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Abstract

It is generally recognized that finite learning rate (LR), in contrast to infinitesimal
LR, is important for good generalization in real-life deep nets. Most attempted
explanations propose approximating finite-LR SGD with Itô Stochastic Differential
Equations (SDEs), but formal justification for this approximation (e.g., (Li et al.,
2019a)) only applies to SGD with tiny LR. Experimental verification of the approx-
imation appears computationally infeasible. The current paper clarifies the picture
with the following contributions: (a) An efficient simulation algorithm SVAG that
provably converges to the conventionally used Itô SDE approximation. (b) A theo-
retically motivated testable necessary condition for the SDE approximation and its
most famous implication, the linear scaling rule (Goyal et al., 2017), to hold. (c)
Experiments using this simulation to demonstrate that the previously proposed SDE
approximation can meaningfully capture the training and generalization properties
of common deep nets.

1 Introduction
Training with Stochastic Gradient Gescent (SGD) (1) and finite learning rate (LR) is largely considered
essential for getting best performance out of deep nets: using infinitesimal LR (which turns the
process into Gradient Flow (GF)) or finite LR with full gradients results in noticeably worse test
error despite sometimes giving better training error (Wu et al., 2020; Smith et al., 2020; Bjorck et al.,
2018).

Mathematical explorations of the implicit bias of finite-LR SGD toward good generalization have
focused on the noise arising from gradients being estimated from small batches. This has motivated
modeling SGD as a stochastic process and, in particular, studying Stochastic Differential Equations
(SDEs) to understand the evolution of net parameters.

Early attempts to analyze the effect of noise try to model it as as a fixed Gaussian (Jastrzebski
et al., 2017; Mandt et al., 2017). Current approaches approximate SGD using a parameter-dependent
noise distribution that match the first and second order moments of of the SGD (Equation (2)). It is
important to realize that this approximation is heuristic for finite LR, meaning it is not known whether
the two trajectories actually track each other closely. Experimental verification seems difficult because
simulating the (continuous) SDE requires full gradient/noise computation over suitably fine time
intervals. Recently, Li et al. (2017, 2019a); Feng et al. (2017); Hu et al. (2019) provided rigorous
proofs that the trajectories are arbitrarily close in a natural sense, but the proof needs the LR of
SGD to be an unrealistically small (unspecified) constant so the approximation remains heuristic.
In the worst case, the LR needs to be exponentially small, i.e., e�⌦(T ), where T is the continuous
training time. Furthermore, noise plays no role in these approximation analyses and the same analysis
indeed shows GD, SGD and SDE all converge weakly to GF at the same rate. Thus whenever their
requirements for LR are met, there should be no performance difference between SGD and full-batch
GD. However, for a common practical LR choice we observe some difference in Figure 1, indicating
that the LR is usually outside of the regime their result requires.
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Setting aside the issue of correctness of the SDE approximation, there is no doubt it has yielded impor-
tant insights of practical importance, especially the linear scaling rule (LSR; see Definition 2.1) relat-
ing batch size and optimal LR, which allows much faster training using high parallelism (Krizhevsky,
2014; Goyal et al., 2017). However, since the scaling rule depends upon the validity of the SDE
approximation, it is not mathematically understood when the rule fails. (Empirical investigation, with
some intuition based upon analysis of simpler models, appears in (Goyal et al., 2017; Smith et al.,
2020).

This paper casts new light on the SDE approximation via the following contributions:

1. A new and efficient numerical method, Stochastic Variance Amplified Gradient (SVAG),
to test if the trajectories of SGD and its corresponding SDE are close for a given model,
dataset, and hyperparameter configuration. In Theorem 4.3, we prove (using ideas similar to
Li et al. (2019a)) that SVAG provides an order-1 weak approximation to the corresponding
SDE. (Section 4)

2. Empirical testing showing that the trajectory under SVAG converges and closely follows
SGD, suggesting (in combination with the previous result) that the SDE approximation can
be a meaningful approach to understanding the implicit bias of SGD in deep learning.

3. New theoretical insight into the observation in (Goyal et al., 2017; Smith et al., 2020) that
linear scaling rule fails at large LR/batch sizes (Section 5). It applies to networks that use
normalization layers (scale-invariant nets in Arora et al. (2019b)), which includes most
popular architectures. We give a necessary condition for the SDE approximation to hold: at
equilibrium, the squared gradient norm must be smaller than its variance.

2 Preliminaries and Overview

We use | · | to denote the `2 norm of a vector and ⌦ to denote the tensor product. Stochastic Gradient
Descent (SGD) is often used to solve optimization problems of the form minx2Rd L(x) := E�L�(x)
where {L� : � 2 �} is a family of functions from Rd to R and � is a �-valued variable, e.g., denoting
a random batch of training data. We consider the general case of an expectation over arbitrary index
sets and distributions.

xk+1 = xk � ⌘rL�k(xk), (SGD) (1)

where each �k is an i.i.d. random variable with the same distribution as �. Taking learning rate
(LR) ⌘ toward 0 turns SGD into (deterministic) Gradient Descent (GD) with infinitesimal LR, also
called Gradient Flow. Infinitesimal LR is more compatible with traditional calculus-based analyses,
but SGD with finite LR yields the best generalization properties in practice. Stochastic processes
give a way to (heuristically) model SGD as a continuous-time evolution (i.e., stochastic differential
equation or SDE) without ignoring the crucial role of noise. Driven by the intuition that the benefit of
SGD depends primarily on the covariance of noise in gradient estimation (and not, say, the higher
moments), researchers arrived at following SDE for parameter vector Xt:

dXt = �rL(Xt)dt+ (⌘⌃(Xt))
1/2dWt (SDE approximation) (2)

where Wt is Wiener Process, and ⌃(X) := E[(rL�(X) � rL(X))(L�(X)�rL(X))>] is the
covariance of the gradient noise. When the gradient noise is modeled by white noise as above, it is
called an Itô SDE. Replacing Wt with a more general distribution with stationary and independent
increments (i.e., a Lévy process, described in Definition A.1) yields a Lévy SDE.

The SDE view—specifically, the belief in key role played by noise covariance—motivated the famous
Linear Scaling Rule, a rule of thumb to train models with large minibatch sizes (e.g., in highly parallel
architectures) by changing LR proportionately, thereby preserving the scale of the gradient noise.
Definition 2.1 (Linear Scaling Rule (LSR)). (Krizhevsky, 2014; Goyal et al., 2017) When multiply-
ing the minibatch size by  > 0, multiply the learning rate (LR) also by .

If the SDE approximation accurately captures the SGD dynamics for a specific training setting, then
LSR should work; however, LSR can work even when the SDE approximation fails. We hope to (1)
understand when and why the SDE approximation can fail and (2) provide provable and practically
applicable guidance on when LSR can fail. Experimentally verifying if the SDE approximation is
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Figure 1: Non-Gaussian noise is not essential to SGD performance. SGD with batch size 125 and NGD with
matching covariance have close train and test curves when training on CIFAR-10. ⌘ = 0.8 for all three settings
and is decayed by 0.1 at step 24000. GD achieves 75.5% test accuracy, and SGD and NGD achieve 89.4% and
89.3%, respectively. We smooth the training curve by dividing it into intervals of 100 steps and recording the
average. For efficient sampling of Gaussian noise, we use GroupNorm instead of BatchNorm and turn off data
augmentation. The sudden drop of accuracy when using GD is not a coincidence, but a consequence of interplay
between normalization and Weight Decay. See more discussion and implementation details in Appendix F.3.

valid is computationally challenging, because it requires repeatedly computing the full gradient and
the noise covariance at very fine time intervals, e.g. the Euler-Maruyama method Equation (16). We
are not aware of any empirical verification using conventional techniques, which we discuss in more
detail in Appendix A.1. Section 4 gives a new, tractable simulation algorithm, SVAG, and presents
theory and experiments suggesting it is a reasonably good approximation to both the SDE and SGD.

Formalizing closeness of two stochastic processes. Two stochastic processes (e.g., SGD and
SDE) track each other closely if they lead to similar distributions on outcomes (e.g., trained nets).
Mathematics formulates closeness of distributions in terms of expectations of suitable classes of test
functions1; see Section 4.2. The test functions of greatest interest for ML are of course train and test
error. These do not satisfy formal conditions such as differentiability assumed in classical theory but
can be still used in experiments (see Figure 4). Section 5 uses test functions such as weight norm |xt|,
gradient norm |rL(xt)| and trace of noise covariance Tr[⌃(xt)] and proves a sufficient condition for
the failure of SDE approximation.

Mathematical analyses of closeness of SGD and SDE will often consider the discrete process

x̂k+1 = x̂k � ⌘rL(x̂k) + ⌘⌃
1
2 (x̂k)zk, (Noisy Gradient Descent/NGD) (3)

where zk
i.i.d.
⇠ N(0, Id). A basic step in analysis will be the following Error Decomposition:

Eg(X⌘k)� Eg(xk) = (Eg(X⌘k))� Eg(x̂k))| {z }
Discretization Error

+ (Eg(x̂k)� Eg(xk))| {z }
Gap due to non-Gaussian noise

(4)

Understanding the failure caused by discretization error: In Section 5, a testable condition of
SDE approximation is derived for scale-invariant nets (i.e. nets using normalization layers). This
condition only involves the Noise-Signal-Ratio, but not the shape of the noise. We further extend this
condition to LSR and develops a method predicting the largest batch size at which LSR succeeds,
which only takes a single run with small batch size.

2.1 Understanding the Role of Non-Gaussian Noise

Some works have challenged the traditional assumption that SGD noise is Gaussian. Simsekli et al.
(2019); Nguyen et al. (2019) suggested that SGD noise is heavy-tailed, which Zhou et al. (2020)
claimed causes adaptive gradient methods to generalize better than SGD. Xie et al. (2021) argued
that the experimental evidence in (Simsekli et al., 2019) made strong assumptions on the nature of
the gradient noise, and we furthermore prove in Appendix B.3 that their measurement method could
flag Gaussian distributions as non-Gaussian. Below, we clarify how the Gaussian noise assumption
interacts with our findings.

Non-Gaussian noise is not essential to SGD performance. We provide experimental evidence
in Figure 1 and Appendix F.3 that SGD (1) and NGD (3) with matching covariances achieve

1The discriminator net in GANs is an example of test function in machine learning.
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similar test performance on CIFAR10 ( ⇠ 89%), suggesting that even if the gradient noise in SGD
is non-Gaussian, modeling it by a Gaussian estimation is sufficient to understand generalization
properties. Similar experiments were conducted in (Wu et al., 2020) but used SGD with momentum
and BatchNorm, which prevents the covariance of NGD noise from being equal to that of SGD.
These findings confirm the conclusion in (Cheng et al., 2020) that differences in the third-and-higher
moments in SGD noise don’t affect the test accuracy significantly, though differences in the second
moments do.

LSR can work when SDE approximation fails. We note that (Smith et al., 2020) derives LSR
(Definition 2.1) by assuming the Itô SDE approximation (2) holds, but in fact the validity of the SDE
approximation is a sufficient but not necessary condition for LSR to work. In Section B.1, we provide
a concrete example where LSR holds for all LRs and batch sizes, but the dynamics are constantly
away from the Itô SDE limit. This example also illustrates that the failure of the SDE approximation
can be caused solely by non-Gaussian noise, even when there is no discretization error (i.e., the loss
landscape and noise distribution are parameter-independent).

SVAG does not require Gaussian gradient noise. In Section 4, we present an efficient algorithm
SVAG to simulate the Itô SDE corresponding to a given training setting. In particular, Theorem 4.3
reveals that SVAG simultaneously causes the discretization error and the gap by non-Gaussian noise
to disappear as it converges to the SDE approximation. From Figure 4 and Appendix F.1, we can
observe that for vision tasks, the test accuracy of deep nets trained by SGD in standard settings
stays the same when interpolating towards SDE via SVAG, suggesting that neither the potentially
non-Gaussian nature of SGD noise nor the discrete nature of SGD dynamics is an essential ingredient
of the generalization mystery of deep learning.

3 Related Work

Applications of the SDE approximation in deep learning. One component of the SDE approxi-
mation is the gradient noise distribution. When the noise is an isotropic Gaussian distribution (i.e.,
⌃(Xt) ⌘ I), then the equilibrium of the SDE is the Gibbs distribution. Shi et al. (2020) used an
isotropic Gaussian noise assumption to derive a convergence rate on SGD that clarifies the role of
the LR during training. Several works have relaxed the isotropic assumption but assume the noise is
constant. Mandt et al. (2017) assumed the covariance ⌃(X) is locally constant to show that SGD can
be used to perform Bayesian posterior inference. Zhu et al. (2019) argued that when constant but
anisotropic SGD noise aligns with the Hessian of the loss, SGD is able to more effectively escape
sharp minima. When noise covariance ⌃(Xt) is uniformly positive definite, Hu et al. (2019) showed
that SDE approximation Equation (2) escapes strict saddle points in O(ln ⌘�1) time, which matches
the O(⌘�1 ln ⌘�1) escaping rate for SGD (Fang et al., 2019; Jin et al., 2017).

Recently, many works have used the most common form of the SDE approximation (2) with parameter-
dependent noise covariance. Li et al. (2020) and Kunin et al. (2020) used the symmetry of loss
(scale invariance) to derive properties of dynamics (i.e., ⌃(Xt)Xt = 0). Li et al. (2020) further used
this property to explain the phenomenon of sudden rising error after LR decay in training. Smith
et al. (2020) used the SDE to derive the linear scaling rule (Goyal et al. (2017) and Definition 2.1)
for infinitesimally small LR. Xie et al. (2021) constructed a SDE-motivated diffusion model to
propose why SGD favors flat minima during optimization. Cheng et al. (2020) analyzed MCMC-like
continuous dynamics and construct an algorithm that provably converges to this limit, although their
dynamics do not model SGD.

Theoretical Foundations of the SDE approximation for SGD. Despite the popularity of using
SDEs to study SGD, theoretical justification for this approximation has generally relied upon tiny
LR (Li et al., 2019a; Hu et al., 2019). Cheng et al. (2020) proved a strong approximation result
for an SDE and MCMC-like dynamics, but not SGD. Wu et al. (2020) argued that gradient descent
with Gaussian noise can generalize as well as SGD, but their convergence proof also relied on an
infinitesimally small LR.

LR and Batch Size. It is well known that using large batch size or small LR will lead to worse
generalization (Bengio, 2012; LeCun et al., 2012). According to (Keskar et al., 2017), generalization
is harmed by the tendency for large-batch training to converge to sharp minima, but Dinh et al. (2017)
argued that the invariance in ReLU networks can permit sharp minima to generalize well too. Li et al.
(2019b) argued that the LR can change the order in which patterns are learned in a non-homogeneous
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Figure 2: Itô SDE (2), SVAG (5), and SGD (1) trajectories (blue) sampled from a distribution (green). Li et al.
(2019a) show that 8T, 9⌘ such that SDE (a) and SGD (c) are order-1 weak approximations (Definition 4.2) of
each other. Our result (Theorem 4.3) shows that 8T, ⌘, 9l such that SDE (a) and SVAG (b) are order-1 weak
approximations of each other. In particular, Li et al. (2019a) requires an infinitesimal ⌘ and our result holds for
finite ⌘.

synthetic dataset. Several works (Hoffer et al., 2017; Smith and Le, 2018; Chaudhari and Soatto,
2018; Smith et al., 2018) have had success using a larger LR to preserve the scale of the gradient
noise and hence maintain the generalization properties of small-batch training. The relationship
between LR and generalization remains hazy, as (Shallue et al., 2019) empirically demonstrated that
the generalization error can depend on many other training hyperparameters.

4 Stochastic Variance Amplified Gradient (SVAG)

Experimental verification of the SDE approximation appears computationally intractable by traditional
methods. We provide an algorithm, Stochastic Variance Amplified Gradient (SVAG), that efficiently
simulates and provably converges to the Itô SDE (2) for a given training setting (Theorem 4.3).
Moreover, we use SVAG to experimentally verify that the SDE approximation closely tracks SGD for
many common settings (Figure 4; additional settings in Appendix F).

4.1 The SVAG Algorithm

For a chosen hyperparameter l 2 N+, we define

xk+1 = xk �
⌘

l
rL

l
�̄k
(xk), (5)

where �̄k = (�k,1, �k,2) with �k,1, �k,2 sampled independently and

L
l
�̄k
(·) :=

1 +
p
2l � 1

2
L�k,1(·) +

1�
p
2l � 1

2
L�k,2(·).

SVAG is equivalent to performing SGD on a new distribution of loss functions constructed from the
original distribution: the new loss function is a linear combination of two independently sampled
losses L�k,1 and L�k,2 , usually corresponding to the losses on two independent batches. This ensures
that the expected gradient is preserved while amplifying the gradient covariance by a factor of l, i.e.,p⌘

l ⌃
l(x) =

p
⌘⌃1(x), where ⌃l(x) := E[(rL

l
�̄(x) �rL

l(x))(Ll
�̄(x)�rL

l(x))
>
]. Therefore,

the Itô SDE that matches the first and second order moments is always (2). We note that SVAG
is equivalent to SGD when l = 1, and both the expectation and covariance of the one-step update
(xk+1 � xk) are proportional to 1/l, meaning the direction of the update is noisier when l increases.

4.2 SVAG Approximates the SDE

Definition 4.1 (Test Functions). Class G of continuous functions Rd
! R has polynomial growth if

8g 2 G there exist positive integers 1,2 > 0 such that for all x 2 Rd, |g(x)|  1(1 + |x|
22).

For ↵ 2 N+, we denote by G
↵ the set of ↵-times continuously differentiable functions g where all

partial derivatives of form @↵g
@x

↵1
1 ···@x↵d

d

s.t.
Pd

i=1 ↵i = ↵  ↵, are also in G.

Definition 4.2 (Order-↵ weak approximation). Let {X⌘
t : t 2 [0, T ]} and {x

⌘
k}

bT
⌘ c

k=0 be families of
continuous and discrete stochastic processes parametrized by ⌘. We say {X

⌘
t } and {x

⌘
k} are order-↵

5



weak approximations of each other if for every g 2 G
2(↵+1), there is a constant C > 0 independent

of l such that
max

k=0,...,bT
⌘ c

���Eg(x⌘
k)� Eg(X⌘

k⌘)
���  C⌘

↵
.

When applicable, we drop the superscript ⌘, and say {Xt} and {xk} are order-↵ (or ↵ order)
approximations of each other.

We now show that SVAG converges weakly to the Itô SDE approximation in (2) when l ! 1, i.e.,
xlk and Xk⌘ have the roughly same distribution. Figure 2 highlights the differences between our
result and (Li et al., 2019a). Figure 4 provide verification of the below theorem, and additional
settings are studied in Appendix F.
Theorem 4.3. Suppose the following conditions2 are met:

(i) L ⌘ EL� is C1-smooth, and L 2 G
4.

(ii) |rL�(x)�rL�(y)|  L� |x� y|, for all x, y 2 Rd, where L� > 0 is a random variable
with finite moments, i.e., ELk

� is bounded for k 2 N+.
(iii) ⌃

1
2 (X) is C1-smooth in X .

Let T > 0 be a constant and l be the SVAG hyperparameter (5). Define {Xt : t 2 [0, T ]} as the
stochastic process (independent of ⌘) satisfying the Itô SDE (2) and {x

⌘/l
k : 1  k  blT/⌘c} as the

trajectory of SVAG (5) where x0 = X0. Then, SVAG {x
⌘/l
k } is an order-1 weak approximation of the

SDE {Xt}, i.e. for each g 2 G
4, there exists a constant C > 0 independent of l such that

max
k=0,...,blT/⌘c

|Eg(x⌘/l
k )� Eg(X k⌘

l
)|  Cl

�1
.

Remark 4.4. Lipschitz conditions like (ii) are often not met by deep learning objectives. For instance
using normalization schemes can make derivatives unbounded, but if the trajectory {xt} stays
bounded away from the origin and infinity, then (ii) holds.
Remark 4.5. Though technically the weak approximation result (Theorem 4.3) only applies when
the stochastic gradient is sampled independently at each step, experimentally we found the difference
between performance of SGD and SVAG is negligible among different sampling methods, including
random shuffling, sampling with and without replacement. (See detailed discussions in Appendix F.1
and Figure 7) This experimental evidence suggests the validity of SDE approximation doesn’t change
with sampling methods used in practice.

4.3 Proof Overview

Let {Xx,s
t : t � s} denote the stochastic process obeying the Itô SDE (2) starting from time s and

with the initial condition X
x,s
s = x and {x

x,j
k : k � j} denote the stochastic process (depending on

l) satisfying SVAG (5) with initial condition x
x,j
j = x. For convenience, we define eXk := X k⌘

l
and

write eXx,j
k := X

x, j⌘l
k⌘
l

. Alternatively, we write eXk(x, j) := eXx,j
k and xk(x, j) := x

x,j
k .

Now for any 1  k  b
lT
⌘ c, we interpolate between a SVAG solution xk and SDE solution eXk

through a series of hybrid trajectories eXk(xj , j), i.e., the weight achieved by running SVAG for the
first j steps and then SDE from time j to k. The two limits of the interpolation are eXk(xk, k) = xk

(i.e., SVAG solution after k steps) and eXk(x0, 0) = eXk (i.e., SDE solution after k time). This yields
the following error decomposition for a test function g 2 G (see Definition 4.1).

|Eg(xk)� Eg(X k⌘
l
)| = |Eg(xk)� Eg( eXk)| 

Xk�1

j=0

���Eg( eXk(xj+1, j + 1))� Eg( eXk(xj , j))
���

Note that each pair of adjacent hybrid trajectories only differ by a single step of SVAG or SDE.
We show that the one-step increments of SVAG and SDE are close in distribution along the entire
trajectory by computing their moments (Lemmas 4.6 and 4.7). Then, using the Taylor expansion of g,
we can show that the single-step approximation error from switching from SVAG to SDE is uniformly
upper bounded by O(⌘

2

l2 ). (See Figure 6 for demonstration) Hence, the total error is O(k ⌘2

l2 ) = O(⌘l ).
2The C1 smoothness assumptions can be relaxed by using the mollification technique in Li et al. (2019a).
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Lemma 4.6. Define the one-step increment of the Itô SDE as e�(x) = eXx,0
1 � x. Then we have

(i) Ee�(x) = �
⌘
l rL(x) +O(l�2), (ii) Ee�(x)e�(x)> = ⌘2

l ⌃(x) +O(l�2),

(ii) Ee�(x)⌦3 = O(l�2), (iv)
q

E|e�(x)⌦4|2 = O(l�2).

Lemma 4.7. Define the one-step increment of SVAG as �(x) = x
x,0
1 � x. Then we have

(i) E�(x) = �
⌘
l rL(x),

(ii) E�(x)�(x)> = ⌘2

l ⌃(x) +
⌘2

l2 rL(x)rL(x)> = ⌘2

l ⌃(x) +O(l�2),

(iii) E�(x)⌦3 = ⌘3

l2
3�l�1

2 ⇤(x) + ⌘3

l3

⇣
3rL(x)⌦ ⌃(x) +rL(x)⌦3

⌘
= O(l�2)

(iv)
p
E|�(x)⌦4|2 = O(l�2),

where ⇤(x) := E(rL�1(x)�rL(x))⌦3, and T denotes the symmetrization of tensor T , i.e.,
T ijk = 1

6

P
i0,j0,k0 Ti0j0k0 , where i

0
, j

0
, k

0 sums over all permutation of i, j, k.

Though (i) and (ii) in Lemma 4.7 hold for any discrete update with LR = ⌘
l that matches the first

and second order moments of SDE (2), (iii) and (iv) could fail. For example, when decreasing LR
according to LSR (Definition 2.1), even if we can use a fractional batch size and sample an infinitely
divisible noise distribution, we may arrive at a different continuous limit if (iii) and (iv) are not
satisfied. (See a more detailed discussion in Appendix B.2) SVAG is not the unique way to ensure (iii)
and (iv), and any other design (e.g. using three copies per step and with different weights) satisfying
Lemma 4.7 are also first order approximations of SDE (2), by the same proof.

5 Understanding the Failure of SDE Approximation and LSR

In this section, we analyze how discretization error, caused by large LR, leads to the failure of the
SDE approximation (Section 5.1) and LSR (Section 5.2) for scale invariant networks (e.g., nets
equipped with BatchNorm (Ioffe and Szegedy, 2015) and GroupNorm (Wu and He, 2018)). To get
best generalization, practitioners often add Weight Decay (WD, a.k.a `2 regularization; see (7)).
Intriguingly, unlike the traditional setting where `2 regularization controls the capacity of function
space, for scale invariant networks, each norm ball has the same expressiveness regardless of the
radius, and thus WD only regularize the model implicitly via affecting the dynamics. Li et al. (2020)
explained such phenomena by showing for training with Normalization, WD and constant LR, the
parameter norm converges and WD affects ‘effective LR’ by controlling the limiting value of the
parameter norm. That paper also gave experiments showing that the training loss will reach some
plateau, and gave evidence of training reaching an ”equilibrium” distribution that it does not get out
of unless if some hyperparameter is changed. Throughout this section we assume the existence of
equilibrium for SGD and SDE.

To quantify differences in training algorithms, we would ideally work with statistics like the train/test
loss and accuracy achieved, but characterizing optimization and generalization properties of deep
networks beyond the NTK regime (Jacot et al., 2018; Allen-Zhu et al., 2019b; Du et al., 2019; Arora
et al., 2019a; Allen-Zhu et al., 2019a) is in general an open problem. Therefore, we rely on other
natural test functions (Definition 5.1).

5.1 Failure of SDE Approximation

In Theorem 5.2, we show that the SDE-approximation of SGD is bound to fail for these scale-invariant
nets when LR gets too large. Specifically, using above-mentioned results we show that the equilibrium
distributions of SGD and SDE are quite far from each other with respect to expectations of these
natural test functions (Definition 5.1).

We consider the below SDE (6) with arbitrary expected loss L(x) and covariance ⌃(x), and the
moment-matching SGD (7) satisfying EL�(x) = L(x) and ⌃(x) = ⌘⌃(x) where ⌃(x) is the covari-
ance of rL�(x). In the entire Section 5, we will assume that for all �, L� is scale invariant (Arora
et al., 2019b; Li and Arora, 2020a), i.e., L�(x) = L�(cx), 8c > 0 and x 2 Rd

\ {0}. 3

3The results in this section can be extended straightforwardly to the case where the network is not entirely
scale invariant, where the C-closeness is defined for the corresponding metrics of the scale-invariant parameters.
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dXt=�r
�
L(Xt) +

�

2
|Xt|

2
�
dt+ ⌃

1/2
(Xt)dWt (6)

xk+1 = xk � ⌘r
�
L�k(xk) +

�

2
|xk|

2
�

(7)

We will measure the closeness of two distributions by three test functions: squared weight norm |x|
2,

squared gradient norm |rL(x)|2, and trace of noise covariance Tr[⌃(x)]. We say two equilibrium
distributions are C-close if expectations of these test functions are within a multiplicative constant C.
Definition 5.1 (C-closeness). Assuming the existence of the following limits, we use
R1 := lim

t!1
E|xt|

2, R1 := lim
t!1

E|Xt|
2,

G1 := lim
t!1

E|rL(xt)|2, G1 := lim
t!1

E|rL(Xt)|2,

N1 := lim
t!1

E[Tr[⌃(xt)], N1 := lim
t!1

E[Tr[⌃(Xt)]]

to denote the limiting squared weight norm, gradient norm and trace of covariance for SGD (7) and
SDE (6). We say the two equilibriums are C-close to each other iff

1

C


R1

R1
,
G1

G1
,
⌘N1

N1
 C. (8)

We call N1
G1

and N1
G1

the noise-to-signal ratio (NSR), and below we show that it plays an important
role. When the LR of SGD significantly exceeds the NSR of the corresponding SDE, the approxima-
tion fails. Of course, we lack a practical way to calculate NSR of the SDE so this result is existential
rather than effective. Therefore we give a condition in terms of NSR of the SGD that suffices to
imply failure of the approximation. Experiments later in the paper show this condition is effective at
showing divergence from SDE behavior.

Theorem 5.2. If either (i). ⌘ >
N1
G1

(C2
� 1) or (ii).N1

G1
<

1
C2�1 , then the equilibria of SDE (6)

and SGD (7) are not C-close.

The high-level idea behind Theorem 5.2 is the observation that the norm dynamics of SGD (10)
and SDE (9) differ by a second order discretization error related to the norm of full-batch gradient,
⌘
2E|rL(xk)|2. Thus intuitively, the two dynamics can be close only when the difference is tiny and

negligible. We can make the argument formal by comparing the relationships between the above
defined three metrics at the equilibrium of SGD Equation (11) and SDE Equation (12), and thus
conclude that a sufficiently large noise-to-signal ratio (NSR) is a necessary condition for C-closeness.

Here the role of scale invariance is to simplify the norm dynamics of both SGD (10) and SDE (9)
by removing the cross term. This is because of a well-known property of scale-invariance, the
orthogonality between gradient and the weight itself, i.e., hrL�(x), xi = 0 for any x, �. (Lemma E.7)

Proof of Theorem 5.2. We will prove the the contrapositive statement: if the equilibriums of (7) and
(6) are C-close, then ⌘ 

N1
G1

(C2
� 1) and 1

C2�1 
N1
G1

. Following the derivation in (Li et al.,
2020), by Itô’s lemma:

d
dt
E|Xt|

2 = �2�E|Xt|
2 + ETr[⌃(Xt)]. (9)

Again by the orthogonality between gradient and weight, it can be shown that for SGD (7),
E|xk+1|

2
� E|xk|

2 =(1� ⌘�)2E|xk|
2 + ⌘

2E|rL�k(xk)|
2
� E|xk|

2

=⌘�(�2+⌘�)E|xk|
2+⌘

2E|rL(xk)|
2 + ⌘

2ETr[⌃(xk)]
(10)

If both xk and Xt have reached their equilibriums, both LHS of (9) and (10) are 0, and therefore
(2� ⌘�)�R1 = ⌘G1 + ⌘N1, (11)

2�R1 = N1. (12)
Combining (11), (12), and (8), we have

⌘G1 + ⌘N1  2�R1  2�CR1 = CN1.

Applying (8) again, we have ⌘G1 +N1  C⌘(G1 +N1)  C
2
N1  C

3
⌘N1. The proof is

completed by comparing the first and third, the second and the fourth terms respectively.
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Figure 3: Experimental verification for our theory on predicting the failure of Linear Scaling Rule. We modify
PreResNet-32 and VGG-19 to be scale-invariant (according to Appendix C of (Li et al., 2020)). All three settings
use the same LR schedule, LR= 0.8 initially and is decayed by 0.1 at epoch 250 with 300 epochs total budget.
Here, Gt and Nt are the empirical estimations of G1 and N1 taken after reaching equilibrium in the first
phase (before LR decay). Per the approximated version of Theorem 5.6, i.e., B⇤ = B . C2BNB

1/GB
1, we

use baseline runs with different batch sizes B to report the maximal and minimal predicted critical batch size,
defined as the intersection of the threshold (Gt/Nt = C2) with the green and blue lines, respectively. We choose
a threshold of C2 = 2, and consider LSR to fail if the final test error exceeds the lowest achieved test error
by more than 20% of its value, marked by the red region on the plot. Further settings and discussion are in
Appendix F.

Remark 5.3. Since the order-1 approximation fails for large LR, it’s natural to ask if higher-order
SDE approximation works. In Theorem E.4 we give a partial answer, that the same gap happens
already between order-1 and order-2 SDE approximation, when ⌘ & N1

G1
(C2

� 1). This suggests
failure of SDE approximation may be due to missing some second order term, and thus higher-
order approximation in principle could avoid such failure. On the other hand, when approximation
fails in such ways, e.g., increasing batch size along LSR, the performance of SGD degrades while
SDE remains good. This suggests the higher-order correction term may not be very helpful for
generalization.

5.2 Failure of Linear Scaling Rule

In this section we derive a similar necessary condition for LSR to hold.

Similar to Definition 5.1, we will use R
B,⌘
1 , G

B,⌘
1 , N

B,⌘
1 as test functions for equilibrium achieved

by SGD (7) when training with LR ⌘ and mini-batches of size B. We first introduce the concept of
Linear Scaling Invariance (LSI). Note here we care about the scaled ratio N

B,⌘
1 /(NB,⌘

1 ) because
the covariance scales inversely to batch size, ⌃B(x) = ⌃B(x).
Definition 5.4 ((C,)-Linear Scaling Invariance). We say SGD (7) with batch size B and LR ⌘

exhibits (C,)-LSI if, for a constant C such that 0 < C <
p
,

1

C


R
B,⌘
1

R
B,⌘
1

,
N

B,⌘
1

N
B,⌘
1

,
G

B,⌘
1

G
B,⌘
1

 C. (13)

We show below that (C,)-LSI fails if the NSR N1
G1

is too small, thereby giving a certificate for
failure of (C,)-LSI even without a baseline run.
Theorem 5.5. For any B, ⌘, C, and  such that

N
B,⌘
1

G
B,⌘
1

< (1�
1


)

1

C2 � 1
�

1


, (14)

SGD with batch size B and LR ⌘ does not exhibit (C,)-LSI.

We now present a simple and efficient procedure to find the largest  for which (C,)-LSI will hold,
providing useful guidance to make hyper-parameter tuning more efficient. Before doing so, one must
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Figure 4: SVAG converges quickly and matches SGD (left) or shows the failure of the SDE approximation
when LSR breaks (right). We train PreResNet32 with BN on CIFAR-10 for 300 epochs, decaying ⌘ by 0.1 at
epoch 250. SVAG takes l smaller steps to simulate the continuous dynamics in ⌘ time, so we plot the accuracy
against “effective steps,” and we note that SVAG with l = 1 is equivalent to SGD. We predict in Figure 3 that
LSR (and thus, the SDE approximation) breaks at B = 1024 for this training setting, and here we observe SVAG
converges to a limiting trajectory different from SGD, suggesting that the SDE approximation did indeed break.

choose an appropriate value for C, which controls how close the test functions must be for us to
consider LSR to have “worked.” It is an open question what value of C will ensure that the two
settings achieve similar test performance, but throughout our experiments across various datasets and
architectures in Figure 3 and Appendix F, we find that C =

p
2 works well. One can estimate G

B,⌘
1

and N
B,⌘
1 from a baseline run. Then, one can straightforwardly compute the value for the  threshold

given in the theorem below. We conduct this process in Figure 3 and Appendix F to test our theory.

Theorem 5.6. For any B, ⌘, C, and

 > C
2(1 +

N
B,⌘
1

G
B,⌘
1

), (⇡ C
2N

B,⌘
1

G
B,⌘
1

when
N

B,⌘
1

G
B,⌘
1

� 1), (15)

SGD with batch size B and LR ⌘ does not exhibit (C,)-LSI.

6 Experiments

We provide our code at https://github.com/sadhikamalladi/svag. Figure 3 provides
experimental evidence that measurements from a single baseline run can be used to predict when LSR
will break, thereby providing verification for Theorem 5.6. Surprisingly, it turns out the condition
in Theorem 5.6 is not only sufficient but also close to necessary. Figure 4 and Appendix F.1 test
SVAG on common architectures and datasets and report the results. Theorem 4.3 shows that SVAG
converges to the SDE as l ! 1, but we note that SVAG needs l times as many steps as SGD to match
the SDE. Therefore, in order for SVAG to be a computationally efficient simulation of the SDE, we
hope to observe convergence for small values of l. This is confirmed in Figure 4 and Appendix F.1.
The success of SVAG in matching SGD in many cases indicates that studying the Itô SDE can yield
insights about the behavior of SGD. We note our experiments are limited in the sense that it only
confirms the closeness of train/test accuracy curves, which doesn’t verify the weak convergence
guaranteed in Theorem 4.3. But at least, the experiments suggest that SDE and SVAG with large
l are interesting learning algorithms to study, with similar or even better generalization than SGD.
Moreover, in the case where we expect the SDE approximation to fail (e.g., when LSR fails), SVAG
does indeed converge to a different limiting trajectory from the SGD trajectory.

7 Conclusion

We present a computationally efficient simulation SVAG (Section 4) that provably converges to the
canonical order-1 SDE (2), which we use to verify that the SDE is a meaningful approximation
for SGD in common deep learning settings (Section 6). We relate the discretization error to LSR
(Definition 2.1): in Section 5 we derive a testable necessary condition for the SDE approximation
and LSR to hold, and in Figure 3 we demonstrate its applicability to standard settings.
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