
A Reinforcement Learning Background

We focus on reinforcement learning in a Markov decision process (MDP). An agent interacts with
an environment, taking actions a and observing states s and rewards r. Interactions are broken up
into episodes, series of states, actions and rewards that ultimately terminate. We denote the t-th state,
action and reward as st, at and rt respectively, following the convention that rt is the reward received
by the agent after taking action at in state st. In the control problem examined here, the agent seeks
to maximize a discounted sum of rewards Gt =

∑
i≥t γ

iri, where γ ∈ [0, 1] is a discount factor
balancing current and future rewards (Sutton & Barto, 2018).

Deep Q-Learning One common approach to this problem is to estimate Q(st, a) = Eπ∗ [Gt|at =
a]. Assuming that Q is known exactly, the problem of acting optimally is reduced to finding
maxaQ(st, a) in each state st the agent encounters, which is trivial in environments that possess
only a small number of possible actions. In practice, the true Q can be iteratively approximated by a
parameterized Qθ with a semi-gradient method, minimizing

LDQNθ = (rt + γmax
a

Qξ(st+1, a)−Qθ(st, at))2 (2)

where Qξ denotes an older version of Qθ. This method has proven extremely successful when used
with deep learning, a setting referred to as Deep Q-Networks (DQN) (Mnih et al., 2015), and more
broadly is a common class of deep reinforcement learning (DRL) algorithms.

A number of variants of DQN have been proposed, including those that predict full distributions of
future rewards (Bellemare et al., 2017), modifications to the max operation to reduce value overes-
timation (Van Hasselt et al., 2016), and architectural modifications to how Qθ is predicted (Wang
et al., 2016). We employ a somewhat modified (Schwarzer et al., 2021) version of Rainbow (Hessel
et al., 2018), an algorithm that combines many of these innovations.

B Uncertainty-aware comparisons

Concurrent work (Agarwal et al., 2021) has found that many prior comparisons in deep reinforcement
learning are not robust and may be entirely incorrect, particularly in the Atari 100K setting. They
demonstrate that these misleading comparisons are partially due to undesirable properties of the
per-game median and mean normalized scores, the most commonly-used aggregate metrics, and
propose using the inter-quartile mean (IQM) normalized score, calculated over runs rather than tasks.
Moreover, they suggest providing percentile bootstrap confidence intervals to quantify uncertainty, to
avoid misleading comparisons based on highly-variable point estimates.

As raw per-run data is required for this, which was not reported for prior work, we do so only for
experiments conducted ourselves. In the interests of improving practices in the community moving
forward, we also commit to making this data for our experiments available to other researchers in the
future.

In Figure 5a through Figure 5e we show estimated uncertainty via bootstrapping for the various
comparisons drawn throughout Section 5, while Table 6 gives IQM human-normalized scores and
95% bootstrap confidence intervals for the same results. All comparisons in Figure 5a through
Figure 5e are statistically significant (p < 0.05) except for:

• ATC-M vs SGI-None in Figure 5a (p� 0.05)
• SGI-M vs SGI-W in Figure 5b (p ≈ 0.05)
• SGI-M vs SGI-M w/ SGI FT in Figure 5d (p ≈ 0.4)
• SGI-M vs G+I and S+I in Figure 5e (p ≈ 0.1)

C Implementation Details

We base our work on the code released for SPR (Schwarzer et al., 2021), which in turn is based on
rlpyt (Stooke & Abbeel, 2019), and makes use of NumPy (Harris et al., 2020) and PyTorch (Paszke
et al., 2019).
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(a) Comparisons to behavioral cloning (BC) and ATC.
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(b) Ablations over different pretraining datasets.
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(c) Ablations over various fine-tuning.
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(d) Ablations over SSL objectives during fine-tuning.
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(e) Ablations over pretraining SSL objectives.

Figure 5: Bootstrapping distributions for uncertainty in IQM measurements.
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Table 6: Interquartile mean, median and mean human-normalized scores for variants of SGI and
controls, evaluated after finetuning over all 10 runs for each of the 26 Atari 100k games. Confidence
intervals computed by percentile bootstrap with 5000 resamples.

Method IQM 95% CI Median 95% CI Mean 95% CI

SGI-M/L 0.745 (0.687, 0.805) 0.753 (0.625, 0.850) 1.598 (1.486, 1.676)
SGI-M 0.567 (0.524, 0.612) 0.679 (0.473, 0.739) 1.149 (0.974, 1.347)
SGI-M/S 0.444 (0.404, 0.487) 0.423 (0.341, 0.577) 0.914 (0.822, 1.031)
SGI-W 0.510 (0.476, 0.547) 0.589 (0.434, 0.675) 1.144 (0.981, 1.345)
SGI-E 0.363 (0.326, 0.404) 0.456 (0.309, 0.482) 0.838 (0.692, 1.008)
SGI-R 0.302 (0.275, 0.331) 0.326 (0.253, 0.385) 0.888 (0.776, 1.004)
SGI-None 0.242 (0.212, 0.274) 0.343 (0.268, 0.401) 0.565 (0.440, 0.711)

Baselines

ATC-M 0.235 (0.210, 0.262) 0.204 (0.182, 0.291) 0.780 (0.601, 0.971)
ATC-W 0.221 (0.199, 0.244) 0.219 (0.170, 0.290) 0.587 (0.504, 0.673)
ATC-E 0.214 (0.193, 0.236) 0.237 (0.169, 0.266) 0.462 (0.420, 0.504)
ATC-R 0.187 (0.174, 0.202) 0.191 (0.139, 0.202) 0.472 (0.454, 0.491)
BC-M 0.481 (0.438, 0.524) 0.548 (0.390, 0.685) 0.858 (0.795, 0.924)

Pretraining Ablations

S+I 0.522 (0.488, 0.559) 0.629 (0.494, 0.664) 0.978 (0.900, 1.061)
G+I 0.521 (0.486, 0.558) 0.512 (0.386, 0.582) 1.004 (0.892, 1.129)
S+G 0.032 (0.027, 0.039) 0.029 (0.025, 0.044) 0.098 (0.061, 0.146)
I 0.435 (0.404, 0.470) 0.411 (0.334, 0.489) 0.943 (0.783, 1.126)
G 0.060 (0.048, 0.072) 0.060 (0.037, 0.081) 0.181 (0.145, 0.218)
S 0.007 (0.002, 0.011) 0.009 (0.002, 0.014) -0.054 (-0.082, -0.026)

Finetuning Ablations

SGI-M (No S) 0.448 (0.412, 0.484) 0.419 (0.335, 0.524) 1.114 (0.921, 1.321)
SGI-None (No S) 0.139 (0.118, 0.162) 0.161 (0.123, 0.225) 0.315 (0.274, 0.356)
SGI-M (All SGI) 0.541 (0.498, 0.585) 0.397 (0.330, 0.503) 1.011 (0.909, 1.071)
SGI-M (Frozen) 0.510 (0.476, 0.543) 0.499 (0.406, 0.554) 0.971 (0.871, 1.088)
SGI-M (Naive) 0.453 (0.422, 0.485) 0.429 (0.380, 0.500) 0.845 (0.754, 0.952)

C.1 Training

We set λSPR = 2 and λIM = 1 during pre-training. Unless otherwise noted, all settings match
SPR during fine-tuning, including batch size, replay ratio, target network update period, and λSPR.
We use a batch size of 256 during pre-training to maximize throughput, and update both the SPR
and goal-conditioned RL target network target networks with an exponential moving average with
τ = 0.99. We pre-train for a number of gradient steps equivalent to 10 epochs over 6M samples,
no matter the amount of data used. Due to the cost of pretraining, we pre-train a single encoder per
game for each configuration tested. However, we use 10 random seeds at fine-tuning time, allowing
us to average over variance due to exploration and data order. Finally, we reduce fine-tuning learning
rates for pretrained encoders and dynamics models by a factor of 100, and by a factor of 3 for other
pretrained weights. We find this crucial to SGI’s performance, and discuss it in detail in Section 5.4.

We trained SGI on standard GPUs, including V100s and P100s. We found that pretraining took
roughly one to three days and finetuning between four and 12 hours per run on a single GPU,
depending on the size of the network used and type of GPU.

C.2 Goal-Conditioned Reinforcement Learning

We generate goals in a three-stage process: a goal g for state st is initially chosen to be the target
representation of a state sampled uniformly from the near future, g ← z̃t+i, i ∼ Uniform(50), before
being combined with a normalized vector of isotropic Gaussian noise n as g ← αn + (1 − α)g,
where α ∼ Uniform(0, 0.5). Finally, we exchange goal vectors between states in the minibatch
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with probability 0.2, to ensure that some goals correspond to states reached in entirely different
trajectories.

In defining our synthetic goal-conditioned rewards, we take inspiration from potential-based reward
shaping (Ng et al., 1999). Using the target representations z̃t , fm(st) and z̃t+1 , fm(st+1), we
define the reward as follows:

R(z̃t, z̃t+1, g) = d(z̃t, g)− d(z̃t+1, g) (3)

d(z̃t, g) = exp

(
2

z̃t · g
||z̃||2 · ||g||2

− 2

)
. (4)

As this reward function depends on the target encoder fm, it changes throughout training, although
using the slower-moving fm rather than the online encoder fo may provide some measure of stability.
Like SPR, however, this objective is technically vulnerable to collapse. If all representations z̃t
collapse to a single constant vector then all rewards will be 0, allowing the task to be trivially solved.

We estimate Q(st, at, g) using FiLM (Perez et al., 2018) to condition the DQN on the goal g, which
we found to be more robust than simple concatenation. A FiLM generator j produces per-channel
biases βc and scales γc, which then modulate features through a per-channel affine transformation:

FiLM(Fc|γc, βc) = γcFc + βc (5)

We use these parameters to replace the learned per-channel affine transformation in a layer norm
layer (Ba et al., 2016), which we insert immediately prior to the final linear layer in the DQN head.

We apply FiLM after the first layer in the DQN’s MLP head. We parameterize our FiLM generator j
as a small convolutional network, which takes the goal g (viewed as a 64× 7× 7 spatial feature map)
as input and applies two 128-channel convolutions followed by a flatten and linear layer to produce
the FiLM parameters γ and β.

C.3 Model Architectures

In addition to the standard three-layer CNN encoder introduced by Mnih et al. (2015), we experiment
with larger residual networks (He et al., 2016). We use the design proposed by Espeholt et al.
(2018) as a starting point, while still adopting innovations used in more modern architectures such as
EfficientNets (Tan & Le, 2019) and MobileNetv2 (Sandler et al., 2018). In particular, we use inverted
residual blocks with an expansion ratio of 2, and batch normalization (Ioffe & Szegedy, 2015) after
each convolutional layer. We use three groups of three residual blocks with 32, 64 and 64 channels
each, downscaling by a factor of three in the first group and two in each successive group. This
yields a final representation of shape 64× 7× 7 when applied to 84× 84-dimensional Atari frames,
identical to that of the standard CNN encoder. In our scaling experiment with a larger network, we
increase to five blocks per group, with 48, 96 and 96 channels in each group, as well as using a larger
expansion ratio of 4, producing a representation of shape 96 × 7 × 7. This enlargement increases
the number of parameters by roughly a factor of 5. Finally, our DQN head has 512 hidden units, as
opposed to 256 in SPR.

C.4 Image Augmentation

We use the same image augmentations as used in SPR (Schwarzer et al., 2021), which itself used
the augmentations used in DrQ (Kostrikov et al., 2021), in all experiments, including during both
pretraining and fine-tuning. Specifically, we employ random crops (4 pixel padding and 84x84 crops)
in combination with image intensity jittering.

C.5 Temporal Augmentation

Initially due to a mismatch between the semantics of the DQN Replay dataset and the buffers used
by rlpyt, SGI sampled actions in the offline dataset with a temporal offset of one (i.e., sampled at+1

instead of at). Surprisingly, we found that fixing this did not improve performance as would be
expected. Upon further inspection, the actions sampled were identical to the true actions a large
fraction of the time, but sampling the true actions made SGI’s pretraining tasks far easier. In other
words, this was effectively serving as an additional form of data augmentation.
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Table 7: Performance of SGI with various action offsets. We report results with offset 1 in the main
paper.

Method IQM@0 IQM@1 Median@0 Median@1 Mean@0 Mean@1

SGI-M 0.530 0.567 0.490 0.679 1.120 1.149
SGI-W 0.553 0.510 0.463 0.589 1.229 1.144

As we find that this in fact improves performance on the median game, the traditional focus of the
community, we continue to report results with the original offset. However, under the evaluation
method proposed by (Agarwal et al., 2021) these methods are roughly equivalent (see Table 7), and
we suspect that methods seeking to build off of SGI for offline RL or imitation learning will wish to
sample actions without an offset. We have therefore made this configurable in our released code.

C.6 Experiments with ATC

As ATC (Stooke et al., 2021) was not tested on the Atari100k setting, and as its hyperparameters
(including network size and fine-tuning scheme) are very different from those used by SGI, we
modify its code6 to allow it to be fairly compared to SGI. We replace the convolutional encoder
with that used by SGI, and use the same optimizer settings, image augmentation, pre-training data,
and number of pre-training epochs as in SGI. However, we retain ATC’s mini-batch structure (i.e.,
sampling 32 subsequences of eight consecutive time steps, for a total batch size of 512), as this
structure defines the negative samples used by ATC’s InfoNCE loss. During fine-tuning, we transfer
the ATC projection head to the first layer of the DQN MLP head, as in SPR; we otherwise fine-tune
identically to SGI, including using SPR.

6https://github.com/astooke/rlpyt/tree/master/rlpyt/ul
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D Pseudocode

Algorithm 1: Pre-Training with SGI
Denote parameters of online encoder fo, projection po and Q-learning head as θo;
Denote parameters of target encoder fm, projection pm and Q-learning target head as θm;
Denote parameters of transition model h, predictor q, inverse model I as φ;
Denote the maximum prediction depth as K, batch size as N ;
Denote distance function in goal RL reward as d;
initialize offline dataset D;
while Training do

sample a minibatch of sequences of (st, a, s+ t+ 1) ∼ D ; // sample unlabeled data
/* sample goals */
for i in range(0, N) do

si ← augment(si); s′i ← augment(s′i) ; // augment input images
j ∼ Discrete Uniform(1, 50) ; // sample hindsight goal states
gi ← fm(snj ) ; // encode goal states
α ∼ Uniform(0, 0.5), n ∼ Normal(0, 1) ; // sample noise parameters
gi ← αgi + (1− α)n ; // apply noise
/* Permute to make some goals very challenging to reach */
permute ∼ Bernoulli(0.2)
if permute then

j ∼ Discrete Uniform(N)
gi ← gj ; // permute goal

/* compute SGI loss */
for i in range(0, N) do

ẑi0 ← fθ(s
i
0) ; // compute online representations

li ← 0;
/* compute SPR loss */
for k in (1, . . . , K) do

ẑik ← h(ẑik−1, a
i
k−1) ; // latent states via transition model

z̃ik ← fm(sik) ; // target representations
ŷik ← q(po(ẑ

i
k)), ỹ

i
k ← gm(z̃ik) ; // projections

li ← li − λSPR
(

ỹik
||ỹik||2

)> (
ŷik
||ŷik||2

)
; // SGI loss at step k

/* compute inverse modeling loss */
for k in (1, . . . , K) do

li ← λIM · Cross-entropy loss(aik−1, I(ŷk−1, ỹk))

/* compute goal RL loss */
ri ← d(gi, z̃t)− d(gi, z̃t+1) ; // Calculate goal RL reward
li ← li + RL loss(si, ai, ri, s′i) ; // Add goal RL loss for batch

l← 1
N

∑N
i=0 l

i ; // average loss over minibatch
θo, φ← optimize((θo, φ), l) ; // update online parameters
θm ← τθo + (1− τ)θm ; // update target parameters

return (θo, φ) ; // return parameters for fine-tuning
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E Full Results on Atari100k

We report full scores for SGI agents across all 26 games in Table 8. We do not reproduce the per-game
scores for APT and VISR provided by Liu & Abbeel (2021), as we believe that the scores in the
currently-available version of their paper may contain errors.7

Table 8: Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019) after 100k steps.
Agents are evaluated at the end of training, and scores for all methods are averaged over 10 random
seeds. We reproduce scores for SPR from Schwarzer et al. (2021), whereas ATC scores are from our
implementation.

Random Human SPR ATC-M SGI-R SGI-E SGI-W SGI-M/S SGI-M SGI-M/L

Alien 227.8 7127.7 801.5 699.0 1034.5 857.6 1043.8 1070.5 1101.7 1184.0
Amidar 5.8 1719.5 176.3 95.4 154.8 166.8 206.7 185.9 168.2 171.2
Assault 222.4 742.0 571.0 509.8 446.6 583.1 759.5 632.4 905.1 1326.5
Asterix 210.0 8503.3 977.8 454.1 754.6 953.6 1539.1 651.8 835.6 567.2
Bank Heist 14.2 753.1 380.9 534.9 397.4 514.8 426.3 547.4 608.4 567.8
Battle Zone 2360.0 37187.5 16651.0 13683.8 4439.0 16417.0 7103.0 12107.0 13170.0 14462.0
Boxing 0.1 12.1 35.8 16.8 57.7 33.6 50.2 40.0 36.9 73.9
Breakout 1.7 30.5 17.1 16.9 23.4 17.8 35.4 23.8 42.8 251.9
Chopper Command 811.0 7387.8 974.8 870.8 784.7 1136.2 1040.1 1042.7 1404.0 1037.9
Crazy Climber 10780.5 35829.4 42923.6 74215.5 50561.2 76356.3 81057.4 75542.1 88561.2 94602.2
Demon Attack 152.1 1971.0 545.2 524.6 2198.7 357.5 1408.5 1135.5 968.1 5634.8
Freeway 0.0 29.6 24.4 5.7 2.1 15.1 26.5 12.5 30.0 28.6
Frostbite 65.2 4334.7 1821.5 222.6 349.3 981.4 247.7 861.1 741.3 927.8
Gopher 257.6 2412.5 715.2 946.2 1033.9 964.9 1846.0 1172.4 1660.4 2035.8
Hero 1027.0 30826.4 7019.2 6119.4 7875.2 6863.7 7503.9 7090.4 7474.0 9975.9
Jamesbond 29.0 302.8 365.4 272.6 263.9 383.8 425.1 413.2 366.4 394.8
Kangaroo 52.0 3035.0 3276.4 603.1 923.8 1588.9 598.6 1236.8 2172.8 1887.5
Krull 1598.0 2665.5 3688.9 4494.7 5672.6 4070.7 5583.2 6161.3 5734.0 5862.6
Kung Fu Master 258.5 22736.3 13192.7 11648.2 13349.2 11802.1 14199.7 16781.8 16137.8 17340.7
Ms Pacman 307.3 6951.6 1313.2 848.9 411.0 1278.3 1970.8 1519.5 1520.0 2218.0
Pong -20.7 14.6 -5.9 -13.5 -3.9 4.2 4.7 9.7 7.6 7.7
Private Eye 24.9 69571.3 124.0 95.0 95.3 100.0 100.0 84.7 90.0 83.8
Qbert 163.9 13455.0 669.1 572.2 595.0 717.6 855.6 804.7 709.8 702.6
Road Runner 11.5 7845.0 14220.5 7989.3 5476.0 9195.2 18011.9 12083.5 18370.2 18306.8
Seaquest 68.4 42054.7 583.1 415.7 735.3 615.2 656.1 728.2 728.4 1979.3
Up N Down 533.4 11693.2 28138.5 84361.2 67968.1 63612.9 84551.4 42165.6 79228.8 46083.3

Median HNS 0.000 1.000 0.415 0.204 0.326 0.456 0.589 0.423 0.679 0.755
Mean HNS 0.000 1.000 0.704 0.780 0.888 0.838 1.144 0.914 1.149 1.590

#Games > Human 0 0 7 5 5 6 8 6 9 9
#Games > 0 0 26 26 26 25 26 26 26 26 26

7In particular, we observed that VISR claimed to have a score below −21 on Pong, which is impossible with
standard settings.
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Table 9: Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019) after 100k steps
for versions of SGI with modified fine-tuning, as discussed in Section 5. Agents are evaluated at the
end of training, and scores for all methods are averaged over 10 random seeds. We reproduce scores
for SPR from Schwarzer et al. (2021).

Random Human SGI-None Naive Frozen No SPR Full SSL SGI-M

Alien 227.8 7127.7 835.9 1049.3 1242.8 1060.7 1117.6 1101.7
Amidar 5.8 1719.5 107.6 133.6 147.7 154.2 206.0 168.2
Assault 222.4 742.0 657.7 752.1 869.2 756.3 1145.2 905.1
Asterix 210.0 8503.3 832.9 1029.3 433.1 575.5 603.1 835.6
Bank Heist 14.2 753.1 613.2 726.5 273.6 365.8 323.4 608.4
Battle Zone 2360.0 37187.5 13490.0 15708.0 11754.0 13692.0 11689.8 13170.0
Boxing 0.1 12.1 6.6 24.0 61.5 34.7 42.7 36.9
Breakout 1.7 30.5 12.1 29.3 34.0 43.0 62.6 42.8
Chopper Command 811.0 7387.8 1085.2 1081.2 916.5 925.5 965.8 1404.0
Crazy Climber 10780.5 35829.4 19707.6 55002.4 65220.0 69505.6 69052.0 88561.2
Demon Attack 152.1 1971.0 778.8 850.0 1329.4 981.7 1783.8 968.1
Freeway 0.0 29.6 17.2 28.1 24.4 13.2 10.9 30.0
Frostbite 65.2 4334.7 1475.8 662.1 1045.4 482.1 1664.9 741.3
Gopher 257.6 2412.5 438.2 626.1 2214.1 1561.7 1998.7 1660.4
Hero 1027.0 30826.4 6472.0 5538.3 6353.3 5249.6 8715.4 7474.0
Jamesbond 29.0 302.8 157.4 324.2 358.2 346.8 407.6 366.4
Kangaroo 52.0 3035.0 3802.8 3091.6 800.0 685.6 999.5 2172.8
Krull 1598.0 2665.5 3954.0 5202.7 6073.7 5722.8 5323.9 5734.0
Kung Fu Master 258.5 22736.3 7929.4 11952.2 19374.6 15039.8 18123.2 16137.8
Ms Pacman 307.3 6951.6 990.2 1276.4 1663.3 1753.3 1779.3 1520.0
Pong -20.7 14.6 -4.4 -4.2 3.8 3.9 -0.1 7.6
Private Eye 24.9 69571.3 62.8 385.9 96.7 90.5 90.0 90.0
Qbert 163.9 13455.0 720.0 664.8 587.6 681.3 3015.8 709.8
Road Runner 11.5 7845.0 5428.4 14629.7 14311.9 17036.5 13998.2 18370.2
Seaquest 68.4 42054.7 577.8 509.0 1054.4 1397.8 989.4 728.4
Up N Down 533.4 11693.2 46042.6 48856.6 29938.4 105466.9 45023.5 79228.8

Median HNS 0.000 1.000 0.343 0.425 0.499 0.452 0.397 0.679
Mean HNS 0.000 1.000 0.565 0.849 0.971 1.114 1.011 1.149
#Games > Human 0 0 3 8 8 8 8 9
#Games > SPR 0 19 10 14 15 14 17 20
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Table 10: Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019) after 100k steps
for various combinations of SGI’s pretraining objectives, as discussed in Section 5. Agents are
evaluated at the end of training, and scores for all methods are averaged over 10 random seeds.

Random Human None S G I G+I S+G S+I SGI

Alien 227.8 7127.7 835.9 278.7 964.3 1161.6 571.2 1172.3 1203.0 1101.7
Amidar 5.8 1719.5 107.6 37.8 54.8 198.1 58.0 210.5 175.4 168.2
Assault 222.4 742.0 657.7 517.9 512.3 868.1 567.2 813.5 820.3 905.1
Asterix 210.0 8503.3 832.9 292.6 416.1 475.6 431.8 506.3 648.5 835.6
Bank Heist 14.2 753.1 613.2 3.1 115.2 357.6 57.2 423.3 547.5 608.4
Battle Zone 2360.0 37187.5 13490.0 4665.0 3336.0 14807.0 3249.0 12528.0 15491.0 13170.0
Boxing 0.1 12.1 6.6 -21.8 12.5 40.1 -0.4 42.9 38.3 36.9
Breakout 1.7 30.5 12.1 0.9 2.1 24.1 3.2 41.0 41.6 42.8
Chopper Command 811.0 7387.8 1085.2 799.7 813.1 973.1 923.7 1097.2 978.3 1404.0
Crazy Climber 10780.5 35829.4 19707.6 243.3 17760.3 51203.9 581.0 66228.5 83995.4 88561.2
Demon Attack 152.1 1971.0 778.8 668.9 316.9 1524.6 756.4 1008.4 1286.6 968.1
Freeway 0.0 29.6 17.2 15.2 17.7 2.6 19.3 30.5 29.1 30.0
Frostbite 65.2 4334.7 1475.8 427.2 523.3 395.0 215.4 530.5 463.3 741.3
Gopher 257.6 2412.5 438.2 60.7 129.0 1966.1 99.0 1747.4 1778.7 1660.4
Hero 1027.0 30826.4 6472.0 2381.2 3590.2 7177.6 3998.7 8251.2 7366.2 7474.0
Jamesbond 29.0 302.8 157.4 41.8 236.0 373.1 183.6 365.6 378.4 366.4
Kangaroo 52.0 3035.0 3802.8 129.8 401.6 1041.4 222.6 830.8 760.2 2172.8
Krull 1598.0 2665.5 3954.0 720.1 1241.4 5859.8 1582.4 5778.8 5808.6 5734.0
Kung Fu Master 258.5 22736.3 7929.4 79.7 453.7 16914.7 686.2 17825.1 14681.9 16137.8
Ms Pacman 307.3 6951.6 990.2 418.7 528.5 1620.1 293.3 1847.1 1715.9 1520.0
Pong -20.7 14.6 -4.4 -20.9 -20.4 -3.0 -21.0 0.9 1.7 7.6
Private Eye 24.9 69571.3 62.8 -20.7 89.4 100.0 12.7 98.2 100.0 90.0
Qbert 163.9 13455.0 720.0 201.0 277.4 706.5 215.2 650.5 601.9 709.8
Road Runner 11.5 7845.0 5428.4 780.3 5592.9 17698.4 2617.8 18229.4 17443.5 18370.2
Seaquest 68.4 42054.7 577.8 105.7 193.2 965.3 118.8 1115.0 792.1 728.4
Up N Down 533.4 11693.2 46042.6 892.2 4399.7 58142.0 1313.4 52772.9 39771.3 79228.8
Median HNS 0.000 1.000 0.343 0.009 0.060 0.411 0.029 0.512 0.629 0.679
Mean HNS 0.000 1.000 0.565 -0.054 0.181 0.943 0.098 1.004 0.978 1.149
#Games > Human 0 0 3 0 1 7 0 9 8 9
#Games > SPR 0 19 10 1 1 18 1 20 19 20
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F Transferring Representations between Games

One advantage of pretraining representations is the possibility of representations being useful across
games. Intuitively, we expect better transfer between similar games so we chose five “cliques” of
games with similar semantics and visual elements. The cliques are shown in Table 11. We pretrain on
a dataset of 750k frames from each game in a clique (i.e. 3M frames for a clique of 4) and finetune on
a single game. To show whether pretraining on other games is beneficial, we compare to a baseline of
pretraining on just the 750k frames from the single Atari 100k game we use for finetuning.

Our results in Table 12 show that pretraining with the extra frames from the clique games is mostly
unhelpful to finetune performance. Only Kangaroo shows a modest improvement, a few games show
no difference in performance, and most games show a decrease in performance when pretraining
with other games. We believe that Atari may not be as suitable to transferring representations as
other domains, and previous work using Atari to learn transferable representations has also had
negative results (Stooke et al., 2021). Though game semantics can be similar, we note that even small
differences in rule sets and visual cues can make transfer difficult.

Table 11: Cliques of semantically similar games
Clique Games

space Space Invaders, Assault, Demon Attack,
Phoenix

pacman MsPacman, Alien, Bank Heist, Wizard
Of Wor

platformer Montezuma Revenge, Hero, Kangaroo,
Tutankham

top
scroller

Crazy Climber, Up N Down, Skiing,
Journey Escape

side
scroller

Chopper Command, James Bond, Kung
Fu Master, Private Eye

Table 12: Mean return per episode for clique games in Atari100k (Kaiser et al., 2019) after 100k
steps. Agents are evaluated at the end of training, and scores for all methods are averaged over 10
random seeds. Games in the same clique are placed together.

Game Single Clique

Assault 738.5 554.1
Demon Attack 1171.8 695.0

Alien 1183.9 830.2
Bank Heist 448.8 303.0
Ms Pacman 1595.8 1352.1

Kangaroo 489.2 994.0

Crazy Climber 52036.0 21829.8
Up N Down 18974.7 13493.9

James Bond 397.6 325.4
Kung Fu Master 16402.6 16499.0
Chopper Command 933.6 854.6
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