A Appendix

Proof of Lemma 4.1. Suppose that α embeds $\mathbf{O}=\left(O_{1}, \ldots, O_{p}\right)$ in $M \in \operatorname{LNG}_{d}$ and that $D=$ $B_{\mathbf{O}}(M)$. Suppose that $D_{[, v]}=a D_{[, u]}$. First, we show that at least one of u, v must be strictly greater than p. Suppose for a contradiction that $u, v \leq p$. Since D has ones everywhere on the diagonal of the principal $p \times p$ submatrix, $D_{u u}=D_{v v}=1$. By assumption, we have that $D_{u v}=a>0$ and $D_{v u}=1 / a>0$. But then $O_{u} \rightsquigarrow_{M} O_{v}$ and $O_{v} \rightsquigarrow_{M} O_{u}$, which contradicts acyclicity. Therefore, without loss of generality, we suppose that $v>p$.
Let $y, z=\alpha^{-1}(u), \alpha^{-1}(v)$. Let $A=A(M)$ and $B=B(M)$. Let β be the permutation of $\{1, \ldots, d\}$ sending $i \mapsto i$ for $i<z$ and $i \mapsto i-1$ for $i>z$. Define the $d-1 \times d-1$ matrix A^{\prime} in the following way:

$$
A_{i j}^{\prime}=A_{\beta^{-1}(i, j)}+A_{z, \beta^{-1}(j)} A_{\beta^{-1}(i), z}
$$

Since A has zeros on the diagonal and, by acyclicity, one of $A_{z, \beta^{-1}(i)}, A_{\beta^{-1}(i), z}$ must be zero, A^{\prime} has zeros on the diagonal. We show that A^{\prime} is lower triangular, i.e. that $A_{i j}^{\prime}=0$ whenever $j>i$. There are three cases to consider: (1) $i<z, j<z$; (2) $i<z, j \geq z$ and (3) $i \geq z, j \geq z$. In the first case $A_{i j}^{\prime}=A_{i j}+A_{z j} A_{i z}$. Since A is lower triangular, $A_{i j}=A_{i z}=0$. In the second case, $A_{i j}^{\prime}=A_{i, j+1}+A_{z, j+1} A_{i z}$. Since A is lower triangular, $A_{i, j+1}=A_{i z}=0$. In the final case, $A_{i j}^{\prime}=A_{i+1, j+1}+A_{z, j+1} A_{i+1, z}$. Since A is lower triangular, $A_{i+1, j+1}=A_{z, j+1}=0$.

Since $I-A^{\prime}$ is lower triangular and its diagonal entries are all equal to one, the inverse matrix
 over the vertices $\{1, \ldots, d\}$. Let $\Pi_{i k j}$ be the set of all paths from i to j over the vertices $\{1, \ldots, d\}$ passing through k and let $\Pi_{i k j j}=\Pi_{i j} \backslash \Pi_{i k j}$. Let $\Pi_{i j}^{\prime}$ bet the set of all paths from i to j over the vertices $\{1, \ldots, d-1\}$. From our previous observation, we have that

$$
\begin{align*}
B_{j i}^{\prime} & =\sum_{\pi \in \Pi_{i j}^{\prime}} \prod_{i=1}^{|\pi|} A_{\pi_{i+1}, \pi_{i}}^{\prime} \tag{1}\\
& =\sum_{\pi \in \Pi_{i j}^{\prime}} \prod_{i=1}^{|\pi|}\left(A_{\beta^{-1}\left(\pi_{i+1}, \pi_{i}\right)}+A_{z, \beta^{-1}\left(\pi_{i}\right)} A_{\beta^{-1}\left(\pi_{i+1}\right), z}\right) \tag{2}\\
& =\sum_{\pi \in \Pi_{\beta-1(i) \nexists \beta}-1(j)} \prod_{i=1}^{|\pi|}\left(A_{\pi_{i+1}, \pi_{i}}+A_{z, \pi_{i}} A_{\pi_{i+1}, z}\right) . \tag{3}
\end{align*}
$$

Note that for any $\pi \in \Pi_{i j}$ there can be at most one π_{i} such that

$$
A_{z, \pi_{i}} A_{\pi_{i+1}, z} \neq 0 .
$$

If this were not the case, there would be causal paths in $G(M)$ passing through z twice, contradicting acyclicity. Let $\pi_{i *}$ be the unique such π_{i}, if it exists, and let $\pi_{i *}=\pi_{1}$, otherwise. Then:

$$
\begin{align*}
B_{j i}^{\prime} & =\sum_{\pi \in \Pi_{\beta^{-1}(i) \neq \beta^{-1}(j)}} \prod_{i=1}^{|\pi|}\left(A_{\pi_{i+1}, \pi_{i}}\right)+A_{z, \pi_{i^{*}}} A_{\pi_{i^{*}+1}, z} \prod_{i \neq i *}\left(A_{\pi_{i+1}, \pi_{i}}\right) \tag{4}\\
& =\sum_{\pi \in \Pi_{\beta^{-1}(i) \neq \beta^{-1}(j)}} \prod_{i=1}^{|\pi|}\left(A_{\pi_{i+1}, \pi_{i}}\right)+\sum_{\pi \in \Pi_{\beta^{-1}(i) z \beta^{-1}(j)}} \prod_{i=1}^{|\pi|}\left(A_{\pi_{i+1}, \pi_{i}}\right) \tag{5}\\
& =\sum_{\pi \in \Pi_{\beta}-1(i) \neq \beta^{-1}(j)} \times_{M} \pi+\sum_{\pi \in \Pi_{\beta^{-1}(i) z \beta^{-1}(j)}} \times_{M} \pi \tag{6}\\
& =\sum_{\pi \in \Pi_{\beta-1}(i, j)} \times_{M} \pi \tag{7}\\
& =B_{\beta^{-1}(j, i)} . \tag{8}
\end{align*}
$$

Let the $d-1$ element column vector \mathbf{e}^{\prime} be just like the first $d-1$ rows of $P_{\beta} \mathbf{e}(M)$ except $\mathbf{e}_{\beta(y)}^{\prime}=$ $\mathbf{e}_{y}+a \mathbf{e}_{z}$. Since the sum of independent non-Gaussian variables is non-Gaussian, each element of \mathbf{e}^{\prime} is not Gaussian. Moreover, since functions of independent random variables are independent, the \mathbf{e}_{i}^{\prime} are mutually independent.
Let $\mathbf{X}^{\prime}=B^{\prime} \mathbf{e}^{\prime}$ Since B^{\prime} is lower triangular with ones on the diagonal and \mathbf{e}^{\prime} is a vector of mutually independent, non-Gaussian random variables, we have that $M^{\prime}=\left\langle\mathbf{X}^{\prime}, \mathbf{e}^{\prime}, A^{\prime}\right\rangle$ is in LNG_{d-1}.
We are now in a position to prove part (i) of the theorem. We claim that $\beta^{-1} \circ \alpha$ embeds \mathbf{O} into M^{\prime}. In other words, we claim that $O_{i}=\mathbf{X}_{\beta\left(\alpha^{-1}(i)\right)}\left(M^{\prime}\right)$:

$$
\begin{aligned}
\mathbf{X}_{\beta\left(\alpha^{-1}(i)\right)}\left(M^{\prime}\right) & =\sum_{j=1}^{d-1} B_{\beta\left(\alpha^{-1}(i)\right), j}^{\prime} \mathbf{e}_{j}^{\prime} \\
& =B_{\beta\left(\alpha^{-1}(i)\right), \beta(y)}^{\prime} \mathbf{e}_{\beta(y)}^{\prime}+\sum_{j<z, j \neq \beta(y)} B_{\beta\left(\alpha^{-1}(i)\right), j}^{\prime} \mathbf{e}_{j}^{\prime}+\sum_{j \geq z, j \neq \beta(y)} B_{\beta\left(\alpha^{-1}(i)\right), j}^{\prime} \mathbf{e}_{j}^{\prime} \\
& =B_{\alpha^{-1}(i), y}\left(\mathbf{e}_{y}+a \mathbf{e}_{z}\right)+\sum_{j<z, j \neq \beta(y)} B_{\alpha^{-1}(i), \beta^{-1}(j)} \mathbf{e}_{j}^{\prime}+\sum_{j \geq z, j \neq \beta(y)} B_{\alpha^{-1}(i), \beta^{-1}(j)} \mathbf{e}_{j}^{\prime} \\
& =B_{\alpha^{-1}(i), y}\left(\mathbf{e}_{y}+a \mathbf{e}_{z}\right)+\sum_{j<z, j \neq y} B_{\alpha^{-1}(i), j} \mathbf{e}_{j}+\sum_{j \geq z, j \neq y} B_{\alpha^{-1}(i), j+1} \mathbf{e}_{j+1} \\
& =B_{\alpha^{-1}(i), y}\left(\mathbf{e}_{y}+a \mathbf{e}_{z}\right)+\sum_{j<z, j \neq y} B_{\alpha^{-1}(i), j} \mathbf{e}_{j}+\sum_{j>z, j \neq y} B_{\alpha^{-1}(i), j} \mathbf{e}_{j} \\
& =a B_{\alpha^{-1}(i), y} \mathbf{e}_{z}+\sum_{j \neq z} B_{\alpha^{-1}(i), j} \mathbf{e}_{j} \\
& =\mathbf{X}_{\alpha^{-1}(i)}(M) \\
& =O_{i} .
\end{aligned}
$$

The third and fourth equalities follows from the fact that $B_{i j}^{\prime}=B_{\beta^{-1}(i, j)}$ and that $\beta^{-1}(i)=i$ when $i<z$ and $\beta^{-1}(i)=i+1$ when $i \geq z$. The penultimate equality follows from the fact that $a B_{\alpha^{-1}(i), y} \mathbf{e}_{z}=a B_{\alpha^{-1}(i), \alpha^{-i}(u)} \mathbf{e}_{z}=a D_{i, u} \mathbf{e}_{z}=D_{i, v} \mathbf{e}_{z}=B_{\alpha^{-1}(i), \alpha^{-i}(v)} \mathbf{e}_{z}=B_{\alpha^{-1}(i), z} \mathbf{e}_{z}$. The final equality follows from the fact that α embeds \mathbf{O} in M.
We now prove (ii). Suppose that $O_{i} \rightsquigarrow_{M} O_{j}$. Since M is faithful, $B_{\alpha^{-1}(j, i)} \neq 0$ and therefore $B_{\beta\left(\alpha^{-1}(j, i)\right)}^{\prime} \neq 0$. That entails that $\beta\left(\alpha^{-1}(i)\right) \rightsquigarrow_{M^{\prime}} \beta\left(\alpha^{-1}(j)\right)$ and, since $\beta^{-1} \circ \alpha$ embeds \mathbf{O} in M^{\prime}, $O_{i} \rightsquigarrow_{M^{\prime}} O_{j}$. For the converse it suffices to show that $i \rightarrow_{M^{\prime}} j$ entails $\beta^{-1}(i) \rightsquigarrow_{M} \beta^{-1}(j)$. Suppose the antecedent holds. Then $A_{j i}^{\prime} \neq 0$. Therefore, either $A_{\beta^{-1}(j, i)} \neq 0$ or $A_{z, \beta^{-1}(i)} A_{\beta^{-1}(j), z} \neq 0$. In either case, $\beta^{-1}(i) \rightsquigarrow_{M} \beta^{-1}(j)$.
It remains to prove (iii). Suppose that $i \rightsquigarrow M^{\prime} j$. Then, by (ii), $\beta^{-1}(i) \rightsquigarrow \beta^{-1}(j)$. Since M is faithful, $B_{\beta^{-1}(j, i)} \neq 0$. But since $B_{\beta^{-1}(j, i)}=B_{j, i}^{\prime}, B_{j, i}^{\prime} \neq 0$, as required.

