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In this supplementary material, we first prove Theorem 3.2, and then Theorems 3.1 and 3.3.

A Notations and Preliminaries

We use σ to denote the ReLU activation function in neural networks, which is σ(x) = max{x, 0}.
Without further indication, ‖·‖ represents theL2 norm. For any function g, let ‖g‖∞ = supx ‖g(x)‖.
We use notationO(·) and Õ(·) to express the order of function slightly differently, whereO(·) omits
the universal constant not relying on d while Õ(·) omits the constant related to d. We use Bd2 (a) to
denote L2 ball in Rd with center at 0 and radius a. Let g#ν be the pushforward distribution of ν by
function g in the sense that g#ν(A) = ν(g−1(A)) for any measurable set A.

The r-covering number of some class F w.r.t. norm ‖ · ‖ is the minimum number of r-‖ · ‖ radius
balls needed to cover F , which we denote as N (r,F , ‖ · ‖). We denote N (r,F , L2(Pn)) as the
covering number of F w.r.t. L2(Pn), which is defined as ‖f‖2L2(Pn)

= 1
n

∑n
i=1 ‖f(Xi)‖2 where

X1, . . . , Xn are the empirical samples. We denote N (r,F , L∞(Pn)) as the covering number of F
w.r.t. L∞(Pn), which is defined as ‖f‖L∞(Pn) = max1≤i≤n ‖f(Xi)‖. It is easy to check that

N (r,F , L2(Pn)) ≤ N (r,F , L∞(Pn)) ≤ N (r,F , ‖ · ‖∞).
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B Restriction on the domain of uniformly bounded Lipschitz function class
F1

So far, most of the related works assume that the target distribution µ is supported on a compact set,
for example Chen et al. (2020) and Liang (2020). To remove the compact support assumption, we
need to assume Assumption 1, i.e., the tails of the target µ and the reference ν are subexponential.
Define F1

n := {f |Bd+1
2 (

√
2 logn) : f ∈ F

1}. In this section, we show that proving Theorem 3.2 is
equivalent to establishing the same convergence rate but with the domain restricted function class
F1
n as the evaluation class.

Under Assumption 1 and by the Markov inequality, we have

Pν(‖z‖ > log n) ≤
Eν‖z‖1{‖z‖>logn}

log n
= O(n−

(logn)δ

d / log n) (B.1)

The Dudley distance between latent joint distribution ν̂ and data joint distribution µ̂ is defined as

dF1(ν̂, µ̂) = sup
f∈F1

Ef(ĝ(z), z)− Ef(x, ê(x)) (B.2)

The first term above can be decomposed as

Ef(ĝ(z), z) = Ef(ĝ(z), z)1‖z‖≤logn + Ef(ĝ(z), z)1‖z‖>logn (B.3)

For any f ∈ F1 and fixed point z0 such that ‖z0‖ ≤ log n, due to the Lipschitzness of f , the second
term above satisfies

|Ef(ĝ(z), z)1‖z‖>logn| ≤ |Ef(ĝ(z), z)1‖z‖>logn − Ef(ĝ(z0), z0)1‖z‖>logn|
+ |Ef(ĝ(z0), z0)1‖z‖>logn|

≤E‖(ĝ(z)− ĝ(z0), z − z0)‖1‖z‖>logn +BPν(‖z‖ > log n)

≤E(‖(ĝ(z)− ĝ(z0)‖+ ‖z − z0‖)1‖z‖>logn +BPν(‖z‖ > log n)

≤2(log n)Pν(‖z‖ > log n) + E‖z − z0‖1‖z‖>logn +BPν(‖z‖ > log n)

=O(n−
(logn)δ

d )

where the second inequality is due to lipschitzness and boundedness of f , and the last inequality
is due to Assumption 1, (B.1), and the boundedness condition of ĝ. In the first term in (B.3), f
only acts on the increasing L2 ball Bd2 (

√
2 log n) because of Condition 1 and the indicator function

1{‖z‖≤logn}. Similarly, we can apply the same procedure to the second term in (B.2). Therefore, it
is still an equivalent problem if we restrict the domain of F1 on Bd2 (

√
2 log n). Hence, in order to

prove the estimation error rate in Theorem 3.2, we only need to show that for the restricted evaluation
function class F1

n, we have

EdF1
n
(ν̂, µ̂) ≤ C0

√
dn−

1
d+1 (log n)1+

1
d+1 ∧ Cdn−

1
d+1 log n

Due to this fact, to keep notation simple, we are going to denote F1
n as F1 in the following sections.

Remark 1. The restriction on F1 is technically necessary for calculating the covering number of
F1 later we will see the use of it when bounding the stochastic error E3 and E4 below.

C Stochastic errors

C.1 Bounding E3 and E4

The stochastic errors E3 and E4 quantify how close the empirical distributions and the true latent
joint distribution (data joint distribution) are with the Lipschitz class F1 as the evaluation class
under IPM. We apply the results in Lemma C.1 to bound E3 and E4. We introduce two methods to
bound max{E3, E4}, which gives two different upper bounds for max{E3, E4}. They both utilize the
following lemma, which we shall prove later. More detailed description about the refined Dudley
inequality can be found in Srebro and Sridharan (2010) and Schreuder (2020).
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Lemma C.1 (Refined Dudley Inequality). For a symmetric function class F with
supf∈F ‖f‖∞ ≤M , we have

E[dF (µ̂n, µ)] ≤ inf
0<δ<M

(
4δ +

12√
n

∫ M

δ

√
logN (ε,F , ‖ · ‖∞) dε

)
.

Remark 2. The original Dudley inequality (Dudley, 1967; Van der Vaart and Wellner, 1996) suffers
from the problem that if the covering number N (ε,F , ‖ · ‖∞) increases too fast as ε goes to 0, then
the upper bound can be infinite. The improved Dudley inequality circumvents this problem by only
allowing ε to integrate from δ > 0, which also indicates that EE3 scales with the covering number
N (ε,F1, ‖ · ‖∞).

C.1.1 The first method (explicit constant)

The first method provides an explicit constant depending on d at the expense of the higher order of
log n in the upper bounds. It utilizes the next lemma (Gottlieb et al., 2013, Lemma 6), which turns
the problem of bounding the covering number of a Lipschitz function class into the one bounding
the covering number of the domain defined for the function class.
Lemma C.2 (Gottlieb et al. (2013)). Let FL be the collection of L−Lipschitz functions mapping
the metric space (X , ρ) to [0, 1]. Then the covering number of FL can be estimated in terms of the
covering number of X with respect to ρ as follows.

N (ε,FL, ‖ · ‖∞) ≤ (
8

ε
)N (ε/8L,X ,ρ).

Now we apply Lemma C.2 to bound the covering number for the 1-Lipschitz classN (ε,F1, ‖ · ‖∞)

by bounding the covering number for its domainN (ε, Bd+1
2 (
√
2 log n), ‖·‖2). Define a new function

class F 1
2B as

F 1
2B := {f +B

2B
: f ∈ F1}.

Recall that F1 is restricted on Bd+1
2 (
√
2 log n). Obviously, F 1

2B is a 1
2B−Lipschitz function class

: Bd+1
2 (
√
2 log n) 7→ [0, 1]. A direct application of Lemma C.2 shows that

N (ε,F 1
2B , ‖ · ‖∞) ≤

(
8

ε

)N (εB/4,Bd+1
2 (

√
2 logn),‖·‖2)

. (C.1)

By the definition of F 1
2B , the covering numbers satisfy

N (2Bε,F1, ‖ · ‖∞) = N (ε,F 1
2B , ‖ · ‖∞). (C.2)

Note that Bd+1
2 (
√
2 log n) is a subset of [−

√
2 log n,

√
2 log n]d, and [−

√
2 log n,

√
2 log n]d can be

covered with finite ε-balls in Rd that cover the small hypercube with side length 2ε/
√
d. It follows

that

N (ε, Bd+1
2 (
√
2 log n), ‖ · ‖2) ≤

(√
2(d+ 1) log n

ε

)d+1

. (C.3)

Combining (C.1), (C.2) and (C.3), we obtain an upper bound for the covering number of the 1-
Lipschitz class F1

logN (ε,F1, ‖ · ‖∞) ≤

(
8
√
2(d+ 1) log n

ε

)d+1

log
16B

ε
. (C.4)

With the upper bound for the covering entropy in (C.4), a direct application of Lemma C.1 (see
Section E for details) by taking δ = 8

√
2(d+ 1)n−

1
d+1 (log n)1+

1
d+1 leads to

max{EE3,EE4} = O
(√

dn−
1
d+1 (log n)1+

1
d+1 + n−

1
d+1 (log n)1+

1
d+1

)
(C.5)

= O
(√

dn−
1
d+1 (log n)1+

1
d+1

)
. (C.6)
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C.1.2 The second method (better order of log n)

We now consider the second method that leads to a better order for the log n term in the upper bound
at the expense of explicitness of the constant related to d. The next lemma directly provides an upper
bound for the covering number of Lipschitz class but with an implicit constant related to d. It is a
straightforward corollary of Van der Vaart and Wellner (1996, Theorem 2.7.1).
Lemma C.3. Let X be a bounded, convex subset of Rd with nonempty interior. There exists a
constant cd depending only on d such that

logN (ε,F1(X ), ‖ · ‖∞) ≤ cdλ(X 1)

(
1

ε

)d
for every ε > 0, where F1(X ) is the 1-Lipschitz function class defined on X , and λ(X 1) is the
Lebesgue measure of the set {x : ‖x−X‖ < 1}.

Applying Lemmas C.1 and C.3 (see Section E for details) by taking δ = n−
1
d+1 log n yields

max{EE3,EE4} = O
(
Cdn

− 1
d+1 log n

)
, (C.7)

where Cd is some constant depending on d. Combining (C.6) and (C.7), we get

max{EE3,EE4} = O
(
Cdn

− 1
d+1 log n ∧

√
dn−

1
d+1 (log n)1+

1
d+1

)
. (C.8)

Remark 3. Here, we have a tradeoff between the logarithmic factor log n and the explicitness of the
constant depending on d. If we want an explicit constant depending on d, then we have the factor
(log n)1+

1
d+1 in the upper bound. Later we will see that EE3 and EE4 are the dominating terms

in the four error terms, hence the explicitness of the corresponding constant becomes important.
Therefore, we list two different methods here to bound EE3 and EE4.

C.2 Combination of the four error terms

With all the upper bounds for the four different error terms obtained above, next we consider E1-E4
simultaneously to obtain an overall convergence rate. First, recall how we bound E1 and E4. With
Lemma 4.2, we have

E1 = O
(√

d(W1L1)
− 2
d+1 log n

)
. (C.9)

To control E1 while keeping the architecture of discriminator class FNN as small as possible, we let
W1L1 = d

√
ne, so that E1 = O

(√
dn−

1
d+1 log n

)
dominated by E3 and E4.

By Theorem 4.3, we can choose the architectures of generator and encoder classes accordingly to
perfectly control E2, i.e. E2 = 0.

We note that because we imposed Condition 1 on both generator and encoder classes, Theorem 4.3
can not be applied if we have some ‖xi‖ or ‖zi‖ greater than log n, in which case E2 can not be
perfectly controlled. But we can still handle this case by considering the probability of the bad set.

Under Condition 1, on the nice set A := {max1≤i≤n ‖xi‖ ≤ log n} ∩ {max1≤i≤n ‖zi‖ ≤ log n},
we have E2 = 0. Probability of the nice set A has the following lower bound.

P (A) = Pµ(||xi|| ≤ log n)n · Pν(||zi|| ≤ log n)n

≥ (1− Cn−
(logn)δ

d )2n, for some constant C > 0 by Assumption 1

≥ 1− Cn−
(logn)δ

d · (2n), for large n.

The bad set Ac is where E2 > 0, which has the probability upper bound as follows.

P (Ac) ≤ Cn−
(logn)δ

d · (2n)

= O

(
n−

(logn)δ
′

d

)
, for any δ′ < δ.
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In Assumption 1, the (log n)δ factor was to make the tail of the target µ strictly subexponential,
which leads to P (Ac) → 0, while the exponential tail or heavier will cause the undesired result
P (Ac)→ 1.

Now we are ready to obtain the desired result in Theorem 3.2. The nice setA = {max1≤i≤n ‖xi‖ ≤
log n}∩ {max1≤i≤n ‖zi‖ ≤ log n} is where E2 = 0. By combining the results discussed above, we
have

EdF1(ν̂, µ̂) = 2E1 + E21A + E21Ac + EE3 + EE4

≤ O
(√

dn−
1
d+1 log n+ 0 + 2BPµ(A

c) +
√
dn−

1
d+1 (log n)1+

1
d+1 ∧ Cdn−

1
d+1 log n

)
= O

(√
dn−

1
d+1 (log n)1+

1
d+1 ∧ Cdn−

1
d+1 log n+ n−

(logn)δ
′

d

)
= O

(√
dn−

1
d+1 (log n)1+

1
d+1 ∧ Cdn−

1
d+1 log n

)
,

which completes the proof of Theorem 3.2.

D Proof of Inequality (4.2)

For ease of reference, we restate inequality (4.2) as the following lemma.

Lemma 4.2. For any symmetric function classesF andH, denote the approximation error E(H,F)
as

E(H,F) := sup
h∈H

inf
f∈F
‖h− f‖∞,

then for any probability distributions µ and ν,

dH(µ, ν)− dF (µ, ν) ≤ 2E(H,F).

Proof of Lemma 4.2. By the definition of supremum, for any ε > 0, there exists hε ∈ H such that

dH(µ, ν) : = sup
h∈H

[Eµh− Eνh]

≤ Eµhε − Eνhε + ε

= inf
f∈F

[Eµ(hε − f)− Eν(hε − f) + Eµ(f)− Eν(f)] + ε

≤ 2 inf
f∈F
‖hε − f‖∞ + dF (µ, ν) + ε

≤ 2E(H,F) + dF (µ, ν) + ε,

where the last line is due to the definition of E(H,F).

It is easy to check that if we replace dH(µ, ν) by d̂H(µ, ν) := sup
h∈H

[Êµh − Êνh], Lemma 4.2 still

holds.

E Bounding EE3 and EE4

E.1 Method One

With the upper bound for the covering entropy (C.4), i.e.

logN (ε,F1, ‖ · ‖∞) ≤

(
8
√

2(d+ 1) log n

ε

)d+1

log
16B

ε
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and δ = 8
√
2(d+ 1)n−

1
d+1 (log n)1+

1
d+1 , applying Lemma C.1 we have

EE3 = O

δ + n−
1
2

∫ B

δ

(
8
√
2(d+ 1) log n

ε

) d+1
2 (

log
16B

ε

) 1
2

dε


= O

(
δ + n−

1
2 (8
√
2(d+ 1) log n)

d+1
2 (

log n

d+ 1
)

1
2 δ1−

d+1
2

)
= O

(√
dn−

1
d+1 (log n)1+

1
d+1 + n−

1
d+1 (log n)1+

1
d+1

)
= O

(√
dn−

1
d+1 (log n)1+

1
d+1

)
,

where the second equality is due to

log
16B

ε
= O

(
log

1

ε

)
= O

(
log

(
n

1
d+1

8
√

2(d+ 1)(log n)1+
1
d+1

))
= O

(
log n

1
d+1

)
,

and the third equality follows from simple algebra.

E.2 Method Two

By Lemma C.3, we have

logN (ε,F1, ‖ · ‖∞) ≤ cd
(
log n

ε

)d+1

.

Taking δ = n−
1
d+1 log n and applying Lemma C.1, we obtain

EE3 = O

(
δ + (

cd
n
)

1
2 (log n)

d+1
2

∫ M

δ

(
1

ε
)
d+1
2 dε

)
= Õ

(
δ + n−

1
2 (log n)

d+1
2 δ1−

d+1
2

)
= Õ

(
n−

1
d+1 log n

)
,

where Õ(·) omitted the constant related to d.

F Proof of Lemma C.1

For completeness we provide a proof of the refined Dudley’s inequality in Lemma C.1. We apply
the standard symmetrization and chaining technics in the proof, see, for example, Van der Vaart and
Wellner (1996).

Proof. Let Y1, . . . , Yn be random samples from µ which are independent of X ′is. Then we have

EdF (µ̂n, µ) = Esup
f∈F

[
1

n

n∑
i=1

f(Xi)− Ef(Xi)]

= Esup
f∈F

[
1

n

n∑
i=1

f(Xi)− E
1

n

n∑
i=1

f(Yi)]

≤ EX,Y sup
f∈F

[
1

n

n∑
i=1

f(Xi)−
1

n

n∑
i=1

f(Yi)]

= EX,Y sup
f∈F

[
1

n

n∑
i=1

εi(f(Xi)− f(Yi))]

≤ 2ER̂n(F)
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where the first inequality is due to Jensen inequality, and the third equality is because that (f(Xi)−
f(Yi)) has symmetric distribution.

Let α0 = M and for any j ∈ N+ let αj = 2−jM . For each j, let Ti be a αi-cover of F w.r.t.
L2(Pn) such that |Ti| = N (αi,F , L2(Pn)). For each f ∈ F and j, pick a function f̂i ∈ Ti such
that ‖f̂i − f‖L2(Pn) < αi. Let f̂0 = 0 and for any N , we can express f by chaining as

f = f − f̂N +

N∑
i=1

(f̂i − f̂i−1).

Hence for any N , we can express the empirical Rademacher complexity as

R̂n(F) =
1

n
Eε sup

f∈F

n∑
i=1

εi

f(Xi)− f̂N (Xi) +

N∑
j=1

(f̂j(Xi)− f̂j−1(Xi))


≤ 1

n
Eε sup

f∈F

n∑
i=1

εi

(
f(Xi)− f̂N (Xi)

)
+

n∑
i=1

1

n
Eε sup

f∈F

N∑
j=1

εi

(
f̂j(Xi)− f̂j−1(Xi)

)

≤ ‖ε‖L2(Pn) sup
f∈F
‖f − f̂N‖L2(Pn) +

n∑
i=1

1

n
Eε sup

f∈F

N∑
j=1

εi

(
f̂j(Xi)− f̂j−1(Xi)

)

≤ αN +

n∑
i=1

1

n
Eε sup

f∈F

N∑
j=1

εi

(
f̂j(Xi)− f̂j−1(Xi)

)
,

where ε = (ε1, . . . , εn) and the second-to-last inequality is due to Cauchy–Schwarz. Now the second
term is the summation of empirical Rademacher complexity w.r.t. the function classes {f ′ − f ′′ :
f ′ ∈ Tj , f ′′ ∈ Tj−1}, j = 1, . . . , N . Note that

‖f̂j − f̂j−1‖2L2(Pn)
≤
(
‖f̂j − f‖L2(Pn) + ‖f − f̂j−1‖L2(Pn)

)2
≤ (αj + αj−1)

2

= 3α2
j .

Massart’s lemma (Mohri et al., 2018, Theorem 3.7) states that if for any finite function class F ,
supf∈F ‖f‖L2(Pn) ≤M , then we have

R̂n(F) ≤
√

2M2 log(|F|)
n

.

Applying Massart’s lemma to the function classes {f ′ − f ′′ : f ′ ∈ Tj , f ′′ ∈ Tj−1}, j = 1, . . . , N ,
we get that for any N ,

R̂n(F) ≤ αN +

N∑
j=1

3αj

√
2 log(|Tj | · |Tj−1|)

n

≤ αN + 6

N∑
j=1

αj

√
log(|Tj |)

n

≤ αN + 12

N∑
j=1

(αj − αj+1)

√
logN (αj ,F , L2(Pn))

n

≤ αN + 12

∫ α0

αN+1

√
logN (r,F , L2(Pn))

n
dr,

where the third inequality is due to 2(αj −αj+1) = αj . Now for any small δ > 0 we can choose N
such that αN+1 ≤ δ < αN . Hence,

R̂n(F) ≤ 2δ + 12

∫ M

δ/2

√
logN (r,F , L2(Pn))

n
dr.
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Since δ > 0 is arbitrary, we can take inf w.r.t. δ to get

R̂n(F) ≤ inf
0<δ<M

(
4δ + 12

∫ M

δ

√
logN (r,F , L2(Pn))

n
dr

)
.

The result follows due to the fact that
N (r,F , L2(Pn)) ≤ N (ε,F , L∞(Pn)) ≤ N (ε,F , ‖ · ‖∞).

G Proof of Theorem 3.1

Proof. Taking W1L1 = d
√
ne, Shen et al. (2019, Theorem 4.3) gives rise to E1 = O(

√
dn−

1
d+1 ).

The range of g and e covers the supports of µ and ν, respectively, hence Theorem 4.3 leads to
E2 = 0. By Lemma C.2, we have

logN (ε,F1, ‖ · ‖∞) ≤

(
8
√

2(d+ 1)M

ε

)d+1

log
16B

ε
.

Now following the same procedure as in Section E by taking δ = 8
√
2(d+ 1)n−

1
d+1 (log n)

1
d+1 ,

we have

max{EE3,EE4} = O
(√

dn−
1
d+1 (log n)

1
d+1

)
.

At last, we consider all four error terms simultaneously.
EdF1(ν̂, µ̂) ≤ E1 + E2 + EE4 + EE3

= O(
√
dn−

1
d+1 + 0 +

√
dn−

1
d+1 (log n)

1
d+1 )

= O(
√
dn−

1
d+1 (log n)

1
d+1 ).

H Proof of Theorem 3.3

Following the same proof as Theorem 4.3, we have the following theorem.
Theorem H.1. Suppose ν supported on Rk and µ supported on Rd are both absolutely continuous
w.r.t. Lebesgue measure, and z′is and x′is are i.i.d. samples from ν and µ, respectively for 1 ≤ i ≤ n.
Then there exist generator and encoder neural network functions g : Rk 7→ Rd and e : Rd 7→ Rk
such that g and e are inverse bijections of each other between {zi : 1 ≤ i ≤ n} and {xi : 1 ≤
i ≤ n}. Moreover, such neural network functions g and e can be obtained by properly specifying
W 2

2L2 = c2dn and W 2
3L3 = c3kn for some constant 12 ≤ c2, c3 ≤ 384.

Since µ and ν are absolutely continuous by assumption, they are also absolutely continuous in any
one dimension. Hence the proof reduces to the one-dimensional case.

I Additional Lemma

Denote Sd(z0, . . . , zN+1) as the set of all continuous piecewise linear functions f : R 7→ Rd
which have breakpoints only at z0 < z1 < · · · < zN < zN+1 and are constant on (−∞, z0) and
(zN+1,∞). The following lemma is a result in Yang et al. (2021).
Lemma I.1. Suppose that W ≥ 7d+1, L ≥ 2 and N ≤ (W − d− 1)

⌊
W−d−1

6d

⌋⌊
L
2

⌋
. Then for any

z0 < z1 < · · · < zN < zN+1, Sd(z0, . . . , zN+1) can be represented by a ReLU FNNs with width
and depth no larger than W and L, respectively.

This result indicates that the expressive capacity of ReLU FNNs for piecewise linear functions. If
we chooseN = (W−d−1)

⌊
W−d−1

6d

⌋⌊
L
2

⌋
, a simple calculation shows cW 2L/d ≤ N ≤ CW 2L/d

with c = 1/384 andC = 1/12. This means when the number of breakpoints are moderate compared
with the network structure, such piecewise linear functions are expressible by feedforward ReLU
networks.
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