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Abstract

We introduce channel permutations as a method to maximize the accuracy of N:M
sparse networks. N:M sparsity requires N out of M consecutive elements to be zero
and has been shown to maintain accuracy for many models and tasks with a simple
prune and fine-tune workflow. By permuting weight matrices along their channel
dimension and adjusting the surrounding layers appropriately, we demonstrate
accuracy recovery for even small, parameter-efficient networks, without affecting
inference run-time. We also present both a quality metric to simplify judging
permutations as well as efficient methods to search for high-quality permutations,
including two optimizations to escape local minima. Finally, we share an ablation
study to show the importance of each part of our search algorithm, experimental
results showing correlation between our quality metric and final network accuracy,
improved sparse network accuracy using our techniques with insignificant over-
head to training time, and the transformation of unstructured to structured sparse
workloads. Code to use these techniques when generating a 2:4 sparse network is
available at https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity.

1 Introduction

Deep Neural Networks (DNNs) excel at complex tasks such as image classification, object detection,
and language modeling. Their success often comes at the cost of immense computational complexity,
and growing model size generally results in even higher-quality results. To combat this ever-
increasing computational workload at inference, various approaches have been used to save effort;
for example, network pruning removes weights from the network, and quantization can replace
floating-point operations with simpler integer operations. We focus on one type of network pruning
that is accelerated in hardware: 2:4 structured sparsity [22] (a particular form of the more general
N:M sparsity), since it has been shown to maintain accuracy across a wide range of networks and
tasks while being easy to save computation. While many networks do recover accuracy with a
fine-tuning step, some small, parameter-efficient image-classification networks that were designed
with economy of memory and computation in mind cannot recover the accuracy lost due to pruning
with this suggested workflow. Further, this workflow repeats the dense training all over again, which,
while straightforward, can be costly if the lifetime of the deployment model is not long enough to
amortize this extra training.

We seek to address these shortcomings with the observation that the 2:4 pruning step, which forces
two out of every four consecutive elements to be zero (the "2:4 constraint"), sometimes must prune a
relatively large, and intuitively important, value. If different options were available to each group
of four values, then more advantageous choices can be made, as illustrated in Figure 1. When the
example weight matrix (top-left) is pruned with 2:4 sparsity in its original order, it results in a sparse
matrix (top-right) with total weight magnitude of 44.5. By first changing the order of the columns
in the matrix, though (bottom-left), the resulting sparse matrix (bottom-right) has a total weight
magnitude of 58.6. It is simple to find this fruitful column permutation in such a small example, but
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Figure 1: Permuting weights before pruning them helps preserve weight magnitude.

the complexity of the problem explodes with problem size. Further, once a permutation is found,
applying it to some layer of a DNN can result in a performance overhead at run-time [14]. In this
work, we give solutions to both these problems and show several benefits of using permutations
for N:M sparsity. While we focus on a particular variant of N:M structured sparsity for practical
reasons (acceleration with readily-available hardware [26]), the techniques and observations herein
apply equally to all N and M. Similarly, our permutation search strategies can be used to increase or
decrease any metric of interest, not just magnitude.

We note that while weight magnitude is not proven to be the optimal pruning metric, and that
increasing magnitude is not guaranteed to improve accuracy, we show it to work well for the cases
studied herein.

Our contributions include (1) a method of permuting input channels of weight matrices without
changing the output of the network or incurring a performance overhead, (2) an efficient algorithm
for generating unique permutations for N:M structured sparse matrices, (3) two methods to overcome
a shortcoming of greedy permutation generation algorithms, (4) searching for and applying permuta-
tions to improve accuracy of 2:4 sparse networks, and (5) transparently transforming unstructured
sparse to structured sparse matrices.

The rest of this paper is as follows: Section 2 discusses previous work in the area and provides
background information on matrix permutations, and Section 3 presents our method of to permuting
weights of a neural network with no run-time overhead. In Section 4, we present a quality metric, an
intractable exhaustive solution to find a high-quality permutation, a greedy solution, and improvements
to the baseline greedy algorithm. We share an ablation study, quality metric/accuracy correlation,
accuracy improvements, and results of transforming unstructured to structured sparsity in Section 5,
along with a brief discussion of the runtime needed to search for permutations. Finally, we offer a
discussion and areas for future work in Section 6.

2 Related Work and Background

Network pruning. Removing weights from a network is used to reduce both the storage and
bandwidth required for the network as well as the computational power required to deploy the
network. The area of network pruning is multi-dimensional: one can prune to different amounts, with
different sorts of structure or regularity, using weight magnitude or other metrics to choose which
weights to make zero [23, 16], pruning gradually [6, 33] or in one shot, keeping the network the same
size or growing it to accommodate for the sparsity [5], etc.

Let us focus on structure and regularity; this dimension is the most important for this work and
is generally composable with the others. Early work in pruning DNNs used unstructured sparsity,
removing individual weight values [6], but research soon moved on to pruning at a coarser granular-
ity [34, 1, 19, 18, 15]: at the cost of accuracy loss for the same amount of sparsity [21, 38], removing
entire channels or filters results in a smaller, dense workload which is easy to accelerate. At the
extreme, sparsity can be in the form of blocks [5] or entire layers [4]. Simply put, network pruning
has been a balancing act between maintaining accuracy and inducing enough sparsity to impart a
useful benefit, either in storage requirements or the runtime of the resulting model.
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N:M structured sparsity. Recently-released hardware accelerates matrix-multiply-accumulate
instructions if one operand satisfies a 2:4 sparsity constraint [22], a particular form of N:M sparsity in
which at least N out of every M (contiguous, aligned) elements are zero. In particular, this hardware
requires the sparsity to be applied to the input channel dimension, C, of convolutional layers: weights
along this dimension are divided into groups of four weights, and two of them are forced to zero.
A workflow to generate networks that satisfy this 2:4 constraint, using a form of Learning Rate
Rewinding [28], has been empirically verified to maintain accuracy across a wide range of networks
and tasks (with the exception of the aforementioned small, parameter-efficient networks).

Hubara et al. report a technique for finding good transposable masks for use in both forwards and
backwards passes [11], as well as two techniques for improving accuracy when fine-tuning N:M
sparse networks for inference, but they are orthogonal to this work. Though we focus on fine-tuning
an existing dense network, there has been work in training N:M networks from scratch [37], but
results for 2:4 sparsity fall short of the dense baseline.

Matrix permutations. Applying a permutation to a matrix changes the order of the individual rows
or columns that make up the matrix, and can be specified as a vector P of indices, with no repetitions,
from 0 to the size of the dimension (-1). These indices are used to permute the matrix by moving the
column (or row) at index j to position P [j].

A matrix multiplication’s operands can be permuted in two ways without materially affecting the
results: permuting the inner dimension or the outer dimension of the operands. Simultaneously
permuting the inner dimension of both operands changes the order in which the partial sums of the
dot-product are computed, but not the eventual sum in each position of the output matrix. An example
of this appears in the right side of Figure 2: Layer i’s input channel, or C, dimension, common to
both operands, is permuted (numbers 1 and 2) by permutation Pi, and the output is unaffected. On
the other hand, permuting rows of the first operand (number 3 on the left side of Figure 2) or the
columns of the second operand, either outer dimension, affects the position of the corresponding rows
or columns in the output matrix. For this reason, when rows are permuted in the weight matrix of a
neural network, it is necessary to apply the inverse permutation to the output to restore the original
order. Since we are concerned with the order of only the C dimension, which defines each 2:4 group,
permutations will be applied to the inner dimension of GEMM operations in high-performance math
libraries [3]. Herein, permutations will apply to columns of a matrix’s weights or channels of a
convolution tensor’s weights interchangeably. Each layer (or, as discussed in Section 3, group of
layers) can have a unique permutation, Pi (for layer i).

These properties have been used to cluster large values together when pruning a network with group
sparsity, such as blocks or vectors [14]. The approach in this prior work has two shortcomings: it (1)
incurs a runtime performance penalty and (2) can not escape from poor local minima. Permutations
have also been used to make unstructured sparsity easier to accelerate on systolic arrays [2].

3 Applying Permutations

3.1 Permutations Across Layers

To apply a desirable permutation to some layer i’s C dimension, we can permute its weights just
once, offline. To avoid an explicit operation to apply the same permutation to its input activations, we
exploit the property that permuting weights along the output channel, or K, dimension also permutes
output activations along the K dimension, and the output channel dimension of one layer’s activations
is the input channel dimension of those same activations when used as the input to the next layer.

Consider permutation Pi desired by layer i: that layer’s weights will be permuted along Ci, as
indicated by the ‘1’ on the right side of Figure 2. In order to keep the output constant, its activations
need the same permutation applied along Ci (‘2’). We effect this input activation permutation
with another offline step: permuting the previous layer’s weights along Ki−1 (‘3’). By permuting
the K dimension of layer i − 1’s weights to reorder its output activation’s K dimension, we have
prepared layer i’s input activations as required by Pi without an explicit permutation operation.
Since each layer needs to permute its own weights along only one dimension and can “absorb" an
orthogonal permutation in the other dimension without conflict, we incur no performance overhead
at run-time. We note that this simplification could also be applied to past work to eliminate the
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Figure 2: Permuting along the inner dimension of a GEMM (Layer i, right side) does not change
the output, but permuting along an outer dimension (such as Layer i− 1’s rows, left side) causes a
corresponding permutation in the same dimension of the output. We exploit these two properties to
apply some desired permutation Pi to Layer i’s weights (‘1’). The required matching permutation
in the same dimension of the input activations (‘2’) is effected by permuting the previous layer’s
weights along rows using the same permutation (‘3’), requiring no run-time overhead. Colors show
the order of rows (activations) and columns (weights) involved in each GEMM operation.

reported performance overhead due to each layer’s desired permutation being applied in multiple
dimensions [14], potentially at the expense of final network accuracy.

So, each layer may see two permutations: one that is for itself, applied along its C dimension, and
one that is desired by a downstream layer (or layers, below), applied along its K dimension. For
example: if following layer i + 1 has its own desired C permutation, layer i would be responsible for
permuting the activations by permuting its own weights’ K dimension. This second permutation is
orthogonal to and will not conflict with its own C dimension permutation. Similarly, layer i− 1 can
apply a permutation to its C dimension without affecting the K permutation for layer i.

3.2 Handling Complexities of Deep Neural Networks

Forks and joins. Many network types, including Residual Networks [7], have forks and joins in their
network graphs, leading to layer being a "parent" to multiple layers in that its outputs are inputs to
some number of downstream layers (children). Since a parent layer can only have one output channel
order, all children of a parent must share the same input channel order: the children’s permutations
are constrained to be identical. Forcing the same permutation to be used for multiple layers is
straightforward: concatenating the weight matrices along the input channel dimension (which, if
coming from a fork, will be of the same size), searching for a good permutation (see Section 4), and
splitting the earlier concatenation will force multiple weight matrices to have the same permutation
that has been optimized for all layers. A layer with multiple parents (after a join, for example), can
apply its input channel permutation, once found, to its parents’ output channel dimension.

Pass-through operations. When applying a permutation to a parent, we can stop only when there is
a GEMM operation (convolution, FC layer, recurrent layer, etc.), which can apply the permutation to
its weights’ outer dimension to prepare the output activations. Until we encounter that operation, we
must apply the permutation to the output channel dimension of the current operation then pass the
permutation through to the next parent. For example, a convolution’s outputs are generally subject to
a bias term, BatchNorm [13], and an activation function before they are input to the next convolution
operation. Bias and BatchNorm operations have per-output channel parameters, thus they require the
permutation to be applied to keep the network graph consistent with the originally parameterized
function. Activation functions are typically performed per-element and have no notion of a channel
dimension, so these types of layers do not need to apply the permutation before passing it through
to their parent. Quantizing a neural network typically involves applying scaling factors to weight
tensors, often per-channel [35]; these factors are permuted before the permutation is passed on.

Input layers. For most layers in a network, the activation permutation can be accomplished by
permuting the preceding weights, as above. The first layer cannot use this technique, though, since
there are no preceding weights. We choose to forego permutations on the input layers, which is
generally not a noticeable decision since (1) input layers are often not pruned for accuracy reasons,
and (2) networks use for image-based tasks, like classification and object detection, have only three
input channels, which are too few to be accelerated with 2:4 sparsity [22].
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4 Finding Good Permutations

4.1 Efficacy: What Makes a Good Permutation

To avoid fine-tuning the network for every potential permutation, we construct a quality metric
based only on the input and permuted matrices. We use weight magnitude to choose weights to
prune, so it is natural to maximize the total magnitude after the 2:4 constraint’s application: a perfect
permutation would preserve all the magnitude of the input matrix. In order for a perfect permutation
to be achievable, the input matrix must have at least 50% sparsity in each row. The magnitude after
enforcing 50% sparsity in each row, |W50%_rows|, is an upper bound for a permutation’s quality. We
define a metric, efficacy, to quantify the quality of a permutation p applied to a weight matrix W
(W p when permuted), in terms of how much it improves the magnitude with respect to this upper
bound:

efficacy = 1.0− |W50%_rows| − |W p
2:4|

|W50%_rows| − |W2:4|

If the magnitude after the 2:4 constraint of the original and permuted matrices are the same, then the
permutation changed nothing and has an efficacy of 0.0. On the other hand, if the magnitude after
the permutation is the same as that of the 50% row sparse matrix, then the efficacy metric will be a
perfect 1.0 and it will be clear that no better permutation can be found. Finally, if the magnitude of
the permuted matrix is worse than the original matrix, the permutation’s efficacy will be negative.

4.2 Exhaustive Searches

Intractability. For a network layer with C channels, there are C! channel permutations possible;
this is nearly 21 trillion permutations for only 16 channels. However, there are two characteristics of
N:M structured sparse matrices that reduce the number of unique permutations to only C!

M !GG!
, where

G = C/M , the number of pruning groups, or "stripes" of the matrix. A stripe is a vertical slice of a
matrix covering exactly M (aligned) columns, and the first simplifying observation is that the order
of the columns within a stripe is immaterial; the same pruning decisions will be made regardless of
this order, as long as the stripe contains the same columns. The second observation is that the order
of stripes in the larger matrix does not matter, since pruning decisions are local to a stripe. For a
layer with 16 channels and targeting 2:4 structured sparsity, the number of unique permutations is
reduced to only 2.6 million. However, this value still grows much too quickly to test them all for even
moderate channel counts: at 32 channels, there are nearly 60 quintillion unique permutations. (See
Appendix C for details.)

Algorithm. There are too many unique permutations to check beyond a small number of channels,
but smaller matrices can still be exhaustively searched (we will exploit this in Section 4.4). Here, we
design an algorithm to generate only the unique permutations from the set of C! total permutations.

First, we define a canonical form for a unique permutation, exploiting the two observations from the
previous subsection: a permutation is unique only if each of its stripes’ channels are in sorted order
and the stripes are sorted with respect to each other (e.g. by the first value of each stripe). If two
permutations result in the same pruning decisions, they will have the same canonical form. From
these two restrictions, it can be seen that (1) all unique permutations start with column 0, and (2) if a
column c begins a group, then every column < c must be a member of a previous group.

Next, we use a standard recursive solution to the general problem of generating all permutations. We
provide the permutation [0] and remaining columns [1..C − 1] as input, and in turn move each entry
from the remaining columns to the end of the current permutation. Each time the current permutation
grows, the function is called again with the larger permutation and smaller list of remaining columns
as input. Eventually, there will be no entries left in the remaining columns, and a full permutation
can be added to a global list of permutations.

To limit this algorithm to only unique permutations, the recursive step is performed only if the current
permutation is in canonical form and, therefore, unique. By checking at every stage of the generation
algorithm, we can eliminate unnecessary effort and complete in linear time with respect to the number
of unique permutations. (Listing 2 in Appendix C shows this algorithm.)
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Algorithm 1: “Deep" greedy permutation search with bounded regressions to escape local minima
def Find_Permutation(matrix, num_cols, stripes_per_group=2, escape_attempts=100):

permutation = [c for c in range(0, num_cols)]; #Identity permutation
for escape_attempt in range(escape_attempts+1, 0, -1):

#Greedy phase: optimize stripe groups that give large benefits
while True:

optimizations = Optimize_Stripe_Groups(matrix, permutation, stripes_per_group);
optimization = Find_Largest_Positive_Improvement(optimizations);
if optimization is None: break;
permutation = Permute(permutation, optimization);

#Escape phase: attempt to escape the local minimum
if escape_attempt > 1:

src, dst = Unique_Random_Integers(num_cols);
permutation = Swap_Columns(permutation, src, dst);

return permutation; #Final permutation

4.3 Greedy Incremental Improvements

We begin building an efficient permutation generation algorithm by adapting a greedy algorithm
used for group-sparse patterns [14]. At each iteration of the base algorithm, a sparsity mask is first
determined to maximize weight magnitude. Then, all pairs of channels are speculatively swapped;
only the swap that leads to the greatest increase in magnitude for the mask found in step one is
enacted, generating a new permutation and concluding a single iteration. The algorithm ends when
there is no swap that increases magnitude. This approach has useful qualities: it provably converges
using greedy decisions at each step, it can be parallelized, and it can be optimized to minimize the
cost of the C2 potential channel swaps considered at each step. However, (1) it does not directly fit
the problem of 2:4 sparsity, and (2) it can get trapped in a local minimum.

Since there is no notion of blocks/vectors of zeros and nonzeros and our goal is not simply to cluster
together values with large magnitudes, splitting the mask-selection and permutation-selection into
separate steps is fruitless. Instead, it is better to consider the quality of a potential permutation as
though the new mask were determined after the permutation, rather than trying to make a permutation
conform to a given mask. For N:M sparsity, this can be simplified: since each stripe is independent
from every other stripe, the benefit to the entire matrix of swapping two channels is the same as the
benefit to the two stripes to which those channels belong.

This modified greedy algorithm converges rapidly, but it is highly likely that this convergence will be
to a local minimum. We can show this empirically with matrices that are small enough to be solved
exhaustively: Table 1 shows that the basic channel-swapping greedy phase finds the optimal solution
for twenty-five 32x16 matrices (which are small enough to be solved exhaustively) only three times.
As the input matrix grows, it is increasingly likely that the solution will be a local minimum.

4.4 Escaping Local Minima

Here, we introduce two techniques we use to escape local minima without the possibility of falling
into a worse solution. (Appendix E discusses some ways to change, but not necessarily improve,
the minimum found; such techniques can be applied on top of those presented in this section, which
provably do not worsen an already-converged solution.)

Escape technique 1: bounded regressions. After convergence, swapping any two channels a and b
will cause a regression in the permutation’s efficacy. However, after repeating the greedy process
until convergence, one of two things may happen:

1. There is no pair of channels that result in an improvement greater than the reduction caused
by the swap of a and b. In this case, a and b are swapped back to their original position by
the greedy step and the “new" solution is the original converged solution.

2. There is some pair of channels c and d that result in an improvement greater than the
reduction of the swap of a and b. The solution after c and d are swapped by the greedy
process will be better than the original solution.
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Since perturbing a solution by swapping any two channels and iterating to convergence will never
reduce the efficacy of an already-converged solution, we call these perturbations “bounded regres-
sions." To prove the current solution’s minimum is at least two swaps away from a better solution, we
can swap every pair of channels exhaustively upon convergence, but in practice we swap two random
channels, up to B times. Any two columns can be swapped, but the search horizon is limited to a
depth of only one channel swap, so these bounded regressions are broad, but shallow. We must add
depth to the search horizon to find solutions that are two or more swaps away.

Escape technique 2: narrow, deep search. We add depth to our search process by exhaustively
optimizing stripe groups: choosing D stripes to form a group and then exhaustively searching for
the best permutation for that group in isolation. Optimizing a group of two stripes (D = 2) is trivial
since there are only 35 unique permutations, but this allows an effective search depth of 2: the best
permutation in for a group of 8 channels may be two swaps away from the initial order. In some
cases, D = 3 (or D = 4) is still feasible, with 5,335 (2.6 million) unique permutations, for a search
depth of 4 (8). We use our O(N) algorithm from Section 2 to generate only the unique permutations
from the set of over 479 million (nearly 21 trillion) potential permutations. Similar to bounded
regressions, optimizing stripe groups as a method to escape a local minimum can be as simple as
randomly choosing D stripes, optimizing, and then repeating the greedy phase. Since these stripe
groups are optimized atomically, there is no chance for the overall solution to worsen.

Putting it all together Our final column permutation generation algorithm, shown in Algorithm 1,
maintains the iterative greedy step as phase one. However, each greedy step consists not of swapping
two columns for maximum benefit, but exhaustively optimizing some number of stripes (we use
D = 2 unless otherwise specified). Every potential group of D stripes,

(
#stripes

D

)
in total, is

speculatively optimized, then the group with the most beneficial permutation is chosen, then all stripe
groups are speculatively optimized again, and so on. This modification incorporates the narrow, deep
searches into the greedy phase, helping to bypass some local minima without first converging to them.

We use bounded regressions to try to escape the local minimum found by phase one. Phase two is
instantaneous: two random channels are swapped. The real escape is up to the greedy phase, which
attempts to improve upon the permutation that resulted from the swap. If the greedy phase escapes
the previous minimum, it will repeat to converge to some new solution, else it will return to the
previous minimum, and the escape phase will repeat again; we default to 100 total escape attempts.

5 Experiments

Ablation study. We examine the benefit of each technique used to escape local minima. As a
baseline, we generate 1000 random permutations and choose the best. We then show two types of
greedy phases: the baseline of simply swapping channels, and the enhanced option of optimizing
stripe groups. When optimizing stripe groups, they can be comprised of either two or three stripes (8
or 12 total channels); the higher number affords a higher search depth at the cost of higher search
time. We also examine using bounded regressions as a local minimum escape phase, allowing up to
100 total attempts to escape the various minima found during the greedy phase. We report the average
efficacy for a set of 25 random 128-column, 64-row matrices in Table 1. Both enhancements improve
on the baseline greedy approach; while the bounded regressions increase efficacy whenever they are
used, increasing the number of stripes per optimization group provides a larger benefit when used in
the greedy phase. We also show that for a set of 25 random 32x16 matrices, which can be solved
exhaustively to find the optimal permutation, po, our techniques find po much more often than the
baseline, and both techniques together improve even further.

Efficacy/accuracy correlation. Having shown that our techniques improve the efficacy metric over
a baseline approach adapted to this task, we now show the utility of this metric by demonstrating a
strong correlation between permutation efficacy and final accuracy of the fine-tuned network. We use
the ILSVRC12 [29] dataset to evaluate SqueezeNet v1.0 [12] and EfficientNet B0 [32], which are
trained densely before being pruned and fine-tuned according to the procedure [22] implemented in
the ASP [25] library using PyTorch [27] and NVIDIA V100 [24] accelerators. By first finding the best
permutation using the technique in Section 4.4, we can then generate permutations that evenly divide
the efficacy into eighths, from 0 up to the best permutation’s efficacy for each layer. Fine-tuning
each of these new seven intermediate networks produces the curve of accuracy improvement vs.
efficacy shown in Figure 3. Both networks’ final accuracy increases monotonically with permutation
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Table 1: Ablation study: escaping local minima with bounded regressions and using a more thorough
greedy phase. BR (B) = bounded regressions (a total of B pairs of channels are swapped when
the greedy phase converges), OSG (D) = optimize stripe groups of size D during the greedy phase.
Search times were collected on a V100 accelerator.

25× 64x128 25× 32x16

Greedy Phase Escape Phase Efficacy (%) Optimal Found (#)
Random (1000) - 8.0 ±3.0 0
Channel Swap - 46.5 ±2.2 3
Channel Swap BR (100) 47.1 ±1.9 11
Channel Swap BR (1000) 49.1 ±1.9 11
OSG (2) - 47.7 ±2.2 7
OSG (2) BR (100) 48.2 ±2.2 15
OSG (2) BR (1000) 49.5 ±1.9 16
OSG (3) - 51.9 ±1.7 17
OSG (3) BR (100) 52.3 ±1.6 23
OSG (3) BR (1000) 53.4 ±1.8 25

Figure 3: Network accuracy increases monotonically with permutation efficacy.

efficacies (the weighted average over all weight layers is used as the x-axis). SqueezeNet v1.0 sees a
large improvement after even (relatively) poor permutations are used, while EfficientNet B0 reflected
a steady improvement through the entire range of efficacies.

Network accuracy. The primary goal of our technique is to allow the suggested workflow [22]
to maintain accuracy for parameter-efficient networks. We demonstrate the success of channel
permutations on several such networks. First, we train each network densely from scratch, using
hyperparameters from public repositories (see Appendix A). Then, we prune the dense models with
2:4 sparsity and repeat the training process again, resetting hyperparameters and optimizer state [22].
Finally, we search for and apply permutations (using the technique from Section 4.4) to each layer of
the dense models, then prune and repeat the training process to fine-tune the remaining weights.

Accuracy results are shown in Table 2: the absolute top-1 and top-5 accuracy values are shown for
the dense baseline network, then the difference in the default-pruned and permuted-pruned models
with respect to the dense baselines are shown in the third pair of result columns. In every case, the
accuracy of the network that was permuted before pruning is higher than pruning the network in
its default channel order. Moreover, for the small models that cause trouble for the default process,
our technique yields models with accuracy that is equivalent to the dense baseline model. Finally,
to show the universality of our technique, we include results for larger models that did not struggle
with the default pruning order; even for these networks, accuracy is improved. This suggests that
permutations may be safely applied to all networks, not just those that fail without permutations, and
also that the number of fine-tuning samples necessary to recover accuracy may be reduced by using
permutations. Appendix B shows the same trends for other tasks: semantic segmentation, object
detection, language translation, and language modeling.

We perform one extra accuracy study, fine-tuning MobileNet v2 and MNASNet 1.0 after applying
permutations found by the baseline Channel Swap strategy. Their final top-1/top-5 accuracies
remained worse than the dense baselines by -1.26/-0.69 (MobileNet v2) and -0.66/-0.51 (MNASNet
1.0). While this is an improvement over pruning in the default order, predicted by weighted average
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Table 2: Using the same fine-tuning process, channel permutations improve accuracy for all networks
and incur only a trivial increase in training time. Training and fine-tuning uses 8 V100 accelerators,
the permutation search uses only one V100. (ILSVRC12)

Network Baseline (Dense) Default 2:4 Permuted (ours) Search Time

Top1 Top5 ∆Top1 ∆Top5 ∆Top1 ∆Top5 mm:ss % Train+FT
MobileNet v2 [30] 71.55 90.28 -1.98 -1.13 0.01 0.02 00:50 0.02%
MobileNet v3 (Small) [9] 67.67 87.40 -2.73 -1.67 0.10 0.15 00:32 0.01%
MobileNet v3 (Large) [9] 74.04 91.34 -0.91 -0.40 0.10 0.04 00:58 0.01%
SqueezeNet v1.0 [12] 58.09 80.42 -4.01 -2.96 0.60 0.54 00:12 0.02%
SqueezeNet v1.1 [12] 58.21 80.62 -1.25 -0.93 0.03 0.05 00:12 0.02%
MNASNet 1.0 [31] 73.24 91.36 -1.25 -0.58 0.02 0.00 01:10 0.04%
ShuffleNet v2 [20] 68.32 88.36 -1.35 -0.87 0.10 0.01 00:14 0.01%
EfficientNet B0 [32] 77.25 93.59 -1.27 -0.52 0.04 0.07 01:34 0.04%
ResNet-50 [8] 76.16 92.88 0.05 0.13 0.13 0.26 02:13 0.10%
ResNeXt-50 [36] 77.62 93.70 0.01 0.05 0.13 0.07 02:57 0.08%
DenseNet-161 [10] 77.14 93.56 0.82 0.41 0.92 0.52 00:56 0.02%

Table 3: Runtimes for various strategies searching for good permutations for various input sizes
show that our improved search algorithm completes quickly for even large matrices (default settings
emphasized). Results captured on a single V100 accelerator.

Strategy
Cols 32 64 128 256 2048

Rows 32 64 64 128 128 256 256 512 2048
OSG(2) 0.00 0.00 0.01 0.01 0.02 0.03 0.17 0.23 29.99
OSG(2),BR(100) 0.07 0.09 0.11 0.13 0.21 0.27 0.57 0.75 59.85
OSG(2),BR(1000) 0.71 0.83 0.99 1.26 1.87 2.49 4.65 6.07 332.93
OSG(3) 0.12 0.20 0.37 0.84 8.76 22.60 129.83 348.19 -
OSG(3),BR(100) 3.26 5.92 8.29 14.59 68.35 135.76 628.45 1191.39 -
OSG(3),BR(1000) 32.47 58.26 76.37 139.35 580.23 1095.28 4666.89 9455.46 -

efficacies of 22.098% and 29.145%, it shows that it is important to escape these local minima in order
to recover as much accuracy as possible. Weighted average efficacies for our suggested setting of
OSG(2),BR(100) are 22.472% and 29.394%. (Appendix F has more details.)

Search Time While the apparent complexity of the improvements over the baseline algorithm may
seem to make the technique too expensive to use in practice, an efficient implementation can reduce
the time required to perform the search for a good permutation to an insignificant fraction of the time
required to train the model, as shown in Table 2. The total training and fine-tuning time is never
increased by more than one tenth of percent in our test networks. There are likely opportunities to
improve the performance further, but the results on random matrices of various sizes in Table 3 show
that the proposed settings (OSG(2),BR(100)) are fast enough for even large weight matrices.

Unstructured to structured sparsity. Unstructured pruning is commonly used to reduce model
complexity. However, aggressive sparsity is required to out-perform dense matrix and vector instruc-
tions, so the achieved performance from unstructured sparsity is typically limited [11]. Using channel
permutations, we can transform unstructured sparse layers into layers that conform to 2:4 structured
sparsity so that they can take advantage of sparse matrix instructions [22]. From our accuracy results
above, it is clear that we can reduce the impact of enforcing the 2:4 constraint on an already-sparse
network to improve the fine-tuned accuracy, similar to prior work [11], but we can also transparently
transform layers to structured sparsity if the permutation allows the weight values to remain as they
are; if we make no extra zeros, then there is no fine-tuning necessary. To show the benefit of channel
permutations for this purpose, we begin with a pre-trained ResNet-50 from torchvision.1 By imposing
different amounts of unstructured sparsity on this model’s layers, we can generate plausible patterns
of zeros; even if the resulting network is not very accurate due to the lack of fine-tuning, the zeros in
the weights are in reasonable places. Then, we search for permutations for each layer at each sparsity.
If a permutation is found that results in the same number of nonzero values before and after enforcing

1https://pytorch.org/vision/0.8/models.html
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Figure 4: Permutations increase the number of unstructured sparse layers that can accommodate the
2:4 constraint without making extra zeros. Using deeper greedy searches (optimizing stripe groups
instead of simply swapping channels) and escaping from local minima with bounded regressions
further increase the number successfully-transformed layers.

the 2:4 constraint, then the layer can be transparently transformed. For each of six permutation search
strategies, Figure 4 shows how many layers can be transparently transformed when each layer is
pruned to different sparsities. Permutations allow more layers at each sparsity to be transparently
transformed, and better permutations can further increase this transparently transformable layer count.

6 Conclusion

We propose the use of weight matrix permutations to reduce the impact of pruning with N:M
structured sparsity, adapting prior work [14] to this new type of sparsity. Modifying the resulting
greedy algorithm to use deeper searches by exhaustively optimizing groups of stripes and allowing
bounded regressions help the search escape local minima. Our permutation quality metric, efficacy,
shows a strong correlation with network accuracy improvements, and we show that small, parameter-
efficient networks can use the existing fine-tuning workflow to recover accuracy after undergoing
channel permutations. By limiting permutations to the inner dimension of a network’s matrix
operations, this technique requires only an offline step with no overhead when the model is deployed.

Limitations. While our results suggest that there may be a general workflow to recover accuracy that
does not require as much overhead as the original dense training, we do not have evidence for such a
workflow. Similarly, our heuristic of increasing weight magnitude empirically results in improved
network accuracy, this may not hold in general; other heuristics may perform better.

Potential societal impact. Our technique aims to improve the accuracy of neural networks that
require reduced resources to train and deploy. We do this by changing the order of weights along
the channel dimension; a similar effect comes from using a different random seed to initialize the
network, so societal impacts related to our technique are not readily apparent.

Future work. We see three areas for further study. First, permutations may reduce the number
of fine-tuning samples required to recover the accuracy lost by pruning for networks that already
succeed in maintaining accuracy. Second, there has been recent work in exploring how to train with
N:M sparsity from scratch [37]. It may be possible to include permutations as part of this process by
performing the greedy iterative process over time, amortizing the convergence of the permutation
search over the convergence of the network. Also, to accelerate the data gradient calculation phase
of the backwards pass, N:M sparsity in weights must be transposable: the N:M constraint must
be satisfied on both rows and columns of the weight matrix. In this case, permuting rows may
help reduce the impact of these transposable constraints at the cost of runtime overhead to permute
activations between layers. Finally, we observed significant efficacy improvements when the depth
of the searches was increased by optimizing more groups of stripes but quickly became limited
by processing time. This time could be reduced by parallelizing the search over more processing
resources or finding a more efficient implementation, perhaps by adapting Lehmer codes [17] to
generate unique permutations on the processor where they will be tested. Formulating the problem
for a combinatorial solver may also allow better solutions to be found.

10



Funding Disclosure

This work was supported by Shanghai Municipal Science and Technology Major Project
(No.2021SHZDZX0103); the Shanghai Engineering Research Center of AI & Robotics, Fudan
University, China; and the Engineering Research Center of AI & Robotics, Ministry of Education,
China.

References
[1] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural

networks. J. Emerg. Technol. Comput. Syst., 13(3), Feb. 2017.
[2] Xizi Chen, Jingyang Zhu, Jingbo Jiang, and Chi-Ying Tsui. Tight compression: Compressing cnn model

tightly through unstructured pruning and simulated annealing based permutation. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), pages 1–6, 2020.

[3] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and
Evan Shelhamer. cuDNN: Efficient primitives for deep learning, 2014.

[4] Sara Elkerdawy, Mostafa Elhoushi, Abhineet Singh, Hong Zhang, and Nilanjan Ray. To filter prune, or to
layer prune, that is the question. In Proceedings of the Asian Conference on Computer Vision (ACCV),
November 2020.

[5] Scott Gray, Alec Radford, and Diederik P. Kingma. GPU Kernels for Block-Sparse Weights, Accessed
April 13, 2021. https://openai.com/blog/block-sparse-gpu-kernels/.

[6] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for efficient
neural networks. In Proceedings of the 28th International Conference on Neural Information Processing
Systems, pages 1135–1143, 2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[9] Andrew Howard, Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen, Mingxing Tan, Grace Chu,
Vijay Vasudevan, Yukun Zhu, Ruoming Pang, Hartwig Adam, and Quoc Le. Searching for mobilenetv3.
In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 1314–1324, 2019.

[10] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2261–2269, 2017.

[11] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Seffi Naor, and Daniel Soudry. Accelerated sparse
neural training: A provable and efficient method to find N:M transposable masks, 2021.

[12] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size. CoRR,
abs/1602.07360, 2016.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages
448–456, Lille, France, 07–09 Jul 2015. PMLR.

[14] Yu Ji, Ling Liang, Lei Deng, Youyang Zhang, Youhui Zhang, and Yuan Xie. Tetris: Tile-matching the
tremendous irregular sparsity. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

[15] Eugene Lee and Chen-Yi Lee. Neuralscale: Efficient scaling of neurons for resource-constrained deep
neural networks. In Proceedings of the IEEE International Conference on Computer Vision, pages
1478–1487, 2020.

[16] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: single-shot network pruning based on
connection sensitivity. In ICLR, 2019.

[17] D. H. Lehmer. Teaching combinatorial tricks to a computer. In R. Bellman and M. Hall Jr., editors, Proc.
Symp. App. Math. Combinatorial Analysis, volume 10, pages 179–193. American Mathematical Society,
1960.

[18] Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and Radu Timofte. Group sparsity: The
hinge between filter pruning and decomposition for network compression. In Proceedings of the IEEE
International Conference on Computer Vision, 2020.

[19] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian Sun.
Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings of the IEEE
International Conference on Computer Vision, pages 3296–3305, 2019.

[20] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

[21] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J. Dally. Exploring
the granularity of sparsity in convolutional neural networks. In Proceedings of the IEEE Conference on

11

https://openai.com/blog/block-sparse-gpu-kernels/


Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.
[22] Asit K. Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong

Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. CoRR, abs/2104.08378, 2021.
[23] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for

neural network pruning. In CVPR, 2019.
[24] NVIDIA. NVIDIA Tesla V100 GPU architecture. https://images.nvidia.com/content/

volta-architecture/pdf/volta-architecture-whitepaper.pdf, 2017.
[25] NVIDIA. Automatic SParsity (ASP). https://github.com/NVIDIA/apex/tree/master/apex/

contrib/sparsity, 2020.
[26] NVIDIA. NVIDIA A100 tensor core GPU architecture. https://www.nvidia.com/content/dam/

en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf, 2020.
[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. dAlchBuc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[28] Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. In International Conference on Learning Representations, 2020.

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. IJCV, 115(3):211–252, 2015.

[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[31] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V.
Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[32] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 6105–6114. PMLR,
09–15 Jun 2019.

[33] Huan Wang, Qiming Zhang, Yuehai Wang, and Haoji Hu. Structured pruning for efficient convnets via
incremental regularization. CoRR, abs/1811.08390, 2018.

[34] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep
neural networks. In Proceedings of the 30th International Conference on Neural Information Processing
Systems, NIPS’16, page 2082–2090, Red Hook, NY, USA, 2016. Curran Associates Inc.

[35] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quantization for
deep learning inference: Principles and empirical evaluation. CoRR, abs/2004.09602, 2020.

[36] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transforma-
tions for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1492–1500, 2017.

[37] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li.
Learning N:M fine-grained structured sparse neural networks from scratch. In International Conference on
Learning Representations, 2021.

[38] Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for model
compression. In ICLR Workshops, 2018.

12

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity
https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

