A Appendix
Lemma 1. Let X : Q — R be a random variable on (0, F,P) satisfying X € Ly, and let A € F
be an event with P(A) > 0. Then, for any 7 > 0

E[X|A] < EX + 70 (1/7) — 7log P(A). 3)

Proof. Starting with the definition of conditional expectation, for any 7 > 0 we have
1
E[X]A] = —— / X (w)dP(w)
P(A) Ja
T

- 505 /A log exp(X (w)/7)dP(w)

< riog (g [ (X @ymar) )

~ rlog /A exp(X (w)/7)dP(w) — 7 log P(A)

< Tlog/ exp(X (w)/7)dP(w) — Tlog P(A)
Q
=EX +7Ux(1/7) — 7logP(4),
where we used Jensen’s inequality in the third line. O

Theorem 1. Let X : Q — R be a random variable such that the interior of the domain of V¥ x is
non-empty, then under the same assumptions as Lemma|l|we have

E[X|A] < EX + (¥%) ! (—logP(A)).

Proof. This is a combination of Lemma|[T|and Lemma 5| (presented next). Lemma[5|applies because
W x is Legendre type on R since the interior of the domain of ¥ x is non-empty [15, Thm. 2.3],
and we have U x (0) = 0 and ¥’ (0) = 0. O

Lemma 5. Let f : Ry — R be Legendre type with f(0) = 0, f'(0) = 0 and denote the convex
conjugate of fas f* : R = R, i.e.,

fr(p) = sup (zp — f(z)).
Then fory > 0
inf (rf(1/7) +7y) = (/)" (v).

Proof. The y = 0 case is straightforward, so consider the case where y > 0. First, f* is Legendre
type by the assumption that f is Legendre type (loosely, differentiable and strictly convex on the
interior of its domain) [19, §26.4]. Since f(0) = 0 and f’(0) = 0 we have that f*(0) = 0 and
(f*)’(0) = 0. These imply that f* is strictly increasing and continuous on dom f* N R, and has
range R, so the quantity (f*)~!(y) is well-defined for any y > 0 and moreover (f*)~*(y) > 0.
The Fenchel-Young inequality states that

fQ/m)+ 1" (p) = p/T,

for any p, 7 € R with equality if and only if (1/7) = (f*)'(p). Fix p = (f*)~!(y) and note that
p > 0since y > 0. Then for 7 > 0 we have

TfA/T) + 1y > (f) 7 ()

Equality is attained by 7 = 1/(f*)'(p) with 0 < 7 < o0, since y > 0, p € dom f* N R, and f*
is strictly increasing on dom f* N R .

O

’If U x = 0, then we take (¥%)~" = 0.
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Lemma 2. Let pu : Q0 — R4,y € L{\, be a random variable, let i* = argmax; y; (ties broken
arbitrarily) and denote by ¥; .= U, , then

A
Emaxp; < ) P(i* =) (Epi + (¥]) 7' (~ log P(i" = 1)) .

i=1

Proof. This follows directly from the definition of the maximum and Theorem I}

Emax p; = ZIP’ E[pi* = i ZIP’ i) (Eps 4+ (97) " (= log P(i* = 1)) .
O
Lemma 3. Let alg produce any sequence of policies 7', t = 1,..., T, that satisfy * € P}, then
BayesRegret(¢, alg, T) <E Z Z 7t (W) (—log 7).
t=1 i=1
Proof. Starting with the definition of Bayesian regret in Equation (2),
T
BayesRegret(¢,alg, T) =E Z (max i — rt)
=1 "
T A
= ]EZ (Et max ft; — Z ﬂ'fEtui>
3 1
<E Z Z 7L (W) (= log 7))
t=1 i=1
which follows from the tower property of conditional expectation and lemma 2] O
Theorem 2. Let alg produce any sequence of policies ', t = 1,...,T, that satisfy n* € P}, and

assume that both the prior and reward noise are 1-sub-Gaussian for each arm, then

BayesRegret(¢, alg, T) < \/2AT log A(1 +log T) = O(VAT).

Proof. Since the prior and noise terms are 1-sub-Gaussian for each arm, we can bound the cumulant
generating function of ; at time ¢ as

62
= 2(nt 1)’

where n! is the number of observations of arm i before time ¢. A quick calculation yields the
following bound for y > 0

vi(p) < (13)

2
(W) y) < | (14)

Combining this with Lemma (3),

T A
BayesRegret(¢, alg, T) < E Z Z (W)~ (—log 7h)

zAzﬂt /7210g7rf
t=1 i=1 Vomitl
T T A

<E\ > H ZZ
t=1 1=1

which follows from Cauchy-Scwarz. To conclude the proof we use the fact that H (m;) < log(A)
and a pigeonhole principle included as Lemma 6] O
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Lemma 6. Consider a process that at each time t selects a single index a; from {1,...,q} with
probability pflt. Let n} denote the count of the number of times index i has been selected before time

t. Then .
Ezznp q(1+1logT).

t=1 i=1

Proof. This follows from an application of the pigeonhole principle,

T q

: T

p; -

E § . =E § Eqynpt (nh, + 1)
t=1 i=1 Vi +1 t=1

:]Ea1~17’ ,aTNPTEZ n +1

q "i
=E,;rr1 _raE) Z 1/t

i=1 t=1
T
<) 1
t=1

< q(l+logT).

Lemma 4. Assuming that R € LTXA we have

E'Viia < max gi (). (10)

Proof. Using Jensen’s inequality and then the upper bound in Equation [5] we obtain

E'VE o = E' min max A" R
’ AEA TEA A
< min E! max A Rr
AEA TEA A
= min E max(R"\);
AEA J
A
min  max j (ATE! R+ 75 3»(/\/7'3') — 7;log ;) (15

AEAN,T>0TEA Y
Jj=1

IN

A
— i (NELR. At N — .
_T{relaAyi/\EI}\l}EZOZWJ(/\ E'Rj + 7;V;(\/7j) — 7jlog ;)
]:

max ™
TEX gd),/\( )7
where we could swap the min and max using the minimax theorem. O

Theorem 3. Let alg produce any sequence of policies wt, t = 1,...,T, that satisfy ©* € 735,, A and

let the opponent produce any policies X', t = 1,...,T, adapted to F;. Assuming that the prior over
each entry of R and reward noise are 1-sub-Gaussian we have

BayesRegret(¢,alg, T) < /2AmT log A(1 + log T) = O(VmAT).

Proof. This is a straightforward extension of the techniques in Theorem 2] First, let us denote by

A
Liy(m A7) =Y m(AE'R; + Wi (N\/1) — 71 log ).
j=1
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Since the prior and noise terms are 1-sub-Gaussian for each entry of R, we can bound the cumulant
generating function of I2; at time ¢ as

m 2
w5(8) < ZQ(nﬁfz—kl)’ (16)

i=1

where n! ; 1s the number of observations of entry ¢, j before time ¢. Then, using Lemma

T
BayesRegret (¢, alg, T') = EZ(Vﬁ,A — 1)
t=1

T

== EZ]Et(VE’A _ Tt)
t=1
T
=< i t t _ 0T (mt ¢
- E; (AJRE&O L' A7) = (X)) (E'R)m )
T
<EY (minLh(x, ', 7) — )T (E'R)")
t=1
T A
=22 mmin(r Wj(\'/7;) — 7 log m))
t=1 j=1 i
T . m (At)Q .
< 7 min ) og it
;; 7 ;27']-(7%4_1) J i

I
M’ﬂ
Ma>
S
NE

=

+

=

A
Nk
=
ﬁ(‘h
[\]
ling
N
=
. <&
+ <
=

< v/2mAT(log A)(1 +logT),

where we used the sub-Gaussian bound Eq. (16), Cauchy-Schwarz, the fact that A’ is a probability
distribution adapted to F;, and the pigeonhole principle Lemma|6] O

Theorem 4. Let alg produce any sequence of policies wt, t = 1,...,T, that satisfy ©* € P;},A
and assume that the prior over each entry of R and reward noise are 1-sub-Gaussian and that
A l2 < C ¢-almost surely, then

BayesRegret(¢, alg, T) < C (\/2 log A(1+1logT) + 2\/7n) VAT = O(V'mAT).

Proof. Let \'* = argminy, AT Rm;, which exists for any fixed R since the set A is compact and
the objective function is linear. Note that R is a random variable, and so A\** is also a random variable
for all ¢, and note that the reward we defined at time ¢ is given by r, = (A*) T Rmr;. Let us denote by

A
Liy(m A7) =Y m(AE'R; + Wi (N/7) — 71 log ).
j=1
Since the prior and noise terms are 1-sub-Gaussian for each entry of R, we can bound the cumulant
generating function of R; at time ¢ as

18112

2(nf +1) a7

vh(B) <
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where n is the number of observations of column j before time ¢ (the agent observes outcomes

from all rows, hence the use of n rather than n! ;)- Now with the definition of the Bayesian regret
and using Lemma 4]

T
BayesRegret (¢, alg, T\ p) Z VEA—Tt)
T
< t t tx\ T
< E; (/\6111\11Tn>0£ (7', A, 1) — EY(A™) Rm))
T
<EY. (minﬁ%(wt,]Et)\t*,T) - Et((At*)Twa)) .

t

Il
-

Now we write the last line above as

T
EY (mlnﬁ JEPAT, 7Y — (n) TEYREIA™ + (nf) TECREIAY — (wt)TEt(RAt*)) :

t=1

which we shall bound in two parts. First, we use the standard approach we have used throughout
this manuscript. Using Eq. (T7).

T T A
EZ(mmﬁ wt BN, )f(wt)TIEtREt)\t*) EY" > wlmin (RWH(EN"/7) - 7;log )
t=1 t=1i=1
|[EA™ |3 ¢
<E IBAN2 gt
;;W’LT>O(2T (nt+1) T8

2(log =1) [E*X 2
_ t % 2
EY Y T

t=1 i=1

< CE,|2 <ZT:H(7Ft ) <§:Zn;j1>

t=1 t=1 i=1

< C+\/2TAlog A(1 +1logT),

where we used the sub-Gaussian property Eq. (I7), Cauchy-Schwarz, the fact that H(7!) < log A,
and the fact that |A\**|| < C almost surely which implies that |[E‘A*™*|| < C, due to Jensen’s
inequality.

Before we bound the remaining term observe that if zero-mean random variable X : 2 — R is
o-sub-Gaussian, then the variance of X satisfies varX < o2, which is easily verified by a Taylor
expansion of the cumulant generating function. Since the prior and noise terms are 1-sub-Gaussian
for each entry of R this implies that

var'R;; < (nf+1)71, (18)
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where var’ is the variance conditioned on F; and as before n! is the number of times column ¢ has
been selected by the agent before time ¢. We bound the remaining term as follows

T T
]EZ ((T(t)TEtREtAt* _ (ﬂ't)TEt(RAt*)) — ]EZ(Wt)TEt((EtR _ R))\t*)
t=1 t=1

T A
=EY Y mE((E'R; — Ri)"A™)

t=1 i=1

<EY S wly /B4R — ECR; 3B X |2

t=1 i=1

T A
< C]EZZW;E m/(nt+1)
t=1 i=1
< 2CVTAm,
where we used Cauchy-Schwarz, the fact that || A\**|| < C almost surely, the sub-Gaussian bound on

the variance of R;; from Eq. (I8), and a pigeonhole principle. Combining the two upper bounds we
have

BayesRegret(¢, alg, T) < C (\/2 log A(1 4+ logT) + 2@) VAT.

B Compute requirements

All experiments were run on a single 2017 MacBook Pro.
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