28] 44.2 6.7 224 81.2
Swin-T [20] 29.0 4.5 766 81.3
T2T-ViT-14 [32] 22.0 5.2 224 81.5
CPVT-Small-GAP [6] 23.0 4.6 817 81.5
CoaT-Lite Small [29] 20.0 4.0 224 81.9

LV-ViT-S [16] 26.2 6.6 224 83.3
DynamicViT-LV-S/0.5 26.9 3.7 224 82.0
DynamicViT-LV-S/0.7 26.9 4.6 224 83.0

RegNetY-8G [21] 39.0 8.0 224 81.7
T2T-ViT-19 [32] 39.2 8.9 224 81.9
Swin-S [20] 50.0 8.7 224 83.0
EfficientNet-B5 [24] 30.0 9.9 456 83.6
NFNet-F0 [1] 72.0 12.4 256 83.6

DynamicViT-LV-M/0.7 57.1 8.5 224 83.8

ViT-Base/16 [8] 86.6 17.6 224 77.9
DeiT-Base/16 [25] 86.6 17.6 224 81.8
CrossViT-B [4] 104.7 21.2 224 82.2
T2T-ViT-24 [32] 64.1 14.1 224 82.3
TNT-B [11] 66.0 14.1 224 82.8
RegNetY-16G [21] 84.0 16.0 224 82.9
Swin-B [20] 88.0 15.4 224 83.3

LV-ViT-M [16] 55.8 12.7 224 84.0
DynamicViT-LV-M/0.8 57.1 9.6 224 83.9

obtain a model that has a comparable computational complexity to DeiT-Ti, but enjoys around 4.3%
higher ImageNet top-1 accuracy.

Visualizations. To further investigate the behavior of DynamicViT, we visualize the sparsification
procedure in Figure 5. We show the original input image and the sparsification results after the three
stages, where the masks represent the corresponding tokens are discarded. We find that through the
hierarchically token sparsification, our DynamicViT can gradually drop the uninformative tokens and
finally focus on the objects in the images. This phenomenon also suggests that the DynamicViT leads
to better interpretability, i.e., it can locate the important parts in the image which contribute most to
the classification step-by-step.

Besides the sample-wise visualization we have shown above, we are also interested in the statistical
characteristics of the sparsification decisions, i.e., what kind of general patterns does the DynamicViT
learn from the dataset? We then use the DynamicViT to generate the decisions for all the images in
the ImageNet validation set and compute the keep probability of each token in all three stages, as
shown in Figure 6. We average pool the probability maps into 7× 7 such that they can be visualized
more easily. Unsurprisingly, we find the tokens in the middle of the image tend to be kept, which is
reasonable because in most images the objects are located in the center. We can also find that the
later stage generally has lower probabilities to be kept, mainly because that the keeping ratio at the s
stage is ρs, which decreases exponentially as s increases.
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Figure 5: Visualization of the progressively sparsified tokens. We show the original input image
and the sparsification results after the three stages, where the masks represent the corresponding
tokens are discarded. We see our method can gradually focus on the most representative regions in
the image. This phenomenon suggests that the DynamicViT has better interpretability.

Table 3: Effects of different losses. We pro-
vide the results after removing the distillation
loss and the KL loss.

Base Model DeiT-S LVViT-S

DynamicViT 79.3(-0.5) 83.0(-0.3)
w/o distill (Eq.13) 79.3(-0.5) 82.7(-0.6)
w/o KL (Eq.14) 79.2(-0.6) 82.9(-0.4)
w/o distill & KL 79.2(-0.6) 82.5(-0.8)

stage 1

keep
probability

stage 3stage 2

Figure 6: The keep probabilities of the tokens at each stage.

Effects of different losses. We show the effects of different losses in Table 3. We see the improve-
ment brought by the distillation loss and the KL loss is not very significant, but it can consistently
further boost the performance of various models.

Comparisons of different sparsification strategies. As illustrated in Figure 2, the dynamic token
sparsification is unstructured. To discuss whether the dynamic sparsification is better than other
strategies, we perform ablation experiments and the results are shown in Table 4. For the structural
downsampling, we perform an average pooling with kernel size 2 × 2 after the sixth block of
the baseline DeiT-S [25] model, which has similar FLOPs to our DynamicViT. The static token
sparsification means that the sparsification decisions are not conditioned on the input tokens. We also
compare our method with other token removal methods like randomly removing tokens or removing
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Table 4: Comparisons of different sparsification strategies. We investigate different methods to select
redundant tokens based on the DeiT-S model. We report the top-1 accuracy on ImageNet for different
methods. We fix the complexity of the accelerated models to 2.9G FLOPs for fair comparisons.

(a) Dynamic sparsification vs.
static/structural downsampling.

Model Acc. (%)

Structural 78.2 (-1.6)
Static 73.4 (-6.4)
Dynamic 79.3 (-0.5)

(b) Different redundant token re-
moval methods.

Model Acc. (%)

Random 77.5 (-2.3)
Attention 78.1 (-1.7)
Prediction 79.3 (-0.5)

(c) Effects of number of sparsifica-
tion stages.

Model Acc. (%)

Single-stage 77.4 (-2.4)
Two-stage 79.2 (-0.6)
Three-stage 79.3 (-0.5)

Table 5: Results on larger models. We apply our method to the model with larger width (i.e., DeiT-B)
and the model with larger input size (i.e., DeiT-S with 384× 384 input).

(a) Results on DeiT-B.

Model GFLOPs Acc. (%)

DeiT-B 17.5 81.8
DynamicViT-B/0.7 11.2 (-36%) 81.3 (-0.5)

(b) Results on the 384× 384 input.

Model GFLOPs Acc. (%)

DeiT-S 15.5 81.6
DynamicViT-S/0.7 9.5 (-39%) 81.4 (-0.2)
DynamicViT-S/0.5 7.0 (-55%) 80.3 (-1.3)

tokens based the attention score of the class token. We find through the experiments that although
other strategies have similar computational complexities, the proposed dynamic token sparsification
method achieves the best accuracy. We also show that the progressive sparsification method is
significantly better than one-stage sparsification.

Accelerating larger models. To show the effectiveness of our method on larger models, we apply
our method to the model with larger width (i.e., DeiT-B) and models with larger input size (i.e.,
DeiT-S with 384× 384 input). The results are presented in Table 5. We see our method also works
well on the larger DeiT model. The accuracy drop become less significant when we apply our method
to the model with larger feature maps. Notably, we can reduce the complexity of the DeiT-S model
with 384× 384 input by over 50% with only 1.3% accuracy drop.

5 Conclusion

In this work, we open a new path to accelerate vision transformer by exploiting the sparsity of
informative patches in the input image. For each input instance, our DynamicViT model prunes the
tokens of less importance in a dynamic way according to the customized binary decision mask output
from the lightweight prediction module, which fuses the local and global information containing in
the tokens. The prediction module is added to multiple layers such that the token pruning is performed
in a hierarchical way. Gumbel-Softmax and attention masking techniques are also incorporated for
the end-to-end training of the transformer model together with the prediction module. During the
inference phase, our approach can greatly improves the efficiency by gradually pruning 66% of the
input tokens, while the drop of accuracy is less than 0.5% for different transformer backbone. In this
paper, we focus on the image classification task. Extending our method to other scenarios like video
classification and dense prediction tasks can be interesting directions.
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