
A Appendix

Lemma 1. Let X : Ω → R be a random variable on (Ω,F ,P) satisfying X ∈ L1, and let A ∈ F
be an event with P(A) > 0. Then, for any τ ≥ 0

E[X|A] ≤ EX + τΨX(1/τ)− τ logP(A). (3)

Proof. Starting with the definition of conditional expectation, for any τ ≥ 0 we have

E[X|A] =
1

P(A)

∫
A

X(ω)dP(ω)

=
τ

P(A)

∫
A

log exp(X(ω)/τ)dP(ω)

≤ τ log

(
1

P(A)

∫
A

exp(X(ω)/τ)dP(ω)

)
= τ log

∫
A

exp(X(ω)/τ)dP(ω)− τ logP(A)

≤ τ log

∫
Ω

exp(X(ω)/τ)dP(ω)− τ logP(A)

= EX + τΨX(1/τ)− τ logP(A),

where we used Jensen’s inequality in the third line.

Theorem 1. Let X : Ω → R be a random variable such that the interior of the domain of ΨX is
non-empty, then under the same assumptions as Lemma 1 we have 2

E[X|A] ≤ EX + (Ψ∗X)−1(− logP(A)).

Proof. This is a combination of Lemma 1 and Lemma 5 (presented next). Lemma 5 applies because
ΨX is Legendre type on R+ since the interior of the domain of ΨX is non-empty [15, Thm. 2.3],
and we have ΨX(0) = 0 and Ψ′X(0) = 0.

Lemma 5. Let f : R+ → R be Legendre type with f(0) = 0, f ′(0) = 0 and denote the convex
conjugate of f as f∗ : R→ R, i.e.,

f∗(p) = sup
x≥0

(xp− f(x)) .

Then for y ≥ 0
inf
τ≥0

(τf(1/τ) + τy) = (f∗)−1(y).

Proof. The y = 0 case is straightforward, so consider the case where y > 0. First, f∗ is Legendre
type by the assumption that f is Legendre type (loosely, differentiable and strictly convex on the
interior of its domain) [19, §26.4]. Since f(0) = 0 and f ′(0) = 0 we have that f∗(0) = 0 and
(f∗)′(0) = 0. These imply that f∗ is strictly increasing and continuous on dom f∗ ∩ R+ and has
range R+, so the quantity (f∗)−1(y) is well-defined for any y ≥ 0 and moreover (f∗)−1(y) ≥ 0.
The Fenchel-Young inequality states that

f(1/τ) + f∗(p) ≥ p/τ,

for any p, τ ∈ R+ with equality if and only if (1/τ) = (f∗)′(p). Fix p = (f∗)−1(y) and note that
p > 0 since y > 0. Then for τ ≥ 0 we have

τf(1/τ) + τy ≥ (f∗)−1(y).

Equality is attained by τ = 1/(f∗)′(p) with 0 ≤ τ < ∞, since y > 0, p ∈ dom f∗ ∩ R+, and f∗
is strictly increasing on dom f∗ ∩ R+.

2If ΨX = 0, then we take (Ψ∗
X)−1 = 0.
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Lemma 2. Let µ : Ω → RA, µ ∈ LA1 , be a random variable, let i? = argmaxi µi (ties broken
arbitrarily) and denote by Ψi := Ψµi , then

Emax
i
µi ≤

A∑
i=1

P(i? = i)
(
Eµi + (Ψ∗i )

−1(− logP(i? = i))
)
.

Proof. This follows directly from the definition of the maximum and Theorem 1.

Emax
i
µi =

A∑
i=1

P(i? = i)E[µi|i? = i] ≤
A∑
i=1

P(i? = i)
(
Eµi + (Ψ∗i )

−1(− logP(i? = i)
)
.

Lemma 3. Let alg produce any sequence of policies πt, t = 1, . . . , T , that satisfy πt ∈ Ptφ, then

BayesRegret(φ, alg, T ) ≤ E
T∑
t=1

A∑
i=1

πti(Ψ
t∗
i )−1(− log πti).

Proof. Starting with the definition of Bayesian regret in Equation (2),

BayesRegret(φ, alg, T ) = E
T∑
t=1

(
max
i
µi − rt

)
= E

T∑
t=1

(
Et max

i
µi −

A∑
i=1

πtiEtµi

)

≤ E
T∑
t=1

A∑
i=1

πti(Ψ
t∗
i )−1(− log πti)

which follows from the tower property of conditional expectation and lemma 2.

Theorem 2. Let alg produce any sequence of policies πt, t = 1, . . . , T , that satisfy πt ∈ Ptφ and
assume that both the prior and reward noise are 1-sub-Gaussian for each arm, then

BayesRegret(φ, alg, T ) ≤
√

2AT logA(1 + log T ) = Õ(
√
AT ).

Proof. Since the prior and noise terms are 1-sub-Gaussian for each arm, we can bound the cumulant
generating function of µi at time t as

Ψt
i(β) ≤ β2

2(nti + 1)
, (13)

where nti is the number of observations of arm i before time t. A quick calculation yields the
following bound for y ≥ 0

(Ψt∗
i )−1(y) ≤

√
2y

nti + 1
. (14)

Combining this with Lemma (3),

BayesRegret(φ, alg, T ) ≤ E
T∑
t=1

A∑
i=1

πti(Ψ
t∗
i )−1(− log πti)

≤ E
T∑
t=1

A∑
i=1

πti

√
−2 log πt
nti + 1

≤ E

√√√√ T∑
t=1

H(πt)

T∑
t=1

A∑
i=1

2πt
nti + 1

which follows from Cauchy-Scwarz. To conclude the proof we use the fact that H(πt) ≤ log(A)
and a pigeonhole principle included as Lemma 6.
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Lemma 6. Consider a process that at each time t selects a single index at from {1, . . . , q} with
probability ptat . Let nti denote the count of the number of times index i has been selected before time
t. Then

E
T∑
t=1

q∑
i=1

pti
nti + 1

≤ q(1 + log T ).

Proof. This follows from an application of the pigeonhole principle,

E
T∑
t=1

q∑
i=1

pti
nti + 1

= E
T∑
t=1

Eat∼pt(n
t
at + 1)−1

= Ea1∼p1,...,aT∼pTE
T∑
t=1

(ntat + 1)−1

= EnT+1
1 ,...,nT+1

q
E

q∑
i=1

nT+1
i∑
t=1

1/t

≤ q
T∑
t=1

1/t

≤ q(1 + log T ).

Lemma 4. Assuming that R ∈ Lm×A1 we have

EtV ?R,Λ ≤ max
π∈∆A

Gtφ,Λ(π). (10)

Proof. Using Jensen’s inequality and then the upper bound in Equation 5 we obtain

EtV ?R,Λ = Et min
λ∈Λ

max
π∈∆A

λ>Rπ

≤ min
λ∈Λ

Et max
π∈∆A

λ>Rπ

= min
λ∈Λ

Et max
j

(R>λ)j

≤ min
λ∈Λ,τ≥0

max
π∈∆A

A∑
j=1

πj(λ
>EtRj + τjΨ

t
j(λ/τj)− τj log πj)

= max
π∈∆A

min
λ∈Λ,τ≥0

A∑
j=1

πj(λ
>EtRj + τjΨ

t
j(λ/τj)− τj log πj)

= max
π∈∆A

Gφ,Λ(π),

(15)

where we could swap the min and max using the minimax theorem.

Theorem 3. Let alg produce any sequence of policies πt, t = 1, . . . , T , that satisfy πt ∈ Ptφ,Λ and
let the opponent produce any policies λt, t = 1, . . . , T , adapted to Ft. Assuming that the prior over
each entry of R and reward noise are 1-sub-Gaussian we have

BayesRegret(φ, alg, T ) ≤
√

2AmT logA(1 + log T ) = Õ(
√
mAT ).

Proof. This is a straightforward extension of the techniques in Theorem 2. First, let us denote by

LtR(π, λ, τ) =

A∑
j=1

πj(λ
>EtRj + τjΨ

t
j(λ/τj)− τj log πj).
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Since the prior and noise terms are 1-sub-Gaussian for each entry of R, we can bound the cumulant
generating function of Rj at time t as

Ψt
j(β) ≤

m∑
i=1

β2
i

2(ntij + 1)
, (16)

where ntij is the number of observations of entry i, j before time t. Then, using Lemma 4

BayesRegret(φ, alg, T ) = E
T∑
t=1

(V ?R,Λ − rt)

= E
T∑
t=1

Et(V ?R,Λ − rt)

≤ E
T∑
t=1

(
min

λ∈Λ,τ≥0
LtR(πt, λ, τ)− (λt)>(EtR)πt

)

≤ E
T∑
t=1

(
min
τ
LtR(πt, λt, τ)− (λt)>(EtR)πt

)
=

T∑
t=1

A∑
j=1

πtj min
τj

(τjΨ
t
j(λ

t/τj)− τj log πtj)

≤
T∑
t=1

A∑
j=1

πtj min
τj

(
m∑
i=1

(λti)
2

2τj(ntij + 1)
− τj log πtj

)

=

T∑
t=1

A∑
j=1

πtj

√√√√ m∑
i=1

−2(λti)
2 log πtj

(ntij + 1)

≤

√√√√ T∑
t=1

H(πt)

√√√√2

T∑
t=1

∑
i,j

λtiπ
t
j

(ntij + 1)

≤
√

2mAT (logA)(1 + log T ),

where we used the sub-Gaussian bound Eq. (16), Cauchy-Schwarz, the fact that λt is a probability
distribution adapted to Ft, and the pigeonhole principle Lemma 6.

Theorem 4. Let alg produce any sequence of policies πt, t = 1, . . . , T , that satisfy πt ∈ Ptφ,Λ
and assume that the prior over each entry of R and reward noise are 1-sub-Gaussian and that
‖λ?‖2 ≤ C φ-almost surely, then

BayesRegret(φ, alg, T ) ≤ C
(√

2 logA(1 + log T ) + 2
√
m
)√

AT = Õ(
√
mAT ).

Proof. Let λt? = argminλ∈Λ λ
>Rπt, which exists for any fixed R since the set Λ is compact and

the objective function is linear. Note thatR is a random variable, and so λt? is also a random variable
for all t, and note that the reward we defined at time t is given by rt = (λt?)>Rπt. Let us denote by

LtR(π, λ, τ) =

A∑
j=1

πj(λ
>EtRj + τjΨ

t
j(λ/τj)− τj log πj).

Since the prior and noise terms are 1-sub-Gaussian for each entry of R, we can bound the cumulant
generating function of Rj at time t as

Ψt
j(β) ≤ ‖β‖2

2(ntj + 1)
, (17)
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where ntj is the number of observations of column j before time t (the agent observes outcomes
from all rows, hence the use of ntj rather than ntij). Now with the definition of the Bayesian regret
and using Lemma 4

BayesRegret(φ, alg, T, µ) = E
T∑
t=1

(V ?R,Λ − rt)

≤ E
T∑
t=1

(
min

λ∈Λ,τ≥0
LtR(πt, λ, τ)− Et((λt?)>Rπt)

)

≤ E
T∑
t=1

(
min
τ
LtR(πt,Etλt?, τ)− Et((λt?)>Rπt)

)
.

Now we write the last line above as

E
T∑
t=1

(
min
τ
L(πt,Etλt?, τ)− (πt)>EtREtλt? + (πt)>EtREtλt? − (πt)>Et(Rλt?)

)
,

which we shall bound in two parts. First, we use the standard approach we have used throughout
this manuscript. Using Eq. (17).

E
T∑
t=1

(
min
τ
L(πt,Etλt?, τ)− (πt)>EtREtλt?

)
= E

T∑
t=1

A∑
i=1

πti min
τi≥0

(
τiΨ

t
i(Etλt?/τi)− τi log πti

)
≤ E

T∑
t=1

A∑
i=1

πti min
τi≥0

(
‖Etλt?‖22

2τi(nti + 1)
− τi log πti

)

= E
T∑
t=1

A∑
i=1

πti

√
2(− log πti)‖Etλt?‖22

nti + 1

≤ CE

√√√√2

(
T∑
t=1

H(πt)

)(
T∑
t=1

A∑
i=1

πti
nti + 1

)
≤ C

√
2TA logA(1 + log T ),

where we used the sub-Gaussian property Eq. (17), Cauchy-Schwarz, the fact that H(πt) ≤ logA,
and the fact that ‖λt?‖ ≤ C almost surely which implies that ‖Etλt?‖ ≤ C, due to Jensen’s
inequality.

Before we bound the remaining term observe that if zero-mean random variable X : Ω → R is
σ-sub-Gaussian, then the variance of X satisfies varX ≤ σ2, which is easily verified by a Taylor
expansion of the cumulant generating function. Since the prior and noise terms are 1-sub-Gaussian
for each entry of R this implies that

vartRij ≤ (nti + 1)−1, (18)
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where vart is the variance conditioned on Ft and as before nti is the number of times column i has
been selected by the agent before time t. We bound the remaining term as follows

E
T∑
t=1

(
(πt)>EtREtλt? − (πt)>Et(Rλt?)

)
= E

T∑
t=1

(πt)>Et((EtR−R)λt?)

= E
T∑
t=1

A∑
i=1

πtiEt((EtRi −Ri)>λt?)

≤ E
T∑
t=1

A∑
i=1

πti

√
Et‖Ri − EtRi‖22Et‖λt?‖22

≤ CE
T∑
t=1

A∑
i=1

πti

√√√√ m∑
j=1

vartRij

≤ CE
T∑
t=1

A∑
i=1

πti

√
m/(nti + 1)

≤ 2C
√
TAm,

where we used Cauchy-Schwarz, the fact that ‖λt?‖ ≤ C almost surely, the sub-Gaussian bound on
the variance of Rij from Eq. (18), and a pigeonhole principle. Combining the two upper bounds we
have

BayesRegret(φ, alg, T ) ≤ C
(√

2 logA(1 + log T ) + 2
√
m
)√

AT.

B Compute requirements

All experiments were run on a single 2017 MacBook Pro.
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