
EDGE: Explaining Deep Reinforcement Learning
Policies

Wenbo Guo
The Pennsylvania State University

wzg13@ist.psu.edu

Xian Wu∗

The Pennsylvania State University
xkw5132@psu.edu

Usmann Khan∗

Georgia Institute of Technology
ukhan35@gatech.edu

Xinyu Xing
Northwestern University

The Pennsylvania State University
xinyu.xing@northwestern.edu

Abstract

With the rapid development of deep reinforcement learning (DRL) techniques,
there is an increasing need to understand and interpret DRL policies. While recent
research has developed explanation methods to interpret how an agent determines
its moves, they cannot capture the importance of actions/states to a game’s final
result. In this work, we propose a novel self-explainable model that augments a
Gaussian process with a customized kernel function and an interpretable predictor.
Together with the proposed model, we also develop a parameter learning procedure
that leverages inducing points and variational inference to improve learning effi-
ciency. Using our proposed model, we can predict an agent’s final rewards from its
game episodes and extract time step importance within episodes as strategy-level
explanations for that agent. Through experiments on Atari and MuJoCo games, we
verify the explanation fidelity of our method and demonstrate how to employ inter-
pretation to understand agent behavior, discover policy vulnerabilities, remediate
policy errors, and even defend against adversarial attacks.

1 Introduction

Deep reinforcement learning has shown great success in automatic policy learning for various
sequential decision-making problems, such as training AI agents to defeat professional players in
sophisticated games [74, 65, 24, 37] and controlling robots to accomplish complicated tasks [33,
38]. However, existing DRL agents make decisions in an opaque fashion, taking actions without
accompanying explanations. This lack of transparency creates key barriers to establishing trust in an
agent’s policy and scrutinizing policy weakness. This issue significantly limits the applicability of
DRL techniques in critical application fields (e.g., finance [47] and self-driving cars [11]).

To tackle this limitation, prior research (e.g., [9, 13, 73]) proposes to derive an explanation for a target
agent’s action at a specific time step. Technically, this explanation can be obtained by pinpointing the
features within the agent’s observation of a particular state that contribute most to its corresponding
action at that state. Despite demonstrating great potential to help users understand a target agent’s

∗Equal Contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

individual actions, they lack the capability to extract insights into the overall policy of that agent. In
other words, existing methods cannot shed light on the general sensitivity of an agent’s final reward
from a game in regards to the actions/states in that game episode. Consequently, these methods fall
short in troubleshooting an agent’s policy’s weaknesses when it fails its task.

We propose a novel explanation method to derive strategy-level interpretations of a DRL agent. As
we discuss later in Section 3, we define such interpretations as the identification of critical time steps
contributing to a target agent’s final reward from each game episode. At a high level, our method
identifies the important time steps by approximating the target agent’s decision-making process
with a self-explainable model and extracting the explanations from this model. Specifically, given a
well-trained DRL agent, our method first collects a set of episodes and the corresponding final rewards
of this agent. Then, it fits a self-explainable model to predict final rewards from game episodes. To
model the unique correlations in DRL episodes and enable high-fidelity explanations, rather than
simply applying off-the-shelf self-explanation techniques, we develop a novel self-explainable model
that integrates a series of new designs. First, we augment a Gaussian Process (GP) with a customized
deep additive kernel to capture not only correlations between time steps but, more importantly, the
joint effect across episodes. Second, we combine this deep GP model with our newly designed
explainable prediction model to predict the final reward and extract the time step importance. Third,
we develop an efficient inference and learning framework for our model by leveraging inducing points
and variational inference. We refer to our method as “Strategy-level Explanation of Drl aGEnts” (for
short EDGE). 2

With extensive experiments on three representative RL games, we demonstrate that EDGE outperforms
alternative interpretation methods in terms of explanation fidelity. Additionally, we demonstrate how
DRL policy users and developers can benefit from EDGE. Specifically, we first show that EDGE could
help understand the agent’s behavior and establish trust in its policy. Second, we demonstrate that
guided by the insights revealed from our explanations, an attacker could launch efficient adversarial
attacks to cause a target agent to fail. Third, we demonstrate how, with EDGE’s capability, a model
developer could explain why a target agent makes mistakes. This allows the developer to explore
a remediation policy following the explanations and using it to enhance the agent’s original policy.
Finally, we illustrate that EDGE could help develop a defense mechanism against a newly emerging
adversarial attack on DRL agents. To the best of our knowledge, this is the first work that interprets
a DRL agent’s policy by identifying the most critical time steps to the agent’s final reward in each
episode. This is also the first work that demonstrates how to use an explanation to understand agent
behavior, discover policy vulnerabilities, patch policy errors, and robustify victim policies.

2 Related Work

Past research on DRL explanation primarily focuses on associating an agent’s action with its obser-
vation at a particular time step (i.e., pinpointing the features most critical to the agent’s action at a
specific time). Technically, these methods can be summarized in the following categories.

• Post-training explanation is a method that utilizes and extends post-training interpretation ap-
proaches (e.g., [56, 28, 36, 35]) to derive explanation from a DRL agent’s policy/value network
and thus treat it as the interpretation for that DRL agent (e.g., [9, 44, 32, 68, 20, 72]).

• Model approximation is an approach that employs a self-interpretable model to mimic the target
agent’s policy networks and then derives explanation from the self-interpretable model for the
target DRL agent (e.g., [13, 22, 55, 14, 59, 58, 87, 85]).

• Self-interpretable modeling is an approach different from the model approximation techniques
above. Instead of mimicking the target agent’s policy network, self-interpretable modeling builds a
self-explainable model to replace the policy network. Since the new model is interpretable, one can
easily derive an explanation for the target agent (e.g., [92, 62, 82, 42]).

• Reward decomposition is a method that re-engineers a DRL agent’s reward function to make
the reward gained at each time step more meaningful and explainable. With the more meaningful
reward in hand, at each time step, one could use the instant reward gain to interpret the agent’s
action (e.g., [73, 46, 54]).

2The source code of EDGE can be found in https://github.com/Henrygwb/edge.

2

https://github.com/Henrygwb/edge

From the objective perspective, our work is fundamentally different from the above DRL explanation
research. Rather than pinpointing the features – in an observation – critical for an agent’s action, our
work identifies the critical time steps contributing to the agent’s final reward. Using our explanation,
one can better understand the agent’s policy, unveil policy weakness, and patch policy errors (as
shown in Section 5). In Supplement S7, we further conduct a user study to demonstrate the superiority
of our method against the above explanation approaches in pinpointing good policies and performing
policy forensics. Note that there are two other methods that also understand a DRL policy through
the agent’s previous memories [49, 23]. These works are fundamentally different from ours in two
perspectives. First, both methods have a different explanation goals from our work. Specifically,
Koul et al. [49] focuses on identifying whether the action at each time step depends more on the
current observation or the previous states. The method proposed in [23] pinpoints the important steps
w.r.t. the subsequent transitions in the FSM extracted from the target agent rather than the final result
of an episode. Second, both methods can be applied only to white-box RNN policies, whereas our
method is applicable to DRL policies with arbitrary network structures.

3 Key Technique

3.1 Problem Setup

Consider a DRL game with an agent trained with Q-learning [86, 60] or policy gradient [48, 69, 70].
Our work aims to explain this agent’s policy by identifying the important steps contributing most to a
game episode’s final reward/result. To ensure practicability, we allow access only to the environment
states, agent’s actions, and rewards. We assume the availability of neither the value/Q function
nor the policy network. Formally, given N episodes T = {X(i), yi}i=1:N of the target agent,
X(i) = {s(i)t ,a

(i)
t }t=1:T is the i−th episode with the length T , where s

(i)
t ∈ Rds and a

(i)
t ∈ Rda are

the state and action at the time step t. yi is the final reward of this episode.3 Our goal is to highlight
the top-K important time steps within each episode X(i).

Possible Solutions and Limitations. The most straightforward approach of identifying important
time steps is to use the output of the value/Q network as indicators and pinpoint the time steps with the
top K highest value/Q function’s outputs as the top K critical steps. However, since we do not assume
the availability of these networks, this method is not applicable to our problem. A more realistic
method is to fit a seq2one model (i.e., RNN) that takes as input the state-action pairs in an episode and
predicts the final reward of that episode. With this prediction model, one could utilize a post-training
explanation method to derive the time step importance. However, existing post-training explanation
techniques usually require approximating the target DNN with more transparent models, which
inevitably introduces errors. Additionally, many post-training methods are vulnerable to adversarial
attacks [61, 30, 94] or generate model-independent explanations [1, 64, 2, 78]. As we will show
later in Section 4 and Supplement S3&S5, these limitations jeopardize the post-training explanations’
fidelity. A more promising direction is to fit a self-explainable model to predict the final reward.
Existing research has proposed a variety of self-explanation methods. Most of them do not apply
to our problem because they either cannot derive feature importance as explanations [5, 52, 50, 18],
cannot be applied to sequential data [21, 27, 12], or require explanation ground truth [16, 66]. In this
work, we consider two self-explainable models that are designed to fit and explain sequential data –
an RNN augmented with attention [10, 39, 34] and rationale net [51]. Technically, both models have
the form of g(θ(x)⊙ x), where θ(·) is a weight RNN or an attention layer and g(·) is the prediction
RNN. The output of θ(·) can be used to identify the important steps in the input sequence. Despite
extracting meaningful explanations, recent research [45, 89, 17] reveals that the explanations given
by θ(·) cannot faithfully reflect the associations (i.e., feature importance) learned by the subsequent
prediction model g(·), leading to an even lower fidelity than the post-training explanations in some
applications. Additionally, these models are not designed to explain an RL agent and cannot fully
capture the dependencies within the episodes of that agent. Specifically, the episodes collected from
the same agent tend to exhibit two types of dependencies: dependency between the time steps within
an episode and the dependency across different episodes. Although they consider the dependency

3For the games with delayed rewards, such as MuJoCo [84] and Atari Pong [8], where a non-zero reward rT
is assigned only to the last step of a game, we use rT as yi. For the games with instant rewards (e.g., OpenAI
CartPole [15]), we compute an episode’s total reward as yi, i.e., yi =

∑
t rt.

3

Input episode X(i)

time step t

RNN encoder

hT
(i)hT
(i)

Tim
e-step E

m
bedding

…

MLP encoder

e(i)

Episode embedding

ht
(i) fT

(i)

e(i)

e(i)

… … …
…

Additive GP Model G
P O

utput
M

ixing W
eight

Episode and Step correlations

Prediction
Model

Time Step Importance

yi

…

Figure 1: Overview of EDGE with a constant prediction mixing weight.

within each input sequence, these methods cannot capture the correlations between different inputs.
As is shown in Section 4 and Supplement S3&S5, this also jeopardizes their explanation fidelity.

3.2 Explanation Model Design of EDGE

In this work, we design a novel self-explainable model by adopting a very different design than
existing methods. First, to better capture the associations (i.e., feature importance) learned by the
prediction model, we add the explainable module to the final layer rather than the input layer of the
prediction model. Formally, our model can be written as g(f(x)), where f(·) is a feature extractor
and g(·) is an explainable prediction model. Second, we design a deep Gaussian Process as the feature
extractor to capture the correlations between time steps and those across different episodes, which
are often exhibited in a set of episodes collected from the same DRL agent. In addition to capturing
different levels of correlations, another advantage of deep GPs over typical DNNs is that GPs model
the joint distribution of the output signals, enabling access to the output signals’ uncertainty. Finally,
we design an interpretable Bayesian prediction model to infer the distribution of final rewards and
deliver time step importance. Below, we first give an overview of our proposed model. Then, we
describe how to adapt the traditional GP model to our problem, followed by the design of the final
prediction model.

Overview. As shown in Fig 1, given an episode of the target agent X(i), EDGE first inputs it into a
RNN encoder, which outputs the embedding of each time step in this episode {h(i)

t }t=1:T . EDGE
also passes the last step’s embedding through a shallow MLP to obtain an episode embedding e(i).
Then, EDGE adopts our proposed additive GP framework to process {h(i)

t }t=1:T and e(i) and obtains
a latent representation of the whole episode f

(i)
1:T . As introduced later, this representation is able to

capture the correlations between time steps and those across episodes. Finally, EDGE inputs f (i)1:T into
our prediction model f (i)1:T and get the predicted final reward of the input episode. As detailed later,
our prediction model is designed based on a linear regression, whose regression coefficient can be
used to identify important time steps within in the input episode.

Additive GP with Deep Recurrent Kernels. Gaussian Process defines a distribution over an
infinite collection of random variables, such that any finite subset of variables follows a multivariate
Gaussian distribution [63]. In Statistical modeling, GP defines the prior of a non-parametric function
f : X → R. Formally, if f has a GP prior, i.e., f ∼ GP(0, kγ),where kγ(·, ·) is a positive semi-
definite kernel function parameterized by γ, any finite collections of f ∈ RN follows a multivariate
Gaussian distribution (f |X) ∼ N (0,KXX). Here, KXX ∈ RN×N is the covariance matrix, with
(KXX)ij = kγ(xi,xj). In our model, we adopt the widely applied square exponential (SE) kernel
function: kγ(xi,xj) = exp

(
− 1

2 (xi − xj)
TΘk(xi − xj)

)
, with γ = Θk. Traditional GP with SE

kernel [63] assumes the input space is Euclidean, which is usually invalid for real-world data with
high-dimensional inputs [3]. To tackle this challenge, recent research [91, 53] proposes to conduct
dimensional reduction via a DNN and then apply a GP to the DNN’s latent space. They show that the
resultant deep kernel models achieve similar performance to DNNs on complicated datasets.

In our model we capture the sequential dependency within an episode by using an RNN as the deep
net inside the kernel function. Specifically, given an episode X(i), we first concatenate the state and
action (i.e., x(i)

t = [s
(i)
t ,a

(i)
t]), input them into an RNN hϕ, and obtain the latent representation of

this episode: {h(i)
t }t=1:T , where h

(i)
t ∈ Rq is the state-action embedding at the time t. We also

4

compute an episode embedding by passing the last step’s hidden representation through a shallow
MLP eϕ1

: h
(i)
T → e(i) ∈ Rq. After obtaining {h(i)

t }t=1:T and e(i), we then adopt the additive GP
framework to capture the correlations between time steps and those across episodes. Formally, an
additive GP is the weighted sum of J independent GPs, i.e., f =

∑
J αjfj . Here, fj ∼ GP(0, kj)

is the j-th GP component, in which the covariance function kj is typically applied to a subset of
input features. By assigning every component a GP prior, one can ensure that the mixed-signal f
also follows a GP prior [25]. Following this framework, we construct our deep GP model as the
sum of two components ft and fe. Specifically, ft ∼ GP(0, kγt) models the correlations between
time-steps, where the covariance between the t-th steps in episode i and the k-th steps in episode j can
be computed by kγt

(h
(i)
t ,h

(j)
k). Going beyond modeling the correlations between individual steps,

fe ∼ GP(0, kγe
) captures a higher level cluster structures within the collected episodes, i.e., the

similarity between episodes. Formally, the episode-level covariance between any pair of time steps in
episode i and j is given by kγe

(e(i), e(j)). Finally, our deep additive GP model can be expressed as:
f = αtft + αefe, where αt and αe are the component weights. Given a set of collected episodes
represented by T ∈ RN×T×(ds+da), f ∈ RNT is given by: f |X ∼ N (0, k = α2

tkγt
+α2

ekγe
), where

X ∈ RNT×(ds+da) is the flattened matrix of T.

Prediction Model. To ensure explanability, we use a linear regression as the base of our prediction
model, where the regression coefficients reflect the importance of each input entity. Specifically,
we first convert the flattened response f back to the matrix form F ∈ RN×T , where the i-th row
F(i) ∈ RT is the i-th episode’s encoding given by our GP model. Then, we define the conditional
likelihood for the discrete and continuous final reward, respectively. When yi is continuous, we follow
the typical GP regression model [63] and define the yi = F(i)wT + ϵ1, where w ∈ R1×T is the
mixing weight and ϵ1 ∼ N (0, σ2) is the observation noise. The conditional likelihood distribution is
yi|F(i) ∼ N (F(i)wT , σ2). For the discrete final reward with a finite number of possible values, we
use the softmax prediction model to perform classification. Formally, we define yi|F(i) follows a

categorical distribution with p(yi = k|F(i)) = exp((F(i)WT)k)∑
k exp((F(i)WT)k)

. W ∈ RK×T is the mixing weight,
where K is the total number of classes. Finally, we combine all the components together and write
our explanation model as (A illustration of our proposed model can be found in Fig. 1.): 4

f |X ∼ N (0, k = α2
tkγt + α2

ekγe), yi|F(i) ∼

{
Cal(softmax(F(i)WT)), If conducting classification
N (F(i)wT , σ2), otherwise

,

(1)
where the mixing weight is constant. This indicates the time step importance derived from the mixing
weight is a global explanation. 5 According to the insight that time steps with a high correlation
tend to have a joint effect (similar importance) on the game result, we could combine the global
explanation with the time step correlations in Kt(X,X) to gain a fine-grained understanding of each
game. Specifically, given an episode and the top important steps indicated by the mixing weight, we
can identify the time steps that are highly correlated to these globally important steps and treat them
together as the local explanation of that episode. Supplement S1 introduces another way of deriving
episode-specific explanations by replacing the constant mixing weight with a weight obtained by a
simple DNN. Note that the episode correlations in Ke(X,X) reveal the cluster structure within a set
of episodes, which helps categorize the explanations of similar episodes.

3.3 Posterior Inference and Parameter Learning

Sparse GP with Inducing Points. Direct inference of our model requires computing (KXX+σ2I)−1

over KXX , which incurs O(NT 3) computational complexity. This cubic complexity restricts our
model to only small datasets. To improve scalability, we adopt the inducing points method [91] for
inference and learning. At a high level, this method simplifies the posterior computation by reducing
the effective number of samples in X from NT to M , where M is the number of inducing points.
Specifically, we define each inducing point at the latent space as zi ∈ R2q, and ui as the GP output

4Note that our model is similar to existing GP-based state-space models [4, 71, 29, 81, 26] in that both use
an RNN inside the kernel function. However, these models do not integrate an additive GP. More importantly,
their prediction models are not designed for explanation purposes and thus cannot derive time step importance.

5The classification model gives K global explanations, one for each class derived from each row of W.

5

of zi. Then, the joint prior of f and u and the conditional prior f |u are given by:

f ,u|X,Z ∼ N
([

0
0

]
,

[
KXX KXZ

KT
XZ KZZ

])
, f |u,X,Z ∼ N (KXZK

−1
ZZu,KXX −KXZK

−1
ZZK

T
XZ) , (2)

where KXX , KXZ , KZZ are the covariance matrices. They can be computed by applying our
additive kernel function to the time-step and episode embedding of the training episodes and inducing
points. As is shown in Eqn (2), with inducing points, we only need to compute the inverse of KZZ ,
which significantly reduces the computational cost from O(NT 3) to O(m3).

Variational Inference and Learning. So far, our model has introduced the following parame-
ters: neural encoder parameters Θn = {ϕ, ϕ1}, GP parameters Θk = {γt, γe, αe, αt}, prediction
model parameters Θp = {w/W, σ2}, and inducing points Z = {zi}i=1:M . To learn these pa-
rameters, we follow the idea of empirical Bayes [63] and maximize the log marginal likelihood
log p(y|X,Z,Θn,Θk,Θp). Maximizing this log marginal likelihood is computationally expensive
and, more important, intractable for models with non-Gaussian likelihood. To provide factorized
approximation to marginal likelihood and enable efficient learning, we assume a variational posterior
over the inducing variable q(u) ∼ N (µ,Σ) and a factorized joint posterior q(f ,u) = q(u)p(f |u),
where p(f |u) is the conditional prior in Eqn. (2). By Jensen’s inequality, we can derive the evidence
lower bound (ELBO):

log p(y|X,Z,Θn,Θk,Θp) ≥ Eq(f)[log p(y|f)]− KL[q(u)||p(u)] , (3)

where the first part is the likelihood term. The second KL term penalizes the difference between the
approximated posterior q(u) and the prior p(u). Maximizing the ELBO in Eqn. (3) will automatically
maximize the marginal likelihood, which is also equivalent to minimizing the KL divergence from
the variational joint posterior to the true posterior (See Supplement S1 for more details).

When conducting classification, the categorical likelihood makes the likelihood term in Eqn. (3)
intractable. To tackle this challenge, we first compute the marginal variational posterior distribution
of f , denoted as q(f) = N (µf ,Σf) (See Supplement S1 for detailed computations). Then, we
apply the reparameterization trick [57] to q(f). Formally, we define f = v(ϵf) = µf + Lf ϵf , with
ϵf ∼ N (0, I) and LfL

T
f = Σf . With this reparameterization, we can sample from the standard

Gaussian distribution and approximate the likelihood term with Monte Carlo (MC) method [83]:

Eq(f)[log p(y|f)] = Ep(ϵf)[log p(y|v(ϵf))] ≈
1

B

∑
b

∑
i

log p(yi|(F(i))(b)) , (4)

where B is the number of MC samples. For the regression model, we directly compute the analyt-
ical form of likelihood term and use it for parameter learning (See derivation in Supplement S1).
With the above approximations, our model parameters (i.e., Θn, Θk, Θp, Z, and {µ,Σ}) can be
efficiently learned by maximizing the (approximated) ELBO using a stochastic gradient descent
method. Implementation details and hyper-parameter choices can be found in Supplement S2.

4 Evaluation

In this section, we evaluate EDGE on three representative RL games (all with delayed rewards) –
Pong in Atari, You-Shall-Not-Pass in MuJoCo, and Kick-And-Defend in MuJoCo. Supplement S5
further demonstrates the effectiveness of our method on two OpenAI GYM games (both with instant
rewards). For each game, we used a well-trained agent as our target agent (See Supplement S2 for
more details about these agents).

Baseline Selection. Recall our goal is to take as input the episode of a target agent and identify the
steps critical for the agent’s final reward. As is discussed in Section 3.1, to do this, there are two
categories of alternative approaches – ❶ fitting an episode through a non-interpretable model and
then deriving explanation from that model and ❷ fitting an episode through a self-explainable model
and then obtaining interpretation directly from its interpretation component. In this section, we select
some representative alternative methods as our baseline and compare them with our proposed method.
Below, we briefly describe these baseline approaches and discuss the rationale behind our choice.

With respect to the first type of alternative approaches, we first utilize the RNN structure proposed
in [43] to fit the reward prediction model. Then, we apply various gradient-based saliency methods on
the RNN model and thus derive interpretation accordingly. We implement three widely used saliency

6

Fi
de

lit
y

Atari - Pong MuJoCo - You-Shall-Not-Pass MuJoCo - Kick-And-Defend

Figure 2: Mean and standard error of the fidelity scores obtained by each explanation method. The
x-axis represents the different choices of K. “RatNet” stands for Rationale Net. For our method, we
use the global explanations derived from the mixing weight in this evaluation.

methods – Vanilla gradient [76], integrated gradient [80], and SmoothGrad [77] – as well as their
variants (ExpGrad [79], VarGrad [40], and integrated gradient with uniform baseline [79]).6 When
comparing RNN+saliency method with our proposed approach, we choose the RNN’s interpretation
from the saliency method with the best explanation fidelity. For the fidelity comparison between
each saliency method, the readers could refer to Supplement S3. In addition to the RNN+saliency
method, another method falling into the first kind of alternative approaches is Rudder [7]. Technically
speaking, this method also learns an RNN model to predict an agent’s final reward. Differently, it
derives explanation from decomposed final reward.

Regarding the second kind of alternative approaches, we choose Attention RNN and Rationale Net.
Attention RNN [10] is typically treated as a self-interpretable model. From the model’s attention
layer, one could extract its output and use it as the important scores for the input dimensions. We use
these important scores to pinpoint the critical time steps in the input episode. Similar to Attention
RNN, Rationale Net is also self-interpretable. In our experiments we use Rationale Net’s original
model structure [51] rather than the improved model structure proposed in [17]. This is because,
going beyond training data, the improved model training requires additional information, which is
unavailable for our problem.

Evaluation Metric. An intuitive method to evaluate the fidelity of the various approaches’ explana-
tions is to vary the actions at the time steps critical for the final reward and then measure the reward
difference before and after the action manipulation. However, this method invalidates the physical
realistic property of an episode because the change of an agent’s action at a specific time step would
inevitably influence its consecutive actions and the state transitions. To address this problem, we
introduce a physically realistic method to manipulate episodes. Then, we introduce a new metric to
quantify the fidelity of interpretation.

Given the explanation of the i-th episode – Ei, we first identify the top-K important time steps from
Ei. From the top-K time steps, we then extract the longest sequence (i.e., the longest continuous
time steps), record its length – l, and treat its elements as the time steps most critical to yi.

To evaluate and compare the fidelity of the interpretation (i.e., the most critical time steps extracted
through different interpretation methods), we first replay the actions recorded on that episode to the
time step indicated by the longest sequence. Starting from the beginning of the longest continuous
time steps to its end (i.e., ti · · · ti+l), we replace the corresponding actions at these time steps with
random actions. 7 Following the action replacement, we pass the state at ti+l+1 to the agent’s policy.
Starting from ti+l+1, we then use the agent’s policy to complete the game, gather the final reward,
and compute the final reward difference before/after replaying denoted as d. After computing l and d,
we define the fidelity score of Ei as log(pl)− log(pd). Here, pl = l/T is the length of the longest
sequence normalized by the total length of the episode - T . pd = |d|/dmax is the absolute reward
difference normalized by the maximum absolute reward difference of the game. When the value of
the fidelity score log(pl)− log(pd) is low, it indicates Ei is illustrated by a short length of sequence.
By varying the actions pertaining to this short sequence, we can observe a great change in the agent’s
final reward. As such, a low score implies high fidelity of an interpretation method.

Result. Fig. 2 shows the comparison results of EDGE against the aforementioned alternative explana-
tion approaches. First, we observe that existing self-explainable methods (i.e., Attention and Rational

6Note that we select these saliency methods because they pass the sanity check [1, 2]. Besides, it should be
noted that we do not consider the perturbation-based methods to derive interpretation from RNN because these
methods are mainly designed to explain convolutional networks trained for image recognition tasks.

7If the policy network is an RNN, we also fit the observation at time ti · · · ti+l into the policy to ensure the
RNN policy’s memory is not truncated.

7

... ...

... ...

H
igh to Low

...

...

A winning episode of the target (green) agent A losing episode of the target (green) agent

(a) Time step importance of the target agent in the Pong game.
H

igh to Low

A winning episode of the target (red) agent
...

...

...

...

A losing episode of the target (red) agent
...

...

(b) Time step importance of the target regular agent in the You-Shall-Not-Pass game.

Figure 3: Illustrations of the critical time steps extracted by EDGE in a winning/losing episode.

Table 1: The target agent’s performance in different use cases. “MuJoCo-Y” represents the You-
Shall-Not-Pass game and “MuJoCo-K” stands for the Kick-And-Defend game. To demonstrate the
statistical significance of our results, we run all the experiments three times with different random
seeds and show the mean and standard error of results on each setup. Numbers before the brackets
are means and those in the brackets are standard deviations. Supplementary S6 further shows a
hypothesis test result.

Applications Games Rudder Saliency Attention RatNet EDGE

Target agent win rate
changes before/after attacks

Pong -19.93 (4.43) -30.33 (0.47) -25.27(1.79) -29.20 (4.24) -65.47 (2.90)
MuJoCo-Y -32.53 (4.72) -29.33 (3.68) -33.93 (5.77) -30.00 (1.63) -35.13 (2.29)
MuJoCo-K -21.80 (3.70) -37.87 (6.31) -41.20 (4.70) -7.13 (2.50) -43.47 (4.01)

Target agent win rate
changes before/after patching

Pong +1.89 (1.25) -1.13 (0.96) -0.58 (1.81) -3.66 (1.35) +2.75 (0.65)
MuJoCo-Y +1.76 (0.17) +0.92 (0.32) +0.44 (0.06) +1.68 (0.50) +2.91 (0.32)
MuJoCo-K +0.96 (0.1) +1.17 (0.17) +0.57 (0.04) +1.21 (0.16) +1.21 (0.13)

Victim agent win rate changes
before/after robustifying MuJoCo-Y +8.54 (0.75) +12.69 (1.46) +25.10 (1.44) +25.42 (1.32) +35.30 (3.02)

Net) cannot consistently outperform the post-training explanation approaches (i.e., saliency methods
and Rudder). This observation aligns with our discussion in Section 3.1. Second, we discover that
our method demonstrates the highest interpretation fidelity across all the games in all settings. As we
discuss in Section 3.2, it is because our method could capture not only the inter-relationship between
time steps but, more importantly, the joint effect across episodes.

In addition to the fidelity of our interpretation, we also evaluate the stability of our explanation
and measure the explainability of each approach with regard to the underlying model. We present
the experiment results in Supplement S3, demonstrating the superiority of our method in those
dimensions. Along with this comparison, we further describe how well our method could fit given
episodes, discuss the efficiency of our proposed approach, and test its sensitivity against the choice of
hyper-parameters. Due to the page limit, we also detail these experiments and present experimental
results in Supplement S3.

5 Use Cases of Interpretation

Understanding Agent Behavior. Fig. 3 showcases some episode snapshots of the target agent in the
Pong and You-Shall-Not-Pass game together with the time-step importance extracted by our method.
As we can first observe from Fig. 3(a), in the winning (left) episode, EDGE highlights the time steps
when the agent hits the ball as the key steps leading to a win. This explanation implies that our target
agent wins because it sends a difficult ball bouncing over the sideline and sailing to the corner where
the opponent can barely reach. Oppositely, our method identifies the last few steps that the target
agent misses the ball as the critical step in the losing episode. This indicates that the agent loses
because it gets caught out of position. Similarly, our method also pinpoints the critical time steps
matching human perceptions in the You-Shall-Not-Pass games. For example, in the left episode of
Fig. 3(b), our explanations state that the runner (red agent) wins because it escapes from the blocker
and crosses the finish line. Overall, Fig. 3 demonstrates that the critical steps extracted by EDGE
can help humans understand how an agent wins/loses a game. In Supplement S4, we show more
examples of critical time steps and the correlations we extracted from the three games. Supplement
S7 further shows user study to demonstrate that our explanation could help user understand agent
behaviors and thus perform policy forensics.

8

H
igh to Low

A winning episode of the victim (red) agent A losing episode of the victim (red) agent

...

...

...

...

...

...

...

...

...

...

...

...

Figure 4: Time step importance of the victim agent in the You-Shall-Not-Pass game. By comparing
this figure with Fig. 3(b), we can observe that our method could derive different explanations for
different policies in the same game, indicating explanation is policy dependent.

Launching Adversarial Attacks. The qualitative analysis above reveals that an agent usually wins
because of its correct moves at the crucial steps. With this finding, we now discuss how to launch
adversarial attacks under the guidance of the interpretation. Previous research [41, 93] has proposed
various attacks to fail a DRL agent by adding adversarial perturbation to its observations at each time
step. We demonstrate that with the help of the explanations, an attacker could defeat an agent by
varying actions at only a few critical steps rather than adding physically unrealistic perturbations.
Our key idea is intuitive. If an agent’s win mainly relies on its actions at a few crucial steps, then
the agent could easily lose if it takes sub-optimal actions at those steps. Guided by this intuition, we
propose an explanation-based attack that varies the agent’s action at the critical steps identified by an
explanation method. To test this attack’s effectiveness, we first collect 2000 episodes where the target
agent wins and explain these episodes with EDGE and the baseline approaches. Second, we conclude
the top-K commonly critical steps across all the episodes (Here, we set K=30). Finally, we run the
agent in the environment and force it to take a random action at the common important steps. We test
the agent for 500 rounds and record the changes in its winning rate before/after attacks in Table 1.
As we can observe from the 2∼4 row of Table 1, all the explanation models can generate effective
attacks that reduce the agent’s winning rate. Benefiting from the high explanation fidelity, the attack
obtained from our explanations demonstrates the strongest exploitability. Supplement S4 shows the
results of different choices of K and discusses the potential alternatives of our attack. Note that this
attack is different from the fidelity test in Section 4 in that our attack generalizes the summarized
time step importance to unseen episodes while the fidelity test replays the explained episodes.

Patching Policy Errors. We design an explanation-guided policy patch method. The key idea is to
explore a remediation policy by conducting explorations at the critical time steps of losing games and
use the mixture of the original policy and the remediation policy as the patched policy. Specifically,
we first collected a set of losing episodes of the target agent and identified the important time steps
with EDGE and the baseline approaches above. Then, we explore the remediation policy by replay
those episodes with different actions at the critical steps. Here, since we do not assume an oracle
knowing the correct actions to take, we perform random explorations. First, we set an exploration
budget of 10, representing replaying 10 times for each losing episode. In each replaying, we take a
random action at the top 5 consecutive critical steps and record the random actions and corresponding
states leading to a win. Finally, we form a look-up table with these collected state-action pairs and
use it as the remediation policy. When running in the environment, the target agent will act based on
the table if the current state is in the table. 8 Otherwise, the agent will take the actions given by its
original policy. To test the effectiveness of our method, we run 500 games and record the changes in
the target agent’s winning rate before and after patching. As is shown in row 5∼7 of Table 1, overall,
the patched policies enhance the target agent’s performance, and EDGE demonstrates the highest
winning rate improvement. Table 1 also shows that in some cases, the patched policy introduces too
many false positive that even reduce the winning rate. In Supplement S4, we discuss how to mitigate
this problem via a probabilistic mixture of the remediation policy and the original policy. Supplement
S4 also experiments the influence of the look-up table size on the patching performance and discusses
other alternatives to our patching method.

Robustifying Victim Policies. Finally, we apply our methods to explain the episodes of a victim
agent playing against an adversarial opponent in the You-Shall-Not-Pass game. The adversarial policy
is obtained by the attack proposed in [31]. Fig. 4 demonstrates the identified important steps. First, the
losing episode in Fig. 4 shows the blocker takes a sequence of adversarial behaviors (i.e., intentionally
falling on the ground). These malicious actions trick the runner into falling and thus losing the game.

8For games with a continuous state space, we compute the l1 norm difference of the current state st and the
states si in the table. If the state difference is lower than a small threshold (1e-4 in our experiment. We tested
1e-3, 1e-4, and 1e-5 and observed similar results.), we treat st and si as the same state. Since the games of the
same agent usually start from relatively similar states and transition following the same policy, it is possible to
observe similar states in different episodes.

9

Oppositely, the similar adversarial actions in the winning episode cannot trigger the runner to behave
abnormally. The explanations reveal that the different focus of the victim causes the different victim
actions. In the winning episode, the victim agent focuses less on the steps pertaining to adversarial
actions, whereas those steps carry the highest weights in the losing episode. This finding implies
that the victim agent may be less distracted by the adversarial actions if it does not observe them.
Guided by this hypothesis, we propose to robustify the victim agent by blinding its observation on the
adversary at the critical time steps in the losing episode (i.e., the time steps pertaining to adversarial
actions). We test the partially blind victim and record the changes in its winning rate before/after
blinding. As is shown in the last row of Table 1, blinding the victim based on our explanations
significantly improves its winning rate. Table 1 also demonstrates the effectiveness of the baseline
approaches in robustifying victim policies. Overall, we demonstrate that the explanations of a victim
policy could pinpoint the root cause of its loss and help develop the defense mechanism.

6 Discussion

Scalability. As is discussed in Section 3.3, by using inducing points and variational inference, our
model parameters can be efficiently solved by stochastic gradient descents. Supplement S3&S5
show that EDGE imposes only a small training overhead over the existing methods. We can further
accelerate the training of EDGE by leveraging more advanced matrix computation methods, such as
approximating the covariance matrix with kernel structure interpolation [90] or replacing Cholesky
decomposition with Contour Integral Quadrature when computing the K−1

ZZ [67].

Other games. Besides the two-party Markov games (i.e., Atari Pong and MuJoCo) studied in this
work, many other games also have delayed rewards – mainly multi-player Markov games (e.g., some
zero-sum real-time strategy games [88]) and extensive-form games (e.g., Go [74] and chess [75]).
Regarding the multi-player Markov games, the associations between the episodes and final rewards
will also be more sophisticated, requiring a model with a high capacity to fit the prediction. As part
of future work, we will investigate how to increase the capacity of our proposed model for those
games, such as adding more GP components or using a more complicated DNN as the mixing weight.
For the extensive-form games, only one agent can observe the game state at any given time step and
thus take action. As such, these games have a different form of episodes from the Markov games. In
the future, we will explore how to extend our model to fit and explain the episodes collected from
extensive-form games. Supplement S5 demonstrates our method’s explanation fidelity on two games
with instant rewards. Future work will evaluate the effectiveness of our attack and patching methods
on those games and generalize our method to more sophisticated games with instant rewards.

Limitations and Future Works. Our work has a few limitations. First, we mainly compare EDGE
with some existing techniques that have been used to explain sequential data. It is possible that with
some adaptions, other explanation methods can also be applied to sequential data. It is also possible
that existing methods can be extended to capture the correlations between episodes. As part of future
work, we will explore these possibilities and broader solutions to explain a DRL policy. Second, the
fidelity evaluation method introduced in Section 4 could be further improved, such as identifying
multiple continuous important sequences. Our future work will investigate more rigorous fidelity
testing methods and metrics. Third, our current learning strategy provides the point estimate of the
mixing weight (explanations). In future work, we will explore how to place a prior on the model
parameters and apply Bayesian inference (e.g., MCMC [6]) to output the explanation uncertainty.
Finally, our work also suggests that it may be possible to train a Transformer on MDP episodes to
analyze offline trajectory data [19], and then add a GP on top to perform ablation studies. As part of
future works, we will explore along this direction.

7 Conclusion

This paper introduces EDGE to derive strategy-level explanations for a DRL policy. Technically, it
treats the target DRL agent as a blackbox and approximates its decision-making process through
our proposed self-explainable model. By evaluating it on three games commonly utilized for DRL
evaluation, we show that EDGE produces high-fidelity explanations. More importantly, we demonstrate
how DRL policy users and developers could benefit from EDGE to understand policy behavior better,
pinpoint policy weaknesses, and even conduct automated patches to enhance the original DRL policy.

10

Acknowledgments

We would like to thank the anonymous reviewers and meta reviewer for their helpful comments.
This project was supported in part by NSF grant CNS-2045948 and CNS-2055320, by ONR grant
N00014-20-1-2008, by the Amazon Research Award, and by the IBM Ph.D. Fellowship Award.

References
[1] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim. Sanity checks for

saliency maps. In Proc. of NeurIPS, 2018.

[2] J. Adebayo, M. Muelly, I. Liccardi, and B. Kim. Debugging tests for model explanations. In
Proc. of NeurIPS, 2018.

[3] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of distance metrics
in high dimensional space. In Proc. of ICDT, 2001.

[4] M. Al-Shedivat, A. G. Wilson, Y. Saatchi, Z. Hu, and E. P. Xing. Learning scalable deep kernels
with recurrent structure. The Journal of Machine Learning Research (JMLR), 2017.

[5] D. Alvarez-Melis and T. S. Jaakkola. Towards robust interpretability with self-explaining neural
networks. In Proc. of NeurIPS, 2018.

[6] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan. An introduction to mcmc for machine
learning. Machine learning, 2003.

[7] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochreiter.
Rudder: Return decomposition for delayed rewards. In Proc. of NeurIPS, 2019.

[8] ATARI. Atari games. https://www.atari.com/, 2006.

[9] A. Atrey, K. Clary, and D. Jensen. Exploratory not explanatory: Counterfactual analysis of
saliency maps for deep reinforcement learning. In Proc. of ICLR, 2020.

[10] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. In Proc. of ICLR, 2015.

[11] D. Balaban. How ai is mishandled to become a cybersecurity risk. https://www.eweek.co
m/security/how-ai-is-mishandled-to-become-a-cybersecurity-risk/, 2021.

[12] C. Bass, M. da Silva, C. Sudre, P.-D. Tudosiu, S. Smith, and E. Robinson. Icam: Interpretable
classification via disentangled representations and feature attribution mapping. In Proc. of
NeurIPS, 2020.

[13] O. Bastani, Y. Pu, and A. Solar-Lezama. Verifiable reinforcement learning via policy extraction.
In Proc. of ICML, 2018.

[14] T. Bewley and J. Lawry. Tripletree: A versatile interpretable representation of black box agents
and their environments. In Proc. of AAAI, 2021.

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[16] O.-M. Camburu, T. Rocktäschel, T. Lukasiewicz, and P. Blunsom. e-snli: Natural language
inference with natural language explanations. In Proc. of NeurIPS, 2018.

[17] S. Chang, Y. Zhang, M. Yu, and T. Jaakkola. Invariant rationalization. In Proc. of ICML, 2020.

[18] C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin. This looks like that: deep learning
for interpretable image recognition. In Proc. of NeurIPS, 2019.

[19] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. arXiv
preprint arXiv:2106.01345, 2021.

11

https://www.atari.com/
https://www.eweek.com/security/how-ai-is-mishandled-to-become-a-cybersecurity-risk/
https://www.eweek.com/security/how-ai-is-mishandled-to-become-a-cybersecurity-risk/

[20] X. Chen, Z. Wang, Y. Fan, B. Jin, P. Mardziel, C. Joe-Wong, and A. Datta. Towards behavior-
level explanation for deep reinforcement learning. arXiv preprint arXiv:2009.08507, 2020.

[21] L. Chu, X. Hu, J. Hu, L. Wang, and J. Pei. Exact and consistent interpretation for piecewise
linear neural networks: A closed form solution. In Proc. of KDD, 2018.

[22] Y. Coppens, K. Efthymiadis, T. Lenaerts, A. Nowé, T. Miller, R. Weber, and D. Magazzeni.
Distilling deep reinforcement learning policies in soft decision trees. In Proc. of IJCAI Workshop
on XAI, 2019.

[23] M. H. Danesh, A. Koul, A. Fern, and S. Khorram. Re-understanding finite-state representations
of recurrent policy networks. In Proc. of ICML, 2021.

[24] DeepMind. Alphastar: Mastering the real-time strategy game starcraft ii. https://en.wikip
edia.org/wiki/AlphaStar_(software), 2017.

[25] D. Duvenaud, H. Nickisch, and C. E. Rasmussen. Additive gaussian processes. arXiv preprint
arXiv:1112.4394, 2011.

[26] S. Eleftheriadis, T. Nicholson, M. P. Deisenroth, and J. Hensman. Identification of gaussian
process state space models. In Proc. of NeurIPS, 2017.

[27] G. F. Elsayed, Q. V. Le, and S. Kornblith. Saccader: Accurate, interpretable image classification
with hard attention. In Proc. of NeurIPS, 2019.

[28] R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaningful perturbation.
In Proc. of ICCV, 2017.

[29] R. Frigola, Y. Chen, and C. E. Rasmussen. Variational gaussian process state-space models. In
Proc. of NeurIPS, 2014.

[30] A. Ghorbani, A. Abid, and J. Zou. Interpretation of neural networks is fragile. In Proc. of AAAI,
2019.

[31] A. Gleave, M. Dennis, N. Kant, C. Wild, S. Levine, and S. Russell. Adversarial policies:
Attacking deep reinforcement learning. In Proc. of ICLR, 2020.

[32] S. Greydanus, A. Koul, J. Dodge, and A. Fern. Visualizing and understanding atari agents. In
Proc. of ICML, 2018.

[33] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipula-
tion with asynchronous off-policy updates. In Proc. of ICRA, 2017.

[34] T. Guo, T. Lin, and N. Antulov-Fantulin. Exploring interpretable lstm neural networks over
multi-variable data. In Proc. of ICML, 2019.

[35] W. Guo, S. Huang, Y. Tao, X. Xing, and L. Lin. Explaining deep learning models-a bayesian
non-parametric approach. Proc. of NeurIPS, 2018.

[36] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing. Lemna: Explaining deep learning based
security applications. In Proc. of CCS, 2018.

[37] W. Guo, X. Wu, S. Huang, and X. Xing. Adversarial policy learning in two-player competitive
games. In Proc. of ICML, 2021.

[38] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine. Composable deep reinforce-
ment learning for robotic manipulation. In Proc. of ICRA, 2018.

[39] J. Heo, H. B. Lee, S. Kim, J. Lee, K. J. Kim, E. Yang, and S. J. Hwang. Uncertainty-aware
attention for reliable interpretation and prediction. In Proc. of NeurIPS, 2018.

[40] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim. A benchmark for interpretability methods
in deep neural networks. In Proc. of NeurIPS, 2019.

[41] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel. Adversarial attacks on neural
network policies. In Proc. of ICLR workshop, 2017.

12

https://en.wikipedia.org/wiki/AlphaStar_(software)
https://en.wikipedia.org/wiki/AlphaStar_(software)

[42] A. Hüyük, D. Jarrett, C. Tekin, and M. Van Der Schaar. Explaining by imitating: Understanding
decisions by interpretable policy learning. In Proc. of ICLR, 2021.

[43] A. A. Ismail, M. Gunady, L. Pessoa, H. C. Bravo, and S. Feizi. Input-cell attention reduces
vanishing saliency of recurrent neural networks. In Proc. of NeurIPS, 2019.

[44] R. Iyer, Y. Li, H. Li, M. Lewis, R. Sundar, and K. Sycara. Transparency and explanation in deep
reinforcement learning neural networks. In Proc. of AIES, 2018.

[45] S. Jain and B. C. Wallace. Attention is not explanation. In Proc. of NAACL, 2019.

[46] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez. Explainable reinforcement
learning via reward decomposition. In Proc. of IJCAI Workshop on XAI, 2019.

[47] O. Katz. Explainability: The next frontier for artificial intelligence in insurance and banking.
https://www.unite.ai/explainability-the-next-frontier-for-artificial-i
ntelligence-in-insurance-and-banking/, 2021.

[48] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Proc. of NeurIPS, 2000.

[49] A. Koul, S. Greydanus, and A. Fern. Learning finite state representations of recurrent policy
networks. arXiv preprint arXiv:1811.12530, 2018.

[50] G.-H. Lee, W. Jin, D. Alvarez-Melis, and T. Jaakkola. Functional transparency for structured
data: a game-theoretic approach. In Proc. of ICML, 2019.

[51] T. Lei, R. Barzilay, and T. Jaakkola. Rationalizing neural predictions. In Proc. of EMNLP-
IJCNLP, 2017.

[52] O. Li, H. Liu, C. Chen, and C. Rudin. Deep learning for case-based reasoning through prototypes:
A neural network that explains its predictions. In Proc. of AAAI, 2018.

[53] J. Liang, Y. Wu, D. Xu, and V. Honavar. Longitudinal deep kernel gaussian process regression.
In Proc. of AAAI, 2021.

[54] Z. Lin, K.-H. Lam, and A. Fern. Contrastive explanations for reinforcement learning via
embedded self predictions. In Proc. of ICLR, 2021.

[55] G. Liu, O. Schulte, W. Zhu, and Q. Li. Toward interpretable deep reinforcement learning with
linear model u-trees. In Proc. of ECML-PKDD, 2018.

[56] Y. Y. Lu, W. Guo, X. Xing, and W. S. Noble. Dance: Enhancing saliency maps using decoys. In
Proc. of ICML, 2021.

[57] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of
discrete random variables. In Proc. of ICLR, 2017.

[58] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere. Distal explanations for model-free
explainable reinforcement learning. arXiv preprint arXiv:2001.10284, 2020.

[59] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere. Explainable reinforcement learning through
a causal lens. In Proc. of AAAI, 2020.

[60] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 2015.

[61] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturba-
tions. In Proc. of CVPR, 2017.

[62] A. Mott, D. Zoran, M. Chrzanowski, D. Wierstra, and D. J. Rezende. Towards interpretable
reinforcement learning using attention augmented agents. In Proc. of NeurIPS, 2019.

[63] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

13

https://www.unite.ai/explainability-the-next-frontier-for-artificial-intelligence-in-insurance-and-banking/
https://www.unite.ai/explainability-the-next-frontier-for-artificial-intelligence-in-insurance-and-banking/

[64] W. Nie, Y. Zhang, and A. Patel. A theoretical explanation for perplexing behaviors of
backpropagation-based visualizations. In Proc. of ICML, 2018.

[65] OpenAI. Openai at the international 2017. https://openai.com/the-international/,
2017.

[66] T. Pedapati, A. Balakrishnan, K. Shanmugam, and A. Dhurandhar. Learning global transparent
models consistent with local contrastive explanations. In Proc. of NeurIPS, 2020.

[67] G. Pleiss, M. Jankowiak, D. Eriksson, A. Damle, and J. R. Gardner. Fast matrix square roots
with applications to gaussian processes and bayesian optimization. In Proc. of NeurIPS, 2020.

[68] N. Puri, S. Verma, P. Gupta, D. Kayastha, S. Deshmukh, B. Krishnamurthy, and S. Singh.
Explain your move: Understanding agent actions using specific and relevant feature attribution.
In Proc. of ICLR, 2020.

[69] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In Proc. of ICML, 2015.

[70] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[71] Q. She and A. Wu. Neural dynamics discovery via gaussian process recurrent neural networks.
In Proc. of UAI, 2020.

[72] W. Shi, S. Song, Z. Wang, and G. Huang. Self-supervised discovering of causal features:
Towards interpretable reinforcement learning. arXiv preprint arXiv:2003.07069, 2020.

[73] T. Shu, C. Xiong, and R. Socher. Hierarchical and interpretable skill acquisition in multi-task
reinforcement learning. arXiv preprint arXiv:1712.07294, 2017.

[74] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. Nature, 2016.

[75] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

[76] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv:1312.6034, 2013.

[77] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. Smoothgrad: removing noise by
adding noise. arXiv:1706.03825, 2017.

[78] S. Srinivas and F. Fleuret. Rethinking the role of gradient-based attribution methods for model
interpretability. In Proc. of ICLR, 2021.

[79] P. Sturmfels, S. Lundberg, and S.-I. Lee. Visualizing the impact of feature attribution baselines.
Distill, 2020.

[80] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In Proc. of
ICML, 2017.

[81] A. Svensson, A. Solin, S. Särkkä, and T. Schön. Computationally efficient bayesian learning of
gaussian process state space models. In Proc. of AISTATS, 2016.

[82] Y. Tang, D. Nguyen, and D. Ha. Neuroevolution of self-interpretable agents. In Proc. of
GECCO, 2020.

[83] S. Thrun. Monte carlo pomdps. In Proc. of NeurIPS, 2000.

[84] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In Proc.
of ICIRS, 2012.

14

https://openai.com/the-international/

[85] N. Topin and M. Veloso. Generation of policy-level explanations for reinforcement learning. In
Proc. of AAAI, 2019.

[86] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
In Proc. of AAAI, 2016.

[87] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri. Programmatically interpretable
reinforcement learning. In Proc. of ICML, 2018.

[88] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 2019.

[89] S. Wiegreffe and Y. Pinter. Attention is not not explanation. In Proc. of EMNLP-IJCNLP, 2019.

[90] A. Wilson and H. Nickisch. Kernel interpolation for scalable structured gaussian processes
(kiss-gp). In Proc. of ICML, 2015.

[91] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Stochastic variational deep kernel
learning. In Proc. of NeurIPS, 2016.

[92] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls, D. Reichert,
T. Lillicrap, E. Lockhart, et al. Deep reinforcement learning with relational inductive biases. In
Proc. of ICLR, 2018.

[93] H. Zhang, H. Chen, D. Boning, and C.-J. Hsieh. Robust reinforcement learning on state
observations with learned optimal adversary. In Proc. of ICLR, 2021.

[94] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang. Interpretable deep learning under fire.
In Proc. of USENIX Security, 2020.

15

	Introduction
	Related Work
	Key Technique
	Problem Setup
	Explanation Model Design of EDGE
	Posterior Inference and Parameter Learning

	Evaluation
	Use Cases of Interpretation
	Discussion
	Conclusion

