
EDGE: Explaining Deep Reinforcement Learning
Policies

Wenbo Guo
The Pennsylvania State University

wzg13@ist.psu.edu

Xian Wu∗

The Pennsylvania State University
xkw5132@psu.edu

Usmann Khan∗

Georgia Institute of Technology
ukhan35@gatech.edu

Xinyu Xing
Northwestern University

The Pennsylvania State University
xinyu.xing@northwestern.edu

Abstract

With the rapid development of deep reinforcement learning (DRL) techniques,
there is an increasing need to understand and interpret DRL policies. While recent
research has developed explanation methods to interpret how an agent determines
its moves, they cannot capture the importance of actions/states to a game’s final
result. In this work, we propose a novel self-explainable model that augments a
Gaussian process with a customized kernel function and an interpretable predictor.
Together with the proposed model, we also develop a parameter learning procedure
that leverages inducing points and variational inference to improve learning effi-
ciency. Using our proposed model, we can predict an agent’s final rewards from its
game episodes and extract time step importance within episodes as strategy-level
explanations for that agent. Through experiments on Atari and MuJoCo games, we
verify the explanation fidelity of our method and demonstrate how to employ inter-
pretation to understand agent behavior, discover policy vulnerabilities, remediate
policy errors, and even defend against adversarial attacks.

1 Introduction

Deep reinforcement learning has shown great success in automatic policy learning for various
sequential decision-making problems, such as training AI agents to defeat professional players in
sophisticated games [74, 65, 24, 37] and controlling robots to accomplish complicated tasks [33,
38]. However, existing DRL agents make decisions in an opaque fashion, taking actions without
accompanying explanations. This lack of transparency creates key barriers to establishing trust in an
agent’s policy and scrutinizing policy weakness. This issue significantly limits the applicability of
DRL techniques in critical application fields (e.g., finance [47] and self-driving cars [11]).

To tackle this limitation, prior research (e.g., [9, 13, 73]) proposes to derive an explanation for a target
agent’s action at a specific time step. Technically, this explanation can be obtained by pinpointing the
features within the agent’s observation of a particular state that contribute most to its corresponding
action at that state. Despite demonstrating great potential to help users understand a target agent’s

∗Equal Contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

individual actions, they lack the capability to extract insights into the overall policy of that agent. In
other words, existing methods cannot shed light on the general sensitivity of an agent’s final reward
from a game in regards to the actions/states in that game episode. Consequently, these methods fall
short in troubleshooting an agent’s policy’s weaknesses when it fails its task.

We propose a novel explanation method to derive strategy-level interpretations of a DRL agent. As
we discuss later in Section 3, we define such interpretations as the identification of critical time steps
contributing to a target agent’s final reward from each game episode. At a high level, our method
identifies the important time steps by approximating the target agent’s decision-making process
with a self-explainable model and extracting the explanations from this model. Specifically, given a
well-trained DRL agent, our method first collects a set of episodes and the corresponding final rewards
of this agent. Then, it fits a self-explainable model to predict final rewards from game episodes. To
model the unique correlations in DRL episodes and enable high-fidelity explanations, rather than
simply applying off-the-shelf self-explanation techniques, we develop a novel self-explainable model
that integrates a series of new designs. First, we augment a Gaussian Process (GP) with a customized
deep additive kernel to capture not only correlations between time steps but, more importantly, the
joint effect across episodes. Second, we combine this deep GP model with our newly designed
explainable prediction model to predict the final reward and extract the time step importance. Third,
we develop an efficient inference and learning framework for our model by leveraging inducing points
and variational inference. We refer to our method as “Strategy-level Explanation of Drl aGEnts” (for
short EDGE). 2

With extensive experiments on three representative RL games, we demonstrate that EDGE outperforms
alternative interpretation methods in terms of explanation fidelity. Additionally, we demonstrate how
DRL policy users and developers can benefit from EDGE. Specifically, we first show that EDGE could
help understand the agent’s behavior and establish trust in its policy. Second, we demonstrate that
guided by the insights revealed from our explanations, an attacker could launch efficient adversarial
attacks to cause a target agent to fail. Third, we demonstrate how, with EDGE’s capability, a model
developer could explain why a target agent makes mistakes. This allows the developer to explore
a remediation policy following the explanations and using it to enhance the agent’s original policy.
Finally, we illustrate that EDGE could help develop a defense mechanism against a newly emerging
adversarial attack on DRL agents. To the best of our knowledge, this is the first work that interprets
a DRL agent’s policy by identifying the most critical time steps to the agent’s final reward in each
episode. This is also the first work that demonstrates how to use an explanation to understand agent
behavior, discover policy vulnerabilities, patch policy errors, and robustify victim policies.

2 Related Work

Past research on DRL explanation primarily focuses on associating an agent’s action with its obser-
vation at a particular time step (i.e., pinpointing the features most critical to the agent’s action at a
specific time). Technically, these methods can be summarized in the following categories.

• Post-training explanation is a method that utilizes and extends post-training interpretation ap-
proaches (e.g., [56, 28, 36, 35]) to derive explanation from a DRL agent’s policy/value network
and thus treat it as the interpretation for that DRL agent (e.g., [9, 44, 32, 68, 20, 72]).

• Model approximation is an approach that employs a self-interpretable model to mimic the target
agent’s policy networks and then derives explanation from the self-interpretable model for the
target DRL agent (e.g., [13, 22, 55, 14, 59, 58, 87, 85]).

• Self-interpretable modeling is an approach different from the model approximation techniques
above. Instead of mimicking the target agent’s policy network, self-interpretable modeling builds a
self-explainable model to replace the policy network. Since the new model is interpretable, one can
easily derive an explanation for the target agent (e.g., [92, 62, 82, 42]).

• Reward decomposition is a method that re-engineers a DRL agent’s reward function to make
the reward gained at each time step more meaningful and explainable. With the more meaningful
reward in hand, at each time step, one could use the instant reward gain to interpret the agent’s
action (e.g., [73, 46, 54]).

2The source code of EDGE can be found in https://github.com/Henrygwb/edge.

2

https://github.com/Henrygwb/edge

From the objective perspective, our work is fundamentally different from the above DRL explanation
research. Rather than pinpointing the features – in an observation – critical for an agent's action, our
work identi�es the critical time steps contributing to the agent's �nal reward. Using our explanation,
one can better understand the agent's policy, unveil policy weakness, and patch policy errors (as
shown in Section 5). In Supplement S7, we further conduct a user study to demonstrate the superiority
of our method against the above explanation approaches in pinpointing good policies and performing
policy forensics. Note that there are two other methods that also understand a DRL policy through
the agent's previous memories [49, 23]. These works are fundamentally different from ours in two
perspectives. First, both methods have a different explanation goals from our work. Speci�cally,
Koul et al. [49] focuses on identifying whether the action at each time step depends more on the
current observation or the previous states. The method proposed in [23] pinpoints the important steps
w.r.t. the subsequent transitions in the FSM extracted from the target agent rather than the �nal result
of an episode. Second, both methods can be applied only to white-box RNN policies, whereas our
method is applicable to DRL policies with arbitrary network structures.

3 Key Technique

3.1 Problem Setup

Consider a DRL game with an agent trained with Q-learning [86, 60] or policy gradient [48, 69, 70].
Our work aims to explain this agent's policy by identifying the important steps contributing most to a
game episode's �nal reward/result. To ensure practicability, we allow access only to the environment
states, agent's actions, and rewards. We assume the availability of neither the value/Q function
nor the policy network. Formally, givenN episodesT = f X (i) ; yi gi =1: N of the target agent,
X (i) = f s(i)

t ; a(i)
t gt =1: T is thei � th episode with the lengthT, wheres(i)

t 2 Rds anda(i)
t 2 Rda are

the state and action at the time stept. yi is the �nal reward of this episode.3 Our goal is to highlight
the top-K important time steps within each episodeX (i) .

Possible Solutions and Limitations.The most straightforward approach of identifying important
time steps is to use the output of the value/Q network as indicators and pinpoint the time steps with the
top K highest value/Q function's outputs as the top K critical steps. However, since we do not assume
the availability of these networks, this method is not applicable to our problem. A more realistic
method is to �t a seq2one model (i.e.,RNN) that takes as input the state-action pairs in an episode and
predicts the �nal reward of that episode. With this prediction model, one could utilize a post-training
explanation method to derive the time step importance. However, existing post-training explanation
techniques usually require approximating the target DNN with more transparent models, which
inevitably introduces errors. Additionally, many post-training methods are vulnerable to adversarial
attacks [61, 30, 94] or generate model-independent explanations [1, 64, 2, 78]. As we will show
later in Section 4 and Supplement S3&S5, these limitations jeopardize the post-training explanations'
�delity. A more promising direction is to �t a self-explainable model to predict the �nal reward.
Existing research has proposed a variety of self-explanation methods. Most of them do not apply
to our problem because they either cannot derive feature importance as explanations [5, 52, 50, 18],
cannot be applied to sequential data [21, 27, 12], or require explanation ground truth [16, 66]. In this
work, we consider two self-explainable models that are designed to �t and explain sequential data –
an RNN augmented with attention [10, 39, 34] and rationale net [51]. Technically, both models have
the form ofg(� (x) � x), where� (�) is a weight RNN or an attention layer andg(�) is the prediction
RNN. The output of� (�) can be used to identify the important steps in the input sequence. Despite
extracting meaningful explanations, recent research [45, 89, 17] reveals that the explanations given
by � (�) cannot faithfully re�ect the associations (i.e., feature importance) learned by the subsequent
prediction modelg(�), leading to an even lower �delity than the post-training explanations in some
applications. Additionally, these models are not designed to explain an RL agent and cannot fully
capture the dependencies within the episodes of that agent. Speci�cally, the episodes collected from
the same agent tend to exhibit two types of dependencies: dependency between the time steps within
an episode and the dependency across different episodes. Although they consider the dependency

3For the games with delayed rewards, such as MuJoCo [84] and Atari Pong [8], where a non-zero rewardr T

is assigned only to the last step of a game, we user T asyi . For the games with instant rewards (e.g.,OpenAI
CartPole [15]), we compute an episode's total reward asyi , i.e.,yi =

P
t r t .

3

Figure 1: Overview ofEDGEwith a constant prediction mixing weight.

within each input sequence, these methods cannot capture the correlations between different inputs.
As is shown in Section 4 and Supplement S3&S5, this also jeopardizes their explanation �delity.

3.2 Explanation Model Design ofEDGE

In this work, we design a novel self-explainable model by adopting a very different design than
existing methods. First, to better capture the associations (i.e., feature importance) learned by the
prediction model, we add the explainable module to the �nal layer rather than the input layer of the
prediction model. Formally, our model can be written asg(f (x)) , wheref (�) is a feature extractor
andg(�) is an explainable prediction model. Second, we design a deep Gaussian Process as the feature
extractor to capture the correlations between time steps and those across different episodes, which
are often exhibited in a set of episodes collected from the same DRL agent. In addition to capturing
different levels of correlations, another advantage of deep GPs over typical DNNs is that GPs model
the joint distribution of the output signals, enabling access to the output signals' uncertainty. Finally,
we design an interpretable Bayesian prediction model to infer the distribution of �nal rewards and
deliver time step importance. Below, we �rst give an overview of our proposed model. Then, we
describe how to adapt the traditional GP model to our problem, followed by the design of the �nal
prediction model.

Overview. As shown in Fig 1, given an episode of the target agentX (i) , EDGE�rst inputs it into a
RNN encoder, which outputs the embedding of each time step in this episodef h (i)

t gt =1: T . EDGE
also passes the last step's embedding through a shallow MLP to obtain an episode embeddinge(i) .
Then,EDGEadopts our proposed additive GP framework to processf h (i)

t gt =1: T ande(i) and obtains
a latent representation of the whole episodef (i)

1:T . As introduced later, this representation is able to
capture the correlations between time steps and those across episodes. Finally,EDGEinputsf (i)

1:T into
our prediction modelf (i)

1:T and get the predicted �nal reward of the input episode. As detailed later,
our prediction model is designed based on a linear regression, whose regression coef�cient can be
used to identify important time steps within in the input episode.

Additive GP with Deep Recurrent Kernels. Gaussian Process de�nes a distribution over an
in�nite collection of random variables, such that any �nite subset of variables follows a multivariate
Gaussian distribution [63]. In Statistical modeling, GP de�nes the prior of a non-parametric function
f : X ! R. Formally, if f has a GP prior, i.e.,f � GP (0; k
),wherek
 (�; �) is a positive semi-
de�nite kernel function parameterized by
 , any �nite collections off 2 RN follows a multivariate
Gaussian distribution(f jX) � N (0; K XX). Here,K XX 2 RN � N is the covariance matrix, with
(K XX) ij = k
 (x i ; x j). In our model, we adopt the widely applied square exponential (SE) kernel
function: k
 (x i ; x j) = exp

�
� 1

2 (x i � x j)T � k (x i � x j)
�
, with
 = � k . Traditional GP with SE

kernel [63] assumes the input space is Euclidean, which is usually invalid for real-world data with
high-dimensional inputs [3]. To tackle this challenge, recent research [91, 53] proposes to conduct
dimensional reduction via a DNN and then apply a GP to the DNN's latent space. They show that the
resultant deep kernel models achieve similar performance to DNNs on complicated datasets.

In our model we capture the sequential dependency within an episode by using an RNN as the deep
net inside the kernel function. Speci�cally, given an episodeX (i) , we �rst concatenate the state and
action (i.e.,x (i)

t = [s(i)
t ; a(i)

t]), input them into an RNNh� , and obtain the latent representation of
this episode:f h (i)

t gt =1: T , whereh (i)
t 2 Rq is the state-action embedding at the timet. We also

4

	Introduction
	Related Work
	Key Technique
	Problem Setup
	Explanation Model Design of EDGE
	Posterior Inference and Parameter Learning

	Evaluation
	Use Cases of Interpretation
	Discussion
	Conclusion

