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Abstract

Due to the high communication cost in distributed and federated learning, meth-
ods relying on compressed communication are becoming increasingly popular.
Besides, the best theoretically and practically performing gradient-type methods
invariably rely on some form of acceleration/momentum to reduce the number
of communications (faster convergence), e.g., Nesterov’s accelerated gradient
descent [31, 32] and Adam [14]. In order to combine the benefits of commu-
nication compression and convergence acceleration, we propose a compressed
and accelerated gradient method based on ANITA [20] for distributed optimiza-
tion, which we call CANITA. Our CANITA achieves the first accelerated rate
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convex problems, where ε is the target error, L is the smooth parameter of the
objective, n is the number of machines/devices, and ω is the compression parameter
(larger ω means more compression can be applied, and no compression implies
ω = 0). Our results show that as long as the number of devices n is large (often true
in distributed/federated learning), or the compression ω is not very high, CANITA

achieves the faster convergence rate O
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rounds is O
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)
achieved by previous works). As a result, CANITA

enjoys the advantages of both compression (compressed communication in each
round) and acceleration (much fewer communication rounds).

1 Introduction

With the proliferation of edge devices, such as mobile phones, wearables and smart home appliances,
comes an increase in the amount of data rich in potential information which can be mined for the
benefit of humankind. One of the approaches of turning the raw data into information is via federated
learning [15, 29], where typically a single global supervised model is trained in a massively distributed
manner over a network of heterogeneous devices.

Training supervised distributed/federated learning models is typically performed by solving an
optimization problem of the form

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)
}
, (1)

where n denotes the number of devices/machines/workers/clients, and fi : Rd → R is a loss function
associated with the data stored on device i. We will write

x∗ := arg min
x∈Rd

f(x).
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If more than one minimizer exist, x∗ denotes an arbitrary but fixed solution. We will rely on the
solution concept captured in the following definition:

Definition 1 A random vector x̂ ∈ Rd is called an ε-solution of the distributed problem (1) if

E [f(x̂)]− f(x∗) ≤ ε,

where the expectation is with respect to the randomness inherent in the algorithm used to produce x̂.

In distributed and federated learning problems of the form (1), communication of messages across
the network typically forms the key bottleneck of the training system. In the modern practice of
supervised learning in general and deep learning in particular, this is exacerbated by the reliance
on massive models described by millions or even billions of parameters. For these reasons, it is
very important to devise novel and more efficient training algorithms capable of decreasing the
overall communication cost, which can be formalized as the product of the number of communication
rounds necessary to train a model of sufficient quality, and the computation and communication cost
associated with a typical communication round.

1.1 Methods with compressed communication

One of the most common strategies for improving communication complexity is communication
compression [37, 1, 40, 8, 30, 9, 26, 24]. This strategy is based on the reduction of the size of
communicated messages via the application of a suitably chosen lossy compression mechanism,
saving precious time spent in each communication round, and hoping that this will not increase the
total number of communication rounds.

Several recent theoretical results suggest that by combining an appropriate (randomized) compression
operator with a suitably designed gradient-type method, one can obtain improvement in the total
communication complexity over comparable baselines not performing any compression. For instance,
this is the case for distributed compressed gradient descent (CGD) [1, 13, 8, 24], and distributed
CGD methods which employ variance reduction to tame the variance introduced by compression [7,
30, 9, 24, 6].

1.2 Methods with acceleration

The acceleration/momentum of gradient-type methods is widely-studied in standard optimization
problems, which aims to achieve faster convergence rates (fewer communication rounds) [33, 31, 32,
17, 28, 2, 18, 16, 23, 20]. Deep learning practitioners typically rely on Adam [14], or one of its many
variants, which besides other tricks also adopts momentum. In particular, ANITA [20] obtains the
current state-of-the-art convergence results for convex optimization. In this paper, we will adopt the
acceleration from ANITA [20] to the distributed setting with compression.

1.3 Can communication compression and acceleration be combined?

Encouraged by the recent theoretical success of communication compression, and the widespread
success of accelerated methods, in this paper we seek to further enhance CGD methods with
acceleration/momentum, with the aim to obtain provable improvements in overall communication
complexity.

Can distributed gradient-type methods theoretically benefit from the combination of
gradient compression and acceleration/momentum? To the best of our knowledge,
no such results exist in the general convex regime, and in this paper we close
this gap by designing a method that can provably enjoy the advantages of both
compression (compressed communication in each round) and acceleration (much
fewer communication rounds).

While there is abundance of research studying communication compression and acceleration in
isolation, there is very limited work on the combination of both approaches. The first successful
combination of gradient compression and acceleration/momentum was recently achieved by the
ADIANA method of Li et al. [26]. However, Li et al. [26] only provide theoretical results for strongly
convex problems, and their method is not applicable to (general) convex problems. So, one needs to
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Table 1: Convergence rates for finding an ε-solution E[f(xT )]− f(x∗) ≤ ε of distributed problem (1)
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both design a new method to handle the convex case, and perform its analysis. A-priori, it is not clear
at all what approach would work.

To the best of our knowledge, besides the initial work [26], we are only aware of two other works for
addressing this question [41, 34]. However, both these works still only focus on the simpler and less
practically relevant strongly convex setting. Thus, this line of research is still largely unexplored. For
instance, the well-known logistic regression problem is convex but not strongly convex. Finally, even
if a problem is strongly convex, the modulus of strong convexity is typically not known, or hard to
estimate properly.

2 Summary of Contributions

In this paper we propose and analyze an accelerated gradient method with compressed communication,
which we call CANITA (described in Algorithm 1), for solving distributed general convex optimization
problems of the form (1). In particular, CANITA can loosely be seen as a combination of the
accelerated gradient method ANITA of [20], and the variance-reduced compressed gradient method
DIANA of [30]. Ours is the first work provably combining the benefits of communication compression
and acceleration in the general convex regime.

2.1 First accelerated rate for compressed gradient methods in the convex regime

For general convex problems, CANITA is the first compressed communication gradient method with
an accelerated rate. In particular, our CANITA solves the distributed problem (1) in

O

(√(
1 +

√
ω3

n

)
L
ε + ω

(
1
ε

) 1
3

)
communication rounds, which improves upon the current state-of-the-art result

O
((

1 + ω
n

)
L
ε + ω2+n

ω+n
1
ε

)
achieved by the DIANA method [12]. See Table 1 for more comparisons.

Let us now illustrate the improvements coming from this new bound on an example with concrete
numerical values. Let the compression ratio be 10% (the size of compressed message is 0.1 · d,
where d is the size of the uncompressed message). If random sparsification or quantization is used to
achieve this, then ω ≈ 10 (see Section 3.1). Further, if the number of devices/machines is n = 106,

1In this strongly convex column, κ := L
µ

denotes the condition number, where L is the smooth parameter
and µ > 0 is the strong convexity parameter.

2Here QSGD [1] needs an additional bounded gradient assumption, i.e., ‖∇fi(x)‖2 ≤ G2, ∀i ∈ [n], x ∈
Rd.
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and the target error tolerance is ε = 10−6, then the number of communication rounds of our CANITA
method isO(103), while the number of communication rounds of the previous state-of-the-art method

DIANA [12] is O(106), i.e., O
(√

L
ε

)
vs. O(Lε ). This is an improvement of three orders of magnitude.

Moreover, the numerical experiments in Section 6 indeed show that the performance of our CANITA is
much better than previous non-accelerated compressed methods (QSGD and DIANA), corroborating
the theoretical results (see Table 1) and confirming the practical superiority of our accelerated CANITA
method.

2.2 Accelerated rate with limited compression for free

For strongly convex problems, Li et al. [26] showed that if the number of devices/machines n is large,
or the compression variance parameter ω is not very high (ω ≤ n1/3), then their ADIANA method
enjoys the benefits of both compression and acceleration (i.e.,

√
κ log 1

ε of ADIANA vs. κ log 1
ε of

previous works).

In this paper, we consider the general convex setting and show that the proposed CANITA also enjoys
the benefits of both compression and acceleration. Similarly, if ω ≤ n1/3 (i.e., many devices, or

limited compression variance), CANITA achieves the accelerated rate
√

L
ε vs. Lε of previous works.

This means that the compression does not hurt the accelerated rate at all. Note that the second term(
1
ε

) 1
3 is of a lower order compared with the first term

√
L
ε .

2.3 Novel proof technique

The proof behind the analysis of CANITA is significantly different from that of ADIANA [26], which
critically relies on strong convexity. Moreover, the theoretical rate in the strongly convex case is

linear O(log 1
ε ), while it is sublinear O( 1

ε ) or O
(√

1
ε

)
(accelerated) in the general convex case. We

hope that our novel analysis can provide new insights and shed light on future work.

3 Preliminaries

Let [n] denote the set {1, 2, · · · , n} and ‖ · ‖ denote the Euclidean norm for a vector and the spectral
norm for a matrix. Let 〈u, v〉 denote the standard Euclidean inner product of two vectors u and v. We
use O(·) and Ω(·) to hide the absolute constants.

3.1 Assumptions about the compression operators

We now introduce the notion of a randomized compression operator which we use to compress
the gradients to save on communication. We rely on a standard class of unbiased compressors (see
Definition 2) that was used in the context of distributed gradient methods before [1, 13, 9, 24, 26].

Definition 2 (Compression operator) A randomized map C : Rd 7→ Rd is an ω-compression
operator if

E [C(x)] = x, E
[
‖C(x)− x‖2

]
≤ ω‖x‖2, ∀x ∈ Rd. (2)

In particular, no compression (C(x) ≡ x) implies ω = 0.

It is well known that the conditions (2) are satisfied by many practically useful compression operators
(see Table 1 in [3, 36]). For illustration purposes, we now present a couple canonical examples:
sparsification and quantization.

Example 1 (Random sparsification). Given x ∈ Rd, the random-k sparsification operator is
defined by

C(x) :=
d

k
· (ξk � x),

where � denotes the Hadamard (element-wise) product and ξk ∈ {0, 1}d is a uniformly random
binary vector with k nonzero entries (‖ξk‖0 = k). This random-k sparsification operator C satisfies
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(2) with ω = d
k − 1. By setting k = d, this reduces to the identity compressor, whose variance is

obviously zero: ω = 0.

Example 2 (Random quantization). Given x ∈ Rd, the (p, s)-quantization operator is defined by

C(x) := sign(x) · ‖x‖p ·
1

s
· ξs,

where p, s ≥ 1 are integers, and ξs ∈ Rd is a random vector with i-th element

ξs(i) :=

{
l + 1, with probability |xi|

‖x‖p s− l,
l, otherwise.

The level l satisfies |xi|‖x‖p ∈ [ ls ,
l+1
s ]. The probability is chosen so that E [ξs(i)] = |xi|

‖x‖p s. This (p, s)-

quantization operator C satisfies (2) with ω = 2+ d1/p+d1/2

s . In particular, QSGD [1] used p = 2 (i.e.,
(2, s)-quantization) and proved that the expected sparsity of C(x) is E [‖C(x)‖0] = O

(
s(s+

√
d)
)
.

3.2 Assumptions about the functions

Throughout the paper, we assume that the functions fi are convex and have Lipschitz continuous
gradient.

Assumption 1 Functions fi : Rd → R are convex, differentiable, and L-smooth. The last condition
means that there exists a constant L > 0 such that for all i ∈ [n] we have

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd. (3)

It is easy to see that the objective f(x) = 1
n

∑n
i=1 fi(x) in (1) satisfies (3) provided that the

constituent functions {fi} do.

4 The CANITA Algorithm

In this section, we describe our method, for which we coin the name CANITA, designed for solving
problem (1), which is of importance in distributed and federated learning, and contrast it to the most
closely related methods ANITA [20], DIANA [30] and ADIANA [26].

Algorithm 1 Distributed compressed accelerated ANITA method (CANITA)
Input: initial point x0 ∈ Rd, initial shift vectors h01, . . . , h

0
n ∈ Rd, probabilities {pt}, and positive

stepsizes {αt}, {ηt}, {θt}
1: Initialize: w0 = z0 = x0 and h0 = 1

n

∑n
i=1 h

0
i

2: for t = 0, 1, 2, . . . do
3: yt = θtx

t + (1− θt)wt
4: for all machines i = 1, 2, . . . , n do in parallel
5: Compress the shifted local gradient Cti (∇fi(yt)− hti) and send the result to the server
6: Update the local shift ht+1

i = hti + αtCti (∇fi(wt)− hti)
7: end for
8: Aggregate received compressed local gradient information:

gt = ht + 1
n

n∑
i=1

Cti (∇fi(yt)− hti) • Compute gradient estimator

ht+1 = ht + αt
1
n

n∑
i=1

Cti (∇fi(wt)− hti) •Maintain the average of local shifts

9: Perform update step:
xt+1 = xt − ηt

θt
gt

10: zt+1 = θtx
t+1 + (1− θt)wt

11: wt+1 =

{
zt+1, with probability pt
wt, with probability 1− pt

12: end for

5



4.1 CANITA: description of the method

Our proposed method CANITA, formally described in Algorithm 1, is an accelerated gradient method
supporting compressed communication. It is the first method combing the benefits of acceleration
and compression in the general convex regime (without strong convexity).

In each round t, each machine computes its local gradient (e.g.,∇fi(yt)) and then a shifted version
is compressed and sent to the server (See Line 5 of Algorithm 1). The local shifts hti are adaptively
changing throughout the iterative process (Line 6), and have the role of reducing the variance
introduced by compression C(·). If no compression is used, we may simply set the shifts to be
hti = 0 for all i, t. The server subsequently aggregates all received messages to obtain the gradient
estimator gt and maintain the average of local shifts ht+1 (Line 8), and then perform gradient update
step (Line 9) and update momentum sequences (Line 10 and 3). Besides, the last Line 11 adopts
a randomized update rule for the auxiliary vectors wt which simplifies the algorithm and analysis,
resembling the workings of the loopless SVRG method used in [16, 20].

4.2 CANITA vs existing methods

CANITA can be loosely seen as a combination of the accelerated gradient method ANITA of [20],
and the variance-reduced compressed gradient method DIANA of [30]. In particular, CANITA uses
momentum/acceleration steps (see Line 3 and 10 of Algorithm 1) inspired by those of ANITA [20],
and adopts the shifted compression framework for each machine (see Line 5 and 6 of Algorithm 1) as
in the DIANA method [30].

We prove that CANITA enjoys the benefits of both methods simultaneously, i.e.,
convergence acceleration of ANITA and gradient compression of DIANA.

Although CANITA can conceptually be seen as combination of ANITA [20] and DIANA [30, 9, 12]
from an algorithmic perspective, the analysis of CANITA is entirely different. Let us now briefly
outline some of the main differences.

• For example, compared with ANITA [20], CANITA needs to deal with the extra compression
of shifted local gradients in the distributed network. Thus, the obtained gradient estimator
gk in Line 8 of Algorithm 1 is substantially different and more complicated than the one in
ANITA, which necessitates a novel proof technique.

• Compared with DIANA [30, 9, 12], the extra momentum steps in Line 3 and 10 of Algo-
rithm 1 make the analysis of CANITA more complicated than that of DIANA. We obtain the

accelerated rate O
(√

L
ε

)
rather than the non-accelerated rate O(Lε ) of DIANA, and this is

impossible without a substantially different proof technique.

• Compared with the accelerated DIANA method ADIANA of [26], the analysis of CANITA
is also substantially different since CANITA cannot exploit the strong convexity assumed
therein.

Finally, please refer to Section 2 where we summarize our contributions for additional discussions.

5 Convergence Results for the CANITA Algorithm

In this section, we provide convergence results for CANITA (Algorithm 1). In order to simplify the
expressions appearing in our main result (see Theorem 1 in Section 5.1) and in the lemmas needed to
prove it (see Appendix A), it will be convenient to let

F t := f(wt)− f(x∗), Ht :=
1

n

n∑
i=1

‖∇fi(wt)− hti‖2, Dt :=
1

2
‖xt − x∗‖2. (4)

5.1 Generic convergence result

We first present the main convergence theorem of CANITA for solving the distributed optimization
problem (1) in the general convex regime.

6



Theorem 1 Suppose that Assumption 1 holds and the compression operators {Cti} used in Algo-
rithm 1 satisfy (2) of Definition 2. For any two positive sequences {βt} and {γt} such that the
probabilities {pt} and positive stepsizes {αt}, {ηt}, {θt} of Algorithm 1 satisfy the following rela-
tions

αt ≤
1

1 + ω
, ηt ≤

1

L
(
1 + βt + 4ptγt

(
1 + 2pt

αt

)) (5)

for all t ≥ 0, and

2ω

βtn
+4ptγt

(
1+

2pt
αt

)
≤ 1−θt,

(1− ptθt)ηt
ptθ2t

≤ ηt−1

pt−1θ2t−1

,

(
ω

βtn
+
(
1− αt

2

)
γt

)
ηt
θ2t
≤ γt−1ηt−1

θ2t−1

(6)
for all t ≥ 1. Then the sequences {xt, wt, hti} of CANITA (Algorithm 1) for all t ≥ 0 satisfy the
inequality

E
[
F t+1 +

γtpt
L

Ht+1
]
≤ θ2t pt

ηt

(
(1− θ0p0)η0

θ20p0
F 0 +

( ω

β0n
+
(

1− α0

2

)
γ0

) η0
θ20L

H0 +D0

)
,

(7)

where the quantities F t, Ht, Dt are defined in (4).

The detailed proof of Theorem 1 which relies on six lemmas is provided in Appendix A. In particular,
the proof simply follows from the key Lemma 6 (see Appendix A.2), while Lemma 6 closely relies
on previous five Lemmas 1–5 (see Appendix C.6). Note that all proofs for these six lemmas are
deferred to Appendix C.

As we shall see in detail in Section 5.2, the sequences βt, γt, pt and αt can be fixed to some constants.3
However, the relaxation parameter θt needs to be decreasing and the stepsize ηt may be increasing
until a certain threshold. In particular, we choose

βt ≡ c1, γt ≡ c2, pt ≡ c3, αt ≡ c4, θt =
c5

t+ c6
, ηt = min

{(
1 +

1

t+ c7

)
ηt−1,

1

c8L

}
,

(8)

where the constants {ci} may depend on the compression parameter ω and the number of de-
vices/machines n. As a result, the right hand side of (7) will be of the order O

(
L
t2

)
, which indicates

an accelerated rate. Hence, in order to find an ε-solution of problem (1), i.e., vector wT+1 such that

E
[
f(wT+1)− f(x∗)

] (4)
:= E

[
FT+1

]
≤ ε, (9)

the number of communication rounds of CANITA (Algorithm 1) is at most T = O
(√

L
ε

)
.

While the above rate has an accelerated dependence on ε, it will be crucial to study the omitted
constants {ci} (see (8)), and in particular their dependence on the compression parameter ω and
the number of devices/machines n. As expected, for any fixed target error ε > 0, the number of
communication rounds T (sufficient to guarantee that (9) holds) may grow with increasing levels of
compression, i.e., with increasing ω. However, at the same time, the communication cost in each
round decreases with ω. It is easy to see that this trade-off benefits compression. In particular, as we
mention in Section 2, if the number of devices n is large, or the compression variance ω is not very
high, then compression does not hurt the accelerated rate of communication rounds at all.

5.2 Detailed convergence result

We now formulate a concrete Theorem 2 from Theorem 1 which leads to a detailed convergence
result for CANITA (Algorithm 1) by specifying the choice of the parameters βt, γt, pt, αt, θt and ηt.
The detailed proof of Theorem 2 is deferred to Appendix B.

Theorem 2 Suppose that Assumption 1 holds and the compression operators {Cti} used in Algo-

rithm 1 satisfy (2) of Definition 2. Let b = min
{
ω,
√

ω(1+ω)2

n

}
and choose the two positive

3Exception: While we indeed choose βt ≡ β for t ≥ 1, the value of β0 may be different.
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sequences {βt} and {γt} as follows:

βt =

{
β0 = 9(1+b+ω)2

(1+b)L for t = 0

β ≡ 48ω(1+ω)(1+b+2(1+ω))
n(1+b)2 for t ≥ 1

, γt = γ ≡ (1 + b)2

8(1 + b+ 2(1 + ω))
for t ≥ 0.

(10)

If we set the probabilities {pt} and positive stepsizes {αt}, {ηt}, {θt} of Algorithm 1 as follows:

pt ≡
1

1 + b
, αt ≡

1

1 + ω
, θt =

3(1 + b)

t+ 9(1 + b+ ω)
, for t ≥ 0, (11)

and

ηt =

{
1

L(β0+3/2) for t = 0

min
{(

1 + 1
t+9(1+b+ω)

)
ηt−1,

1
L(β+3/2)

}
for t ≥ 1

. (12)

Then CANITA (Algorithm 1) for all T ≥ 0 satisfies

E
[
FT+1

]
≤ O

(
(1 +

√
ω3/n)L

T 2
+
ω3

T 3

)
. (13)

According to (13), the number of communication rounds for CANITA (Algorithm 1) to find an
ε-solution of the distributed problem (1), i.e.,

E
[
f(wT+1)− f(x∗)

] (4)
:= E

[
FT+1

]
≤ ε,

is at most

T = O

√(1 +

√
ω3

n

)
L

ε
+ ω

(
1

ε

) 1
3

 .

6 Experiments

In this section, we demonstrate the performance of our accelerated method CANITA (Algorithm 1)
and previous methods QSGD and DIANA (the theoretical convergence results of these algorithms
can be found in Table 1) with different compression operators on the logistic regression problem,

min
x∈Rd

f(x) :=
1

n

n∑
i=1

log
(
1 + exp(−biaTi x)

)
, (14)

where {ai, bi}ni=1 ∈ Rd × {±1} are data samples. We use three standard datasets: a9a, mushrooms,
and w8a in the experiments. All datasets are downloaded from LIBSVM [4].

Similar to Li et al. [26], we also use three different compression operators: random sparsification
(e.g. [39]), natural compression (e.g. [8]), and random quantization (e.g. [1]). In particular, we
follow the same settings as in Li et al. [26]. For random-r sparsification, the number of commu-
nicated bits per iteration is 32r, and we choose r = d/4. For natural compression, the number of
communicated bits per iteration is 9d bits [8]. For random (2, s)-quantization, we choose s =

√
d,

which means the number of communicated bits per iteration is 2.8d+ 32 [1]. The default number
of nodes/machines/workers is 20. In our experiments, we directly use the theoretical stepsizes and
parameters for all three algorithms: QSGD [1, 24], DIANA [12], our CANITA (Algorithm 1). To
compare with the settings of DIANA and CANITA, we use local gradients (not stochastic gradients)
in QSGD. Thus here QSGD is equivalent to DC-GD provided in [24].

In Figures 1–3, we compare our CANITA with QSGD and DIANA with three compression operators:
random sparsification (left), natural compression (middle), and random quantization (right) on three
datasets: a9a (Figure 1), mushrooms (Figure 2), and w8a (Figure 3). The x-axis and y-axis represent
the number of communication bits and the training loss, respectively.

Regarding the different compression operators, the experimental results indicate that natural com-
pression and random quantization are better than random sparsification for all three algorithms. For
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Figure 1: Performance of different methods for three different compressors (random sparsification,
natural compression, and random quantization) on the a9a dataset.
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Figure 2: Performance of different methods for three different compressors (random sparsification,
natural compression, and random quantization) on the mushrooms dataset.
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Figure 3: Performance of different methods for three different compressors (random sparsification,
natural compression, and random quantization) on the w8a dataset.

instance, in Figure 1, DIANA uses 1.5×106 (random sparsification), 1.0×106 (natural compression),
0.4× 106 (random quantization) communication bits for achieving the loss 0.4, respectively.

Moreover, regarding the different algorithms, the experimental results indeed show that our CANITA
converges the fastest compared with both QSGD and DIANA for all three compressors in all
Figures 1–3, validating the theoretical results (see Table 1) and confirming the practical superiority of
our accelerated CANITA method.

7 Conclusion

In this paper, we proposed CANITA: the first gradient method for distributed general convex optimiza-
tion provably enjoying the benefits of both communication compression and convergence acceleration.
There is very limited work on combing compression and acceleration. Indeed, previous works only
focus on the (much simpler) strongly convex setting. We hope that our novel algorithm and analysis
can provide new insights and shed light on future work in this line of research. We leave further
improvements to future work. For example, one may ask whether our approach can be combined
with the benefits provided by multiple local update steps [29, 38, 11, 10, 42], with additional variance
reduction techniques [9, 24], and to what extent one can extend our results to structured nonconvex
problems [22, 19, 27, 21, 25, 6, 35, 5].
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A Missing Proof for Theorem 1 in Section 5.1

In order to prove Theorem 1, we first formulate six auxiliary results (Lemmas 1–6) in Appendix A.1.
The detailed proofs of these lemmas are deferred to Appendix C. Then in Appendix A.2 we show
that Theorem 1 follows from Lemma 6.

A.1 Six lemmas

First, we need a useful Lemma 1 which captures the change of the function value after a single
gradient update step.

Lemma 1 Suppose that Assumption 1 holds. For any βt > 0, the following equation holds for
CANITA (Algorithm 1) for any round t ≥ 0:

E
[
f(zt+1)

]
≤ E

[
f(yt) + 〈∇f(yt), θt(x

∗ − xt)〉+
θ2t
ηt

(
Dt −Dt+1

)
−
(
θ2t
2ηt
− L(1 + βt)θ

2
t

2

)
‖xt+1 − xt‖2 +

1

2Lβt
‖∇f(yt)− gt‖2

]
. (15)

Note that
zt+1 − yt = θt(x

t+1 − xt) = −ηtgt

according to the two momentum/interpolation steps of CANITA (see Line 3 and Line 10 of Algo-
rithm 1) and the gradient update step (see Line 9 of Algorithm 1). The proof of Lemma 1 uses these
relations and the smoothness Assumption 1.

In the next lemma, we bound the last variance term E
[
‖∇f(yt)− gt‖2

]
appearing in (15) of

Lemma 1. To simplify the notation, from now on we will write

Y t :=
1

n

n∑
i=1

‖∇fi(wt)−∇fi(yt)‖2, (16)

and recall that Ht := 1
n

∑n
i=1 ‖∇fi(wt)− hti‖2 defined in (4).

Lemma 2 If gt is as defined in Line 8 of Algorithm 1, and the compression operator Cti satisfies (2)
of Definition 2, we have

E
[
‖∇f(yt)− gt‖2

]
≤ 2ω

n

(
Y t +Ht

)
. (17)

This lemma is proved by using the definition of the ω-compression operator (i.e., (2)).

Now, we need to bound the terms Y t and Ht in (17) of Lemma 2. We first show how to handle the
term Ht in the following Lemma 3.

Lemma 3 Suppose that Assumption 1 holds and let αt ≤ 1
1+ω . According to the probabilistic update

of wt+1 in Line 11 of Algorithm 1, we have

E
[
Ht+1

]
≤
(

1− αt
2

)
Ht + 2pt

(
1 +

2pt
αt

)
Y t + 2ptL

2θ2t

(
1 +

2pt
αt

)
E
[
‖xt+1 − xt‖2

]
.

(18)

This lemma is proved by using the update of wt+1 (Line 11 of Algorithm 1) and ht+1
i (Line 6 of

Algorithm 1), the property of ω-compression operator (i.e., (2)), and the smoothness Assumption 1.

To deal with the term Y t in Lemmas 2 and 3, we need the following result.

Lemma 4 Suppose that Assumption 1 holds. For any yt, wt ∈ Rd, the following inequality holds:

Y t ≤ 2L
(
f(wt)− f(yt)− 〈∇f(yt), wt − yt〉

)
. (19)
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The proof of this lemma directly follows from a standard result characterizing the L-smoothness of
convex functions.

Finally, we also need a result connecting the function values f(zt+1) in (15) of Lemma 1 and f(wt+1)
in (7) of Theorem 1 (recall that F t+1 := f(wt+1)− f(x∗) in (4)).

Lemma 5 According to the probabilistic update of wt+1 in Line 11 of Algorithm 1, we have

E[f(wt+1)] = ptE[f(zt+1)] + (1− pt)E[f(wt)]. (20)

Now, we combine Lemmas 1–5 to obtain our final key lemma, which describes the recursive form of
the objective function value after a single round.

Lemma 6 Suppose that Assumption 1 holds and the compression operators {Cti} used in Algorithm 1
satisfy (2) of Definition 2. For any two positive sequences {βt} and {γt} such that the probabilities
{pt} and positive stepsizes {αt}, {ηt}, {θt} of Algorithm 1 satisfy the following relations

αt ≤
1

1 + ω
, ηt ≤

1

L
(
1 + βt + 4ptγt

(
1 + 2pt

αt

)) (21)

for all t ≥ 0, and
2ω

βtn
+ 4ptγt

(
1 +

2pt
αt

)
≤ 1− θt (22)

for all t ≥ 1. Then the sequences {xt, wt, hti} of CANITA (Algorithm 1) for all t ≥ 0 satisfy the
inequality

E
[
F t+1 +

γtpt
L

Ht+1
]
≤ E

[
(1− θtpt)F t +

( ω

βtn
+
(

1− αt
2

)
γt

)pt
L
Ht +

θ2t pt
ηt

(
Dt −Dt+1

)]
.

(23)

A.2 Proof of Theorem 1

Now, we are ready to prove the main convergence Theorem 1. According to Lemma 6, we know the
change of the function value after each round. By dividing (23) with θ2t pt

ηt
on both sides, we obtain

E
[
ηt
θ2t pt

F t+1 +
γtηt
θ2tL

Ht+1

]
≤ E

[
(1− θtpt)ηt

θ2t pt
F t +

( ω

βtn
+
(

1− αt
2

)
γt

) ηt
θ2tL

Ht +Dt −Dt+1

]
.

(24)

Then according to the following conditions on the parameters (see (6) of Theorem 1):

(1− ptθt)ηt
ptθ2t

≤ ηt−1
pt−1θ2t−1

, and
( ω

βtn
+
(

1− αt
2

)
γt

) ηt
θ2t
≤ γt−1ηt−1

θ2t−1
, ∀t ≥ 1. (25)

The proof of Theorem 1 is finished by telescoping (24) from t = 1 to T via (25) and maintaining the
same inequality (24) for t = 0:

E
[
FT+1 +

γT pT
L

HT+1
]
≤ θ2T pT

ηT

(
(1− θ0p0)η0

θ20p0
F 0 +

( ω

β0n
+
(

1− α0

2

)
γ0

) η0
θ20L

H0 +D0

)
.

(26)

�
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B Missing Proof for Theorem 2 in Section 5.2

In this appendix, we provide the proof for concrete Theorem 2 (which leads to a detailed convergence
result). First, let us verify that the choice of parameters (i.e., (10)–(12)) in Theorem 2 satisfies the
conditions (i.e., (5) and (6)) in Theorem 1. According to pt and αt in (11) and γt in (10), we have

4ptγt

(
1 +

2pt
αt

)
=

1

2
, ∀t ≥ 0. (27)

Then according to (27), ηt of (12) and αt of (11), the first two conditions in (5) of Theorem 1 are
satisfied, i.e.,

ηt ≤
1

L
(

1 + βt + 4ptγt
(
1 + 2pt

αt

)) and αt ≤
1

1 + ω
, ∀t ≥ 0.

Besides, from (10) and (11), we know that θt ≤ 1
3 and 2ω

βtn
≤ 1

6 for any t ≥ 1. Combining with (27),
then the following condition in (6) of Theorem 1 is satisfied:

2ω

βtn
+ 4ptγt

(
1 +

2pt
αt

)
≤ 1− θt, ∀t ≥ 1.

Now, only the following two conditions in (6) of Theorem 1 are remained:

(1− ptθt)ηt
ptθ2t

≤ ηt−1
pt−1θ2t−1

, and
( ω

βtn
+
(

1− αt
2

)
γt

) ηt
θ2t
≤ γt−1ηt−1

θ2t−1
, ∀t ≥ 1. (28)

For the first condition of (28), by plugging the parameter choice {pt} and {θt} of (11), it is sufficient
to let (

1− 3

t+ 9(1 + b+ ω)

)
ηt ≤

(
1− 1

t+ 9(1 + b+ ω)

)2

ηt−1, ∀t ≥ 1. (29)

For satisfying (29), it is sufficient to choose ηt as in (12):

ηt = min

{(
1 +

1

t+ 9(1 + b+ ω)

)
ηt−1,

1

L(β + 3/2)

}
, ∀t ≥ 1. (30)

Similarly, for the second condition of (28), by plugging the parameter choice {θt} and {αt} of (11),
it is sufficient to let( ω

βtn
+
(

1− 1

2(1 + ω)

)
γt

)
ηt ≤ γt−1ηt−1

(
1− 1

t+ 9(1 + b+ ω)

)2
, ∀t ≥ 1. (31)

By plugging {βt} and {γt} of (10) into (31), we have(
1− 1

3(1 + ω)

)
ηt ≤ ηt−1

(
1− 1

t+ 9(1 + b+ ω)

)2

, ∀t ≥ 1. (32)

Note that the choice of ηt in (30) also satisfies (32).

Now, we have verified that all conditions of Theorem 1 are satisfied with the parameter choice in
Theorem 2. Next, we obtain the detailed convergence results of CANITA by using this choice of
parameters. According to Theorem 1, we know that the following equation holds for any T > 0:

E
[
FT+1 +

γT pT
L

HT+1
]
≤ θ2T pT

ηT

(
(1− θ0p0)η0

θ20p0
F 0 +

( ω

β0n
+
(

1− α0

2

)
γ0

) η0
θ20L

H0 +D0

)
.

(33)

According to (11), we have

θ2T pT =
9(1 + b)

(T + 9(1 + b+ ω))2
. (34)
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According to (30), we have

ηT = min

{
T + 9(1 + b+ ω)

9(1 + b+ ω)
η0,

1

L(β + 3/2)

}
= min

{
T + 9(1 + b+ ω)

9(1 + b+ ω)

1

L(β0 + 3/2)
,

1

L(β + 3/2)

}
= min

{
(T + 9(1 + b+ ω))(1 + b)

162(1 + b+ ω)3
,

1

L(β + 3/2)

}
, (35)

where (35) uses the appropriate β0 = 9(1+b+ω)2

(1+b)L chosen in (10) of Theorem 2. Besides, according to

the initial values of the parameters, we can simplify the right-hand-side of (33) with (1−θ0p0)η0
θ20p0

≤ 1

and
(
1− α0

2

)
γ0

η0
θ20L
≤ 1.

Now we plug (34) and (35) into (33) and omit the constant to obtain

E
[
FT+1

]
≤ O

(
max

{
(1 + b+ ω)3

(T + 9(1 + b+ ω))3
,

(1 + b)(β + 3/2)L

(T + 9(1 + b+ ω))2

})
≤ O

(
max

{
(1 + b+ ω)3

T 3
,

(1 + b)(β + 3/2)L

T 2

})
≤ O

(
max

{
(1 + ω)3

T 3
,

(1 +
√
ω(1 + ω)2/n)L

T 2

})
(36)

= O

(
(1 +

√
ω3/n)L

T 2
+
ω3

T 3

)
, (37)

where (36) uses b = min
{
ω,
√

ω(1+ω)2

n

}
and β of (10) . Following from (37), we know that the

number of communication rounds for CANITA (Algorithm 1) to find an ε-solution such that

E
[
f(wT+1)− f(x∗)

] (4)
:= E

[
FT+1

]
≤ ε

is at most

T = O

√(1 +

√
ω3

n

)
L

ε
+ ω

(
1

ε

) 1
3

 .

�
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C Missing Proofs for Six Lemmas in Appendix A.1

In Appendix A, we provided the proof of Theorem 1 using six lemmas. Now we present the omitted
proofs for these Lemmas 1–6 in Appendices C.1–C.6, respectively.

C.1 Proof of Lemma 1

According to the L-smoothness of f (Assumption 1), we have

E
[
f(zt+1)

]
≤ E

[
f(yt) + 〈∇f(yt), zt+1 − yt〉+

L

2
‖zt+1 − yt‖2

]
= E

[
f(yt) + 〈∇f(yt), θt(x

t+1 − xt)〉+
Lθ2t

2
‖xt+1 − xt‖2

]
(38)

= E
[
f(yt) + 〈∇f(yt)− gt, θt(xt+1 − xt)〉+ 〈gt, θt(xt+1 − xt)〉+

Lθ2t
2
‖xt+1 − xt‖2

]
≤ E

[
f(yt) +

1

2Lβt
‖∇f(yt)− gt‖2 +

Lβtθ
2
t

2
‖xt+1 − xt‖2 +

Lθ2t
2
‖xt+1 − xt‖2

+ 〈gt, θt(xt+1 − xt)〉
]

(39)

= E
[
f(yt) +

1

2Lβt
‖∇f(yt)− gt‖2 +

L(1 + βt)θ
2
t

2
‖xt+1 − xt‖2

+ 〈gt, θt(x∗ − xt)〉+ 〈gt, θt(xt+1 − x∗)〉
]

= E
[
f(yt) +

1

2Lβt
‖∇f(yt)− gt‖2 +

L(1 + βt)θ
2
t

2
‖xt+1 − xt‖2 + 〈∇f(yt), θt(x

∗ − xt)〉

+ 〈gt, θt(xt+1 − x∗)〉
]

(40)

= E
[
f(yt) +

1

2Lβt
‖∇f(yt)− gt‖2 +

L(1 + βt)θ
2
t

2
‖xt+1 − xt‖2 + 〈∇f(yt), θt(x

∗ − xt)〉

+
θ2t
ηt
〈xt − xt+1, xt+1 − x∗〉

]
(41)

= E
[
f(yt) +

1

2Lβt
‖∇f(yt)− gt‖2 +

L(1 + βt)θ
2
t

2
‖xt+1 − xt‖2 + 〈∇f(yt), θt(x

∗ − xt)〉

+
θ2t
2ηt

(
‖xt − x∗‖2 − ‖xt − xt+1‖2 − ‖xt+1 − x∗‖2

)]
= E

[
f(yt) + 〈∇f(yt), θt(x

∗ − xt)〉+
θ2t
2ηt

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

)
−
( θ2t

2ηt
− L(1 + βt)θ

2
t

2

)
‖xt+1 − xt‖2 +

1

2Lβt
‖∇f(yt)− gt‖2

]
,

where (38) holds since zt+1 − yt = θt(x
t+1 − xt) according to the two momentum/interpolation

steps of CANITA (see Line 3 and Line 10 of Algorithm 1), (39) uses Young’s inequality with any
βt > 0, (40) holds due to E[gt] = ∇f(yt) since the compression is unbiased from (2), and (41) holds
according to the gradient update step xt+1 = xt − ηt

θt
gt (see Line 9 of Algorithm 1). �
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C.2 Proof of Lemma 2

This lemma is proved as follows:

E
[
‖∇f(yt)− gt‖2

]
= E

∥∥∥∥∥ 1

n

n∑
i=1

(
Cti (∇fi(yt)− hti) + hti −∇fi(yt)

)∥∥∥∥∥
2


=
1

n2

n∑
i=1

E
[∥∥Cti (∇fi(yt)− hti) + hti −∇fi(yt)

∥∥2]
≤ ω

n2

n∑
i=1

‖∇fi(yt)− hti‖2 (42)

≤ 2ω

n2

n∑
i=1

‖∇fi(yt)−∇fi(wt)‖2 +
2ω

n2

n∑
i=1

‖∇fi(wt)− hti‖2, (43)

where (42) follows from the definition of ω-compression operator (i.e., (2)), and the last inequality
(43) uses Cauchy-Schwarz inequality. �

C.3 Proof of Lemma 3

Firstly, according to the probabilistic update of wt+1 (see Line 11 of Algorithm 1) and recalling that
Ht := 1

n

∑n
i=1 ‖∇fi(wt)− hti‖2 defined in (4), we get

E
[
Ht+1

]
=
pt
n

n∑
i=1

E
[∥∥∇fi(zt+1)− ht+1

i

∥∥2]+
1− pt
n

n∑
i=1

E
[∥∥∇fi(wt)− ht+1

i

∥∥2]
≤
(

1 +
2pt
αt

)
pt
n

n∑
i=1

E
[∥∥∇fi(zt+1)−∇fi(wt)

∥∥2]+

(
1 +

αt
2pt

)
pt
n

n∑
i=1

E
[∥∥∇fi(wt)− ht+1

i

∥∥2]
+

1− pt
n

n∑
i=1

E
[∥∥∇fi(wt)− ht+1

i

∥∥2] . (44)

≤
(

1 +
2pt
αt

)
pt
n

n∑
i=1

E
[∥∥∇fi(zt+1)−∇fi(wt)

∥∥2]+
(

1 +
αt
2

)(
1− 2αt + α2

t (1 + ω)
)
Ht

(45)

≤
(

1 +
2pt
αt

)
pt
n

n∑
i=1

E
[∥∥∇fi(zt+1)−∇fi(wt)

∥∥2]+
(

1− αt
2

)
Ht (46)

≤
(

1 +
2pt
αt

)
2pt
n

n∑
i=1

E
[∥∥∇fi(zt+1)−∇fi(yt)

∥∥2 +
∥∥∇fi(yt)−∇fi(wt)∥∥2]+

(
1− αt

2

)
Ht

(47)

≤
(

1 +
2pt
αt

)
2pt
n

n∑
i=1

E
[
L2
∥∥zt+1 − yt

∥∥2 +
∥∥∇fi(yt)−∇fi(wt)∥∥2]+

(
1− αt

2

)
Ht (48)

≤ 2ptL
2θ2t

(
1 +

2pt
αt

)
E
[
‖xt+1 − xt‖2

]
+ 2pt

(
1 +

2pt
αt

)
Y t +

(
1− αt

2

)
Ht, (49)

where (44) uses Young’s inequality, (45) uses the update of local shifts ht+1
i = hti +αtCti (∇fi(wt)−

hti) (see Line 6 of Algorithm 1) and the property of ω-compression operator (i.e., (2)), (46) uses
αt ≤ 1/(1+ω), (47) uses Cauchy-Schwarz inequality, (48) uses the L-smoothness of fi (Assumption
1), and the last inequality (49) holds since zt+1−yt = θt(x

t+1−xt) according to the two interpolation
steps of CANITA (see Line 3 and Line 10 of Algorithm 1). �
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C.4 Proof of Lemma 4

This lemma directly follows from a standard result under Assumption 1. According to e.g. Lemma 1
of [18] or Lemma 5 of [20], we have

1

2L
‖∇fi(wt)−∇fi(yt)‖2 ≤ fi(wt)− fi(yt)− 〈∇fi(yt), wt − yt〉. (50)

Then, the result (19) is obtained by summing up (50) for all i ∈ [n] and noting f(x) := 1
n

∑n
i=1 fi(x)

(see (1)) and Y t := 1
n

∑n
i=1 ‖∇fi(wt)−∇fi(yt)‖2 (see (16)). �

C.5 Proof of Lemma 5

The lemma follows directly from the probabilistic update of wt+1; see Line 11 of Algorithm 1. �

C.6 Proof of Lemma 6

Now, we provide the detailed proof for the key Lemma 6 by using previous Lemmas 1–5. First, we
plug (17) of Lemma 2 into (15) of Lemma 1 to obtain

E
[
f(zt+1)

]
≤ E

[
f(yt) + 〈∇f(yt), θt(x

∗ − xt)〉+
θ2t
ηt

(
Dt −Dt+1

)
−
(
θ2t
2ηt
− L(1 + βt)θ

2
t

2

)
‖xt+1 − xt‖2 +

ω

Lβtn
Y t +

ω

Lβtn
Ht

]
. (51)

Then, we add (51) and γt
L× (18) of Lemma 3 to get

E
[
f(zt+1) +

γt
L
Ht+1

]
≤ E

[
f(yt) + 〈∇f(yt), θt(x

∗ − xt)〉+
θ2t
ηt

(
Dt −Dt+1

)
−
(
θ2t
2ηt
− L(1 + βt)θ

2
t

2

)
‖xt+1 − xt‖2 +

ω

Lβtn
Y t +

ω

Lβtn
Ht

+
(

1− αt
2

) γt
L
Ht +

(
1 +

2pt
αt

)
2ptγt
L

Y t + 2ptγtLθ
2
t

(
1 +

2pt
αt

)
‖xt+1 − xt‖2

]
= E

[
f(yt) + 〈∇f(yt), θt(x

∗ − xt)〉+
θ2t
ηt

(
Dt −Dt+1

)
−
(
θ2t
2ηt
− L(1 + βt)θ

2
t

2
− 2ptγtLθ

2
t

(
1 +

2pt
αt

))
‖xt+1 − xt‖2

+

(
ω

βtn
+
(

1− αt
2

)
γt

)
1

L
Ht +

(
2ω

βtn
+ 4ptγt

(
1 +

2pt
αt

)) 1

2L
Y t
]

≤ E
[
f(yt) + 〈∇f(yt), θt(x

∗ − xt)〉+
θ2t
ηt

(
Dt −Dt+1

)
+

(
ω

βtn
+
(

1− αt
2

)
γt

)
1

L
Ht

+

(
2ω

βtn
+ 4ptγt

(
1 +

2pt
αt

)) 1

2L
Y t
]

(52)

≤ E
[
f(yt) + 〈∇f(yt), θt(x

∗ − xt)〉+
θ2t
ηt

(
Dt −Dt+1

)
+

(
ω

βtn
+
(

1− αt
2

)
γt

)
1

L
Ht

+
1− θt

2L
Y t
]

(53)

≤ E
[
f(yt) + 〈∇f(yt), θt(x

∗ − xt)〉+
θ2t
ηt

(
Dt −Dt+1

)
+

(
ω

βtn
+
(

1− αt
2

)
γt

)
1

L
Ht

+ (1− θt)
(
f(wt)− f(yt)− 〈∇f(yt), wt − yt〉

)]
(54)
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= E
[
f(yt) + 〈∇f(yt), θt(x

∗ − xt)〉+
θ2t
ηt

(
Dt −Dt+1

)
+

(
ω

βtn
+
(

1− αt
2

)
γt

)
1

L
Ht

+ (1− θt)
(
f(wt)− f(yt)

)
− θt〈∇f(yt), yt − xt〉

]
(55)

≤ E
[
(1− θt)f(wt) + θtf(x∗) +

θ2t
ηt

(
Dt −Dt+1

)
+

(
ω

βtn
+
(

1− αt
2

)
γt

)
1

L
Ht

]
, (56)

where (52) holds by letting ηt ≤ 1

L
(
1+βt+4ptγt(1+2pt/αt)

) , (53) holds by letting 2ω
βtn

+ 4ptγt(1 +

2pt
αt

) ≤ 1 − θt, (54) follows from (19) of Lemma 4, (55) holds since yt = θtx
t + (1 − θt)wt (see

Line 3 of Algorithm 1), and the last inequality (56) uses the convexity of f . Also note that (53) from
(52) uses 2ω

βtn
+ 4ptγt(1 + 2pt

αt
) ≤ 1− θt, however this condition is only needed for t ≥ 1, i.e., it is

not needed for the case t = 0 since Y 0 = 0 from y0 = w0 = x0. The function and inner product
terms will also perform the same result in the final (56) since y0 = w0 = x0.

The proof of Lemma 6 is finished by adding (56)× pt and (20) of Lemma 5 to obtain (23). �
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