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Abstract

Nowadays, there is an explosive growth of screen contents due to the wide ap-
plication of screen sharing, remote cooperation, and online education. To match
the limited terminal bandwidth, high-resolution (HR) screen contents may be
downsampled and compressed. At the receiver side, the super-resolution (SR)
of low-resolution (LR) screen content images (SCIs) is highly demanded by the
HR display or by the users to zoom in for detail observation. However, image
SR methods mostly designed for natural images do not generalize well for SCIs
due to the very different image characteristics as well as the requirement of SCI
browsing at arbitrary scales. To this end, we propose a novel Implicit Transformer
Super-Resolution Network (ITSRN) for SCISR. For high-quality continuous SR at
arbitrary ratios, pixel values at query coordinates are inferred from image features
at key coordinates by the proposed implicit transformer and an implicit position
encoding scheme is proposed to aggregate similar neighboring pixel values to the
query one. We construct benchmark SCI1K and SCI1K-compression datasets with
LR and HR SCI pairs. Extensive experiments show that the proposed ITSRN
significantly outperforms several competitive continuous and discrete SR methods
for both compressed and uncompressed SCIs.

1 Introduction

Nowadays, screen content images are becoming ubiquitous due to the wide application of screen
sharing and wireless display. Meanwhile, due to the limited bandwidth, screen content images
received by users may be in low-resolution (LR) and users may need to zoom in the content for detail
inspection. Therefore, screen content image super-resolution (SCI SR) is to improve the quality of
LR SCIs.

However, different from natural scene images, SCIs are dominated by the contents generated or
rendered by computers, such as texts and graphics. Such contents highly demanded are characterized
by thin and sharp edges, little color variance, and high contrast. In contrast, the natural scene images
are relatively smooth, and contain rich colors and textures. Conventional image SR methods designed
for nature images are good at modeling the local smoothness of natural images other than the thin
and sharp edges in SCIs. Very recently, Wang et al. [1] proposed a SR method for compressed screen
content videos, which addressed the compression artifacts of screen content videos by introducing a
distortion differential guided reconstruction module. However, their network is still composed of
fully convolution layers without designing specific structures for the thin and sharp edges in screen
contents. In addition, they utilize previous frames to help reconstruct the current frame, which makes
it unsuitable for frame-wise SCI SR.
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Figure 1: Comparison of the proposed Implicit Transformer SR Network (ITSRN) with state-of-
the-art image continuous magnification methods. The ground truth (GT), which has the same
resolution with that of the ×4 upsampling, is visualized at the top row, and its magnification results
(×2.3,×5.125,×10) are obtained by bicubic-interpolation.

On the other hand, conventional SR methods are designed for discrete (i.e., several fixed) magni-
fication ratios [2, 3, 4], making them hard to fit screens with various sizes. Recently, a few SR
methods for continuous magnification have been proposed [5, 6]. Hu et. al. [5] proposed to perform
arbitrary-scale SR with a learnable up-sampling weight matrix based on meta-learning. The work
LIIF [6] introduced the concept of implicit function [7, 8, 9] to image SR. The implicit function,
which attempts to represent images with continuous coordinates and directly maps the coordinates to
values, enables continuous magnification.

In this work, we observe that convolution filters could be harmful to sharp and thin edges in SCIs since
the weight sharing strategy makes them tend to produce a smooth reconstruction result. Therefore,
we propose to render the pixel values by a point-to-point implicit function, which adapts to image
content according to image coordinates and pixel features. Fortunately, this also enables us to perform
continuous magnification for SCIs. We would like to point out that even with the point-to-point
implicit function, reconstructing dense edges are still quite challenging. As shown in Fig. 1, LIIF
[7] cannot reconstruct the dense edges well since it directly concatenates the pixel coordinates and
features together to predict the pixel values, which is not optimal since the two variables have different
physical meanings. As a departure, we reformulate the interpolation process as a transformer and
introduce implicit mapping to model the relationship between pixel coordinates, which are used to
aggregate the pixel feature. Our main contributions are summarized as follows.

• First, we propose a novel Implicit Transformer Super-Resolution Network (ITSRN) for SCI
SR. The LR and HR image coordinates are termed as the “key” and “query”, respectively.
Correspondingly, the LR image pixel features are termed as “value”. In this way, we can
infer pixel values by an implicit transformer, where implicit means we model the relationship
between LR and HR images in terms of coordinates instead of pixel values.

• Second, instead of directly concatenating the coordinates and pixel features to predict the
pixel value, we propose to predict the transform weights with query and key coordinates via
nonlinear mapping, which are then used to transform the pixel features to pixel values. In
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addition, we propose an implicit position encoding to aggregate similar neighboring pixel
values to the central pixel.

• Third, we construct a benchmark dataset with various screen contents for SCI SR. Extensive
experiments demonstrate that the proposed method outperforms the competitive continuous
and discrete SR methods for both compressed and uncompressed screen content images.
Fig. 1 presents an example of our SR results, which demonstrates that the proposed method
is good at reconstructing thin and sharp edges for various magnification ratios.

2 Related Work

2.1 Screen Content Processing

The screen content is generally dominated by texts and graphics rendered by computers, making the
pixel distribution of screen contents totally different from that of natural scenes. Therefore, many
works specifically designed for screen contents are proposed, such as screen content image quality
assessment [10, 11, 12, 13], screen content video (image) compression [14, 15]. However, there is
still no work exploring screen content image SR. Very recently, Wang et al. [1] proposed screen
content video SR, which reconstructed the current frame by taking advantage of the correlations
between neighboring frames, making it cannot deal with image SR. In addition, its main motivation is
solving the SR problem when the videos are degraded by compression other than designing specific
structures for continuously recovering thin and sharp edges in screen contents. In this work, we
address this issue by introducing point-to-point implicit transformation.

2.2 Continuous Image Super-Resolution

Image SR refers to the task of recovering HR images from LR observations. Many deep learning based
methods have been proposed for super-resolving the LR image with a fixed scale [16, 3, 2, 17, 18, 4,
19, 20]. Since the screen contents are usually required to be displayed on screens with various sizes.
Therefore, continuous SR is essential for screen contents. In recent years, several continuous image
SR methods [5, 6] are proposed in order to achieve arbitrary resolution SR. MetaSR [5] introduces a
meta-upscale module to generate continuous magnification but it has limited performance in dealing
with out-of-training-scale upsampling factors. LIIF [6] reformulates the SR process as an implicit
neural representation(INR) problem, which achieves promising results for both in-distribution and
out-of-distribution upsampling ratios. Inspired by LIIF, we utilize the point-to-point implicit function
for SCI SR.

2.3 Implicit Neural Representation

Implicit Neural Representation (INR) usually refers to continuous and differentiable function (e.g.,
MLP), which can map coordinates to a certain signal. INR was widely used in 3D shape modeling [21,
22, 23, 24], volume rendering (i.e., neural radiance fields(Nerf)) [9, 25], and 3D reconstruction [8, 26].
Very Recently, LIIF [6] was proposed for continuous image representation, in which networks took
image coordinates and the deep features around the coordinate as inputs, and then map them to the
RGB value of the corresponding position. Inspired by LIIF, we propose an implicit transformer
network to achieve continuous magnification while retaining the sharp edges of SCIs well.

2.4 Positional Encoding (Mapping)

Positional encoding is critical to exploit the position order of the sequence in transformer networks
[27, 28, 29]. We have to utilize positional encoding to indicate the order of the sequence since
there are no other modules to model the relative or absolute position information in the sequence-
to-sequence model. In the literature, sine and cosine functions are used for positional encoding in
transformer [27]. Coincidentally, we find that the Fourier feature (combined with a set of sinusoids)
based positional mapping is used in the implicit function to improve the convergence speed and
generalization ability [30, 9, 31]. Specifically, a Fourier feature mapping is applied on the input
coordinates to map them to a higher dimensional hypersphere before going through the coordinate-
based MLP. Although the two schemes are proposed based on different motivations, they show
significant effects in representing position information, which further boost the final results. Inspired
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by them, we propose implicit positional encoding to model the relationship between neighboring
pixel values. Here "implicit" means that we do not explicitly encode (map) the coordinates but encode
the pixel values of neighboring coordinates.
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Figure 2: The framework of our proposed ITSRN. The input LR image first goes through a CNN
backbone to generate pixel features. Then the features and key coordinates are upsampled by nearest
neighbor interpolation based on query coordinates. Hereafter, we utilize the proposed implicit
transformer to learn the transform weights with query, key coordinates and scale token, and the pixel
value is obtained via transforming the pixel features with transform weights. Finally, the pixel value
is further refined by the proposed implicit position encoding. The symbols ↑©, -©, c©, and ×© refer to
upsampling, subtraction, concatenation, and matrix product operations respectively.

3 Approach

Figure 2 illustrates the framework of the proposed ITSRN. In the following, we give details for the
proposed implicit transformer network and implicit position encoding.

3.1 Implicit Transformer Network

Let’s first review the process of image interpolation. Suppose we have an LR image IL that needs
to be upsampled. The pixel value of query point q(i, j) in the HR image IH is obtained by fusing
pixel values of its closest key points k(i′, j′) in IL with a weighting matrix. Denoted by Q the query
points in upsampled image, K the key points in the input LR image, and V the feature values on the
corresponding key points. Then, the image interpolator can be reformulated as a transformer [27].
Different from the explicit transformer which takes pixel values as Q and K, the interpolation
transformer deals with pixels’ coordinates instead of their values. Inspired by the implicit function in
NeRF [9], which uses the pixel coordinates to generate RGB values, we reformulate the interpolation
process as Implicit Transformer, and propose a novel Implicit Transformer Network for SCI SR.

The super-resolution process as well as image interpolation is reformulated in terms of implicit
function as

Iq = Φ(q, k, v), (1)

where Iq is the target RGB value that need to be predicted, q is the query coordinate(s) in IH , k is the
key coordinate(s) in IL, and v is the pixel value(s) or feature(s) corresponding to the key coordinate(s).
Note that both q and k are coordinates in the continuous image domain. Φ is a mapping function
which maps coordinates and features to RGB values. In image interpolation, k is the neighboring key
coordinate of q, v are the pixel value of k, Φ is the weighting matrix. In implicit function based SR
method LIIF [6], k is the nearest neighbor coordinate in IL for q in IH , and v is the corresponding
pixel feature of k. LIIF directly concatenates v and the relative coordinate of q from k, and then
utilize the nonlinear mapping Φ realized by a multi-layer perceptron (MLP) to render the pixel value
Iq. It achieves promising results due to the strong fitting ability of the MLP. However, we observe
that directly concatenating the pixel feature and the relative coordinates is not optimal since they
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have different physical meanings. To solve this problem, following the idea of transformer [27], we
reorganize Formula (1) as follows.

Iq = Φ(q, k, v) = φ(q, k)v. (2)

Different from the explicit transformer, here q and k are pixel coordinates other than pixel values.
In other words, we are not learning the the RGB → RGB mapping, but the coordinate→ RGB
mapping. Due to the continuity of coordinates, φ(·) is a continuous projection function, which
computes the transform weights φ(q, k) to aggregate the feature v, i.e., Iq is computed with the
multiplication of φ and v . To further illustrate it, we decompose φ as:

φ(q, k) = f(δ(q, k)), (3)
where the function δ produces a vector that represents the relationship between q and k. Then the
mapping function f projects this vector into another vector, which is then multiplied with feature v
as indicated in Eq. 2.

There are many ways to model the relation function δ, such as dot product and hadamard product
commonly used in transformers [27]. Different from their approaches, in this paper, we utilize
subtraction operation, i.e.,

δ(q, k) = γ(q)− τ(k), (4)
where γ and τ can use trainable functions or identity mapping. In this work, we utilize identity
mapping since it generates similar results as that of trainable functions.

Inspired by ViT’s [32] [class] token, which is extra global information for classification, we augment
the input coordinates with scale information, and name it as [scale] token. It represents the global
magnification factor. With the [scale] token, the implicit transformer can take the shape of the query
pixel as additional information for reconstructing the target RGB value. Although it is feasible to
predict RGB values without [scale] token, it is not optimal since the predicted RGB value should
not be completely independent of its shape 2. The output of δ(q, k) is concatenated with the [scale]
token, and is then fed to the mapping function f . In this way, φ in Formula (3) is reformulated as

φ(q, k) = f([δ(q, k), s]), (5)

where s = (sh, sw) is a two-dimensional scale token, representing the upsampling scale along the
row and column for the query pixel. [δ(q, k), s] means the concatenation of δ(q, k) and s along the
channel dimension. Note that, to avoid large coordinates in HR space, we normalize the coordinates
as

p(i, j) = [−1 +
2i+ 1

H
,−1 +

2i+ 1

W
], i ∈ [0, H − 1], j ∈ [0,W − 1], (6)

where (i, j) represents the spatial location within the RH×W space.

3.2 Implicit Position Encoding

Although we have considered the positional relationship between q and k, we still ignore the relative
position of different query points. Therefore, inspired by the position encoding in explicit transformer,
we propose to introduce implicit position encoding (IPE) to avoid the discontinuity of neighboring
predictions. Here, "Implicit Position Encoding" means that we do not explicitly encode the positional
relationship among the pixel coordinates in the Q sequence since they are already absolute position
coordinates. On the contrary, we encode the pixel value relationships within a local neighborhood.
Chu et al. claimed that convolution, which models the relationship between neighboring pixels, could
be considered as an implicit position encoding scheme [33]. Therefore, we termed Eq.7 as implicit
position encoding. Specifically, we unfold the query within a local window. The final predict value of
the query coordinate is conditioned on its neighbor values. The IPE process is denoted as

Îq =
∑

p∈Ω(q)

w(p, q)Iq, (7)

where Îq is the refined pixel value, Ω(q) is a local window centered at q, w represents the neighbors’
(denoted by p) contribution to the target pixel. In traditional image filtering, w(p, q) is generally
realized by a Gaussian filter or bilateral filter. In this work, we utilize an MLP to learn adaptive
weighting parameters for each q.

2It is surprised to find that our formulation in terms of transformer for the [scale] token is similar to the cell
decoding strategy in LIIF.
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Figure 3: Visual comparison with state-of-the-arts at ×4 SR.

4 Architecture Details of ITSRN

As shown in Figure 2, the proposed ITSRN has three parts, i.e., a CNN backbone to extract compact
feature representations for each pixel, an implicit transformer for mapping coordinates to target
values, and an implicit position encoding that further enhances the target values. In the following, we
give details for the three modules.

Backbone. Given an LR image IL ∈ R3×h×w, we utilize a CNN to extract its feature map
V ∈ Rc×h×w. In our experiments, c = 64. Normally, any CNN without downsampling / upsampling
can be adopted as the feature extraction backbone. To be consistent with LIIF [6], we utilize RDN [18]
(excluding its up-sampling layers) as the backbone. The extracted features V will be used in the
following implicit transformer.

Implicit Transformer. First, inspired by LIIF [6] and MetaSR [5], to enlarge each feature’s local
receptive field, we apply feature unfolding, namely concatenating the features for the pixels in a
local region (3× 3 in this work) to get v′ ∈ Rc×9×1×1. After that, v′ replaces v for the following
processes. All the key coordinates corresponding to the feature vectors construct a coordinate matrix
K ∈ R2×h×w with the same spatial shape as V . The channel dimension is 2, which includes the
row and column coordinates. Similarly, the query coordinates build a matrix Q ∈ R2×H×W , where
H×W is larger than h×w. Therefore, we first utilize the nearest neighbor interpolation to upsample
the coordinates K to the size of Q. Hereafter, we utilize an MLP as the nonlinear mapping function
f(·) (mentioned in Eq. 3) to learn the relationship between the coordinate pairs in upsampled K and
Q. As demonstrated in Eq. 5, f(·) maps the 4-dimensional (coordinates and scale token) input to a
9c-dimensional output(9c× 3 for RGB channels). Finally, the 9c-dimensional output is multiplied by
the corresponding pixel feature v, generating the coarse result for Iq .

Implicit Position Encoding. After obtaining the coarse value Iq, we further utilize IPE to refine
it. In this way, the central pixel can be more continuous with its neighbors. As mentioned in Eq. 7,
we set Ω to 3 × 3 and w for each point is learned via an MLP. The MLP includes two layers, i.e.,
{Linear → Gelu[27]→ Linear}, and the numbers of neurons for the two layers are 256 and 1,
respectively.

5 Experiments

5.1 Datasets

To the best of our knowledge, there is still no SCI SR dataset for public usage. Therefore, we first
build a dataset named SCI1K. It contains 1000 screenshots with various screen contents, including but
not limited to web pages, game scenes, cartoons, slides, documents, etc. Among them, 800 images
with 1280×720 are used for training and validation. The other 200 images with resolution ranging
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Figure 4: Visual comparison with state-of-the-arts for arbitrary SR results. The input is a 48 × 48
patch from an image in SCID [12] test set. All the three models are trained with continuous scales in
the range ×1 ∼ ×4 and are tested for ×10 magnification. Note that the LR input is generated with
×4 downsampling, and there is no groud truth for its ×10 magnification.

from 1280×720 to 2560×1440 are used for testing. To be consistent with previous works [4, 5, 6, 18],
we utilize bicubic downsampling to synthesize the LR images. In addition, to simulate the degradation
introduced in transmission and storage, we build another dataset, named SCI1K-compression, by
utilizing JPEG compression to further degrade the LR images. The quality factor of JPEG is randomly
selected from 75, 85, and 95.

To evaluate the generalization of the trained model, besides our test set, we also test on two other
screen content datasets constructed for image quality assessment, i.e., SCID (including 40 images with
resolution 1280×720 ) [12] and SIQAD (including 20 images with resolution around 600×800)[13].

5.2 Training Details

In the training phase, to simulate continuous magnification, the downsampling scale is sampled in
a uniform distribution U(1, 4). We then randomly crop 48 × 48 patches from the LR images and
augment them via flipping and rotation.

Following [18], we utilize the `1 distance between the reconstructed image and the ground truth as the
loss function. The Adam [34] optimizer is used with beta1=0.9 and beta2=0.999. All the parameters
are initialized with He initialization and the whole network is trained end-to-end. Following [6], the
learning rate starts with 1e− 4 for all modules and decays in half every 200 epochs. We parallelly
run our ITSRN-RDN on two GeForce GTX 1080Ti GPU with mini-batch size 16 and it cost 2 days
to reach convergence (about 500 epochs). During the test, we directly feed the whole LR image into
our network (as long as the graphic memory is sufficient) to generate the SR result.

5.3 Comparison with State-of-the-arts

To demonstrate the effectiveness of the proposed SR strategy, we compare our method with state-of-
the-art continuous SR methods, i.e., MetaSR [5] and LIIF [6]. We also compare with the discrete
SR methods, i.e., RDN [18] and RCAN [4], which are state-of-the-art natural image SR methods.
Since RDN and RCAN rely on specific up-sampling modules, they have to train different models
for different upsampling scales and cannot be tested for the scales not in the training set. For a
fair comparison, we retrain all the compared methods using our training set with the recommended
parameters and codes released by the authors. Note that, during test, we downsample the ground
truth with different ratios to generate the LR inputs for different magnification ratios. For larger
magnification ratios, the details are fewer in its corresponding LR input.

7



Table 1: Quantitative comparison on SCI1K and SCI1K-compression test sets in terms of PSNR
(dB). The best (second best) results are in red (blue). RDN [18] and RCAN [4] use different models
for different upsampling scales. MetaSR [5], LIIF [6] and ITSRN(ours) use one model for all the
upsampling scales, and the three models are trained with continuous random scales uniformly sampled
from ×1 ∼ ×4.

Method
Dataset: SCI1K Dataset: SCI1K-compression

In-training-scale Out-of-training-scale In-training-scale Out-of-training-scale
×2 ×3 ×4 ×5 ×7 ×9 ×2 ×3 ×4 ×5 ×7 ×9

Bicubic [18] 28.81 25.15 23.18 22.02 20.72 19.96 28.28 24.87 22.99 21.84 20.58 19.84
RDN [18] 38.45 33.59 29.81 - - - 35.16 30.60 27.17 - - -
RCAN [4] 38.61 33.91 30.80 - - - 35.25 31.15 27.78 - - -

MetaSR-RDN [5] 38.57 33.67 30.12 27.52 23.91 22.02 35.20 30.96 27.63 25.31 22.57 21.30
LIIF-RDN [6] 38.65 33.97 30.55 27.77 23.99 22.18 35.43 31.07 27.69 25.27 22.59 21.36

ITSRN-RDN(Ours) 38.74 34.32 30.82 28.15 24.36 22.36 35.53 31.31 28.02 25.62 22.79 21.45

Table 2: Quantitative evaluation on SCI quality assessment datasets in terms of PSNR (dB). The best
(second best) results are in red (blue). RDN [18] and RCAN [4] train different models for different
upsampling scales. The rest methods train one model for all the upsampling scales. All the models
are trained on the SCI1K training set.

Dataset Method In-training-scale Out-of-training-scale
×2 ×3 ×4 ×5 ×6 ×7 ×8 ×9 ×10

SCID [12]

RDN [18] 34.00 28.34 25.74 - - - - - -
RCAN [4] 33.90 28.98 26.02 - - - - - -

MetaSR-RDN [5] 33.84 29.08 25.76 23.62 22.38 21.59 21.07 20.71 20.41
LIIF-RDN [6] 34.24 29.10 25.89 23.77 22.53 21.73 21.21 20.84 20.54
ITSRN-RDN 34.19 29.46 26.22 23.96 22.64 21.80 21.26 20.87 20.56

SIQAD [13]

RDN [18] 33.53 26.89 23.38 - - - - - -
RCAN [4] 32.87 27.27 23.69 - - - - - -

MetaSR-RDN [5] 34.12 28.40 23.55 21.18 20.18 19.63 19.25 18.94 18.65
LIIF-RDN [6] 34.31 28.27 23.44 21.16 20.25 19.70 19.36 19.02 18.70
ITSRN-RDN 34.68 29.07 24.03 21.44 20.38 19.77 19.40 19.09 18.79

Table 1 and Table 2 present the quantitative comparison results on different datasets. Table 1 lists the
average SR results for 200 screen content images in our SCI1K and SCI1K-compression test sets.
All the methods are retrained on the corresponding training sets of SCI1K and SCI1K-compression.
It can be observed that our method consistently outperforms all the compared methods. Compared
with RDN, which is our backbone, our method achieves nearly 1 dB gain at ×4 SR on SCI1K test
set. Compared with the competitive RCAN, our method still achieves nearly 0.4 dB gain at ×3
upsampling for the uncompressed dataset. Note that at ×4 SR, the result of our method is similar
as that of RCAN. The main reason is that our backbone RDN generates much worse results than
RCAN at ×4 SR. If we change our backbone to more powerful structures, our results could also be
further improved. For the scales that are not used in the training process (denoted by out-of-training-
scales), RDN and RCAN are not applicable. Meanwhile, our method outperforms the continuous
SR methods (i.e., MetaSR and LIIF), which demonstrates that the proposed implicit transformer
scheme is superior in modeling both coordinates and features. Table 2 presents the SR results on
two SCI quality assessment datasets. Since the images in the two datasets are not compressed, we
directly utilize the models trained on SCI1K training set to test. It can be observed that our method
still outperforms the compared methods.

Besides visual results in Fig. 1, Fig. 3 presents an example of the qualitative comparison results on
SCI1K test set3. It can be observed that our method recovers more realistic edges of characters than
the compared methods. Fig. 4 presents the visual results for ×10 SR. It can be observed that our
method reconstructs the thin edges better than the compared methods at large magnification ratios.

3More visual comparison results are presented in the supplementary file.
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Table 3: Ablation study for scale token and implicit position encoding. The PSNR/SSIM results are
the averaging results on all the SCI1K test images.

Scale token × X × X
implicit position encoding × × X X

In-training-scale(×4) PSNR 30.43 30.60 30.76 30.82
SSIM 0.9329 0.9351 0.9353 0.9364

Out-of-training-scale(×6) PSNR 25.94 25.95 26.05 26.00
SSIM 0.8686 0.8715 0.8725 0.8746

5.4 Ablation Study Results

In this section, we perform ablation study to demonstrate the effectiveness of the proposed modules.
Table 3 lists quantitative comparison results on SCI1K test set. It can be observed that the scale
token and implicit position encoding totally contributes 0.39 dB to the final SR result at ×4 SR. Even
for the out-of-training-scales, the two modules also contribute 0.06 dB gain. Note that, the gain is
lower for larger magnification factor is because that the thin edges in screen contents are hardly to be
distinguished after ×6 downsampling. Therefore, it is difficult to bring gains with scale token and
position encoding.

Table 4: Comparison of using different realizations of the weight w in IPE. "Fixed" means w is
calculated based on the spatial distance between the query and its neighbors."Learned" refers to
learning w via an MLP, which is used in this work.

Weight w in IPE In-training-scale Out-of-training-scale
×2 ×3 ×4 ×5 ×7 ×9 ×24 ×40

Fixed 35.27 31.03 27.78 25.47 22.78 21.45 18.42 17.31
Learned 35.53 31.31 28.02 25.62 22.79 21.45 18.40 17.29

Table 5: Comparison of SR performance with different training scales.

Scale ×4 ×6 ×8 ×10
Training scale ×2-×4 30.82 26.00 23.16 21.77
Training scale ×2-×8 30.83 26.37 23.59 21.86

We also conduct ablation study on the w in IPE by changing it to different realizations. Table 4 lists
the SR results on SCI1K-compression test set. From the table, we can observe that our proposed
learnable scheme is superior to the fixed scheme when the input LR images suffer from JPEG
compression. This is because that, with JPEG compression, the neighboring information can help
alleviate the compression artifacts and the fixed distance based weighting strategy is not suitable in
this case. Note that, for very large magnification ratios, the learned w is slightly inferior to the fixed
w by 0.02 dB since the heavy distortions in the LR input may confuse the learning process. Besides,
we conduct ablation study on the training scales. As shown in Table 5, the SR results at ×6 and ×8
upsampling with training scales ×2−×8 are better than that with training scale ×2−×4. The main
reason is that the scales of ×6 and ×8 are in the range of the second training scales. In addition, the
second strategy is also beneficial for ×10 upsampling. This indicates us that using wide distributed
training scales is better than using narrow distributed training scales.

5.5 Discussion

The most related work to our proposed ITSRN is LIIF [6], which utilizes implicit function for
continuous SR. However, it directly concatenates the image coordinate and its CNN feature, and
then map them to the RGB value via an MLP. Different from it, we reformulate the SR process as
an implicit transformer. There are two MLPs in our scheme. The first MLP is utilized to model the
relationship between pixel coordinates. Then the "relationship” is multiplied by the pixel features
to generate the pixel value, which can also be termed as an attention strategy. The second MLP is
utilized for implicit position encoding, which is useful to keep the continuous of the reconstructed
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pixels. The experiment results also demonstrate that the proposed two strategies make our method
consistently outperform LIIF on all the four test sets.

6 Conclusion

In this paper, we propose a novel arbitrary-scale SR method for screen content images. With the
proposed implicit transformer and implicit position encoding modules, the proposed method achieves
the best results on four datasets at various magnification ratios. Due to the continuous magnification
ability, our method enables users to display the received screen contents on screens with various sizes.
In addition, we construct the first SCI SR dataset, which will facilitate more research on this topic.

Note that, although our method outperforms state-of-the-arts on screen content images, it may not
work the best for natural images at a fixed magnification ratio. The main reason is that our method is
designed for SCIs with high contrast and dense edges, which are suitable to be modeled by point-to-
point mapping. Besides, we simulate the degradation process with bicubic and JPEG compression,
which may be different from the actual degradation in transmission and acquisition. Thus, there will
be limitation in practical applications. In the future, we would like to develop blind distortion based
SCI SR to make our model adapt to real scenarios better.
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Broader Impact

This work is an exploratory work on screen content images super-resolution with arbitrary-scale
magnification. The constructed dataset can facilitate research on this topic. In addition, the proposed
method can be combined with image (video) compression technology to enable screen contents
transmission with limited bandwidth. As for societal influence, this work will improve the quality of
pictures displayed on the screen of any resolution. However, We would like to point out that SR is
actually predicting (hallucinating) new pixels, which may make the image deviate from the ground
truth. Therefore, image SR has a weak link with deep fakes. It is worth noting that the positive social
impact of this technology far exceeds the potential problems. We call on people to use this technology
and its derivative applications without harming the personal interests of the public.
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