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A Theoretical Results

We begin with deriving Eq. (4) in detail since following subsections are based on it.
TCθ( ~O;Z) = TC( ~O)− TCθ( ~O|Z)

= DKL

(
pD (~o) ‖

V∏
i=1

pD (ov)

)
− Epθ(z)

[
DKL

(
pθ (~o|z) ‖

V∏
i=1

pθ (ov|z)

)]

=

V∑
v=1

H (Ov)−H( ~O)−
V∑
v=1

Hθ(Ov|Z) +Hθ( ~O|Z)

=

V∑
v=1

H (Ov)−
V∑
v=1

Hθ (Ov|Z)−H( ~O) +Hθ( ~O|Z)

=

V∑
v=1

Iθ (Ov;Z)− Iθ( ~O;Z), (10)

where pθ (z) =
∫
pθ (z|~o) pD (~o) d~o, pθ (~o|z) = pθ(z|~o)pD(~o)

pθ(z)
, and pθ (ov|z) =

∫
pθ (~o|z) d~o\v are

distributions involved with intractable integration w.r.t. the unknown density pD(~o).
Thus, we derive three different variational lower bounds on TCθ( ~O;Z) introduced in Section 2.1
and Section 2.3 below.

A.1 Lower Bound that introduces VIB (Eq. (5))

TCθ( ~O;Z) =

V∑
v=1

Iθ (Ov;Z)− Iθ( ~O;Z)

=

V∑
v=1

[
Epθ(z,ov)

[
ln
pθ (ov|z)
pD(ov)

]]
− Epθ(z,~o)

[
ln
pθ(z|~o)
pθ(z)

]

=

V∑
v=1

[
Epθ(z,ov)

[
ln
pθ (ov|z)
pD(ov)

·
qvφ (ov|z)
qvφ (ov|z)

]]
− Epθ(z,~o)

[
ln
pθ(z|~o)
pθ(z)

· r(z)
r(z)

]

=

V∑
v=1

[
H (Ov) + Epθ(z,ov) [ln qφ (ov|z)]

]
− EpD(~o) [DKL [pθ(z|~o)‖r(z)]]

+

V∑
v=1

[
Epθ(z) [DKL [pθ (ov|z) ‖qφ (ov|z)]]

]
+DKL [pθ(z)‖r(z)] (11)

≥
V∑
v=1

[
H (Ov) + Epθ(z,ov)

[
ln qvφ (ov|z)

]]
− EpD(~o) [DKL [pθ(z|~o)‖r(z)]]

=

V∑
v=1

[
H (Ov) +

∫ (∫
pθ(z|~o)pD(~o)d~o\v

)
ln qvφ (ov|z) dovdz

]
− EpD(~o) [DKL [pθ(z|~o)‖r(z)]]

=

V∑
v=1

[
H (Ov) +

∫
pθ(z|~o)pD(~o) ln qvφ (ov|z) d~odz

]
− EpD(~o) [DKL [pθ(z|~o)‖r(z)]]

=

V∑
v=1

[
H (Ov) + Epθ(z|~o)pD(~o)

[
ln qvφ (ov|z)

]]
− EpD(~o) [DKL [pθ(z|~o)‖r(z)]] , (12)

where Eq. (11) is the gap between TCθ( ~O;Z) and Eq. (12) (or Eq. (5)). Since TCθ( ~O;Z) is upper
bounded by TC( ~O) which is a constant, maximization of Eq. (12) not only maximizes the original
objective TCθ( ~O;Z) but also minimizes Eq. (11), the gap between TCθ( ~O;Z) and Eq. (12). This
results in fitting qvφ (ov|z) ≈ pθ (ov|z) and r(z) ≈ pθ(z)3.

3In practice, we fix r (z) = N(0, I) for simplicity.
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A.2 Lower Bound that introduces Conditional VIBs (Eq. (7))

TCθ( ~O;Z) =

V∑
v=1

Iθ (Ov;Z)− Iθ( ~O;Z)

=

V∑
v=1

[
V − 1

V
Iθ (Ov;Z) +

1

V
Iθ (Ov;Z)−

1

V
Iθ( ~O;Z)

]

=
1

V

V∑
v=1

[
(V − 1) Iθ (Ov;Z)− Iθ( ~O\v;Z | Ov)

]
(13)

=
1

V

V∑
v=1

[
(V − 1)Epθ(z,ov)

[
ln
pθ (ov|z)
pD(ov)

]
− Epθ(z,~o)

[
ln

pθ(z|~o)
pθ(z|ov)

]]

=
1

V

V∑
v=1

[
(V − 1)Epθ(z,ov)

[
ln
pθ (ov|z)
pD(ov)

·
qvφ (ov|z)
qvφ (ov|z)

]
− Epθ(z,~o)

[
ln

pθ(z|~o)
pθ(z|ov)

·
rvψ(z|ov)
rvψ(z|ov)

]]

=
V − 1

V

V∑
v=1

[
H (Ov) + Epθ(z,ov)

[
ln qvφ (ov|z)

]]
− 1

V

V∑
v=1

EpD(~o)

[
DKL

[
pθ(z|~o)‖rvψ(z|ov)

]]
+
V − 1

V

V∑
v=1

[
Epθ(z) [DKL [pθ (ov|z) ‖qφ (ov|z)]]

]
+

1

V

V∑
v=1

[
EpD(ov)

[
DKL

[
pθ(z|ov)‖rvψ(z|ov)

]]]
(14)

≥ V − 1

V

V∑
v=1

[
H (Ov) + Epθ(z,ov)

[
ln qvφ (ov|z)

]]
− 1

V

V∑
v=1

EpD(~o)

[
DKL

[
pθ(z|~o)‖rvψ(z|ov)

]]
=
V − 1

V

V∑
v=1

[
H (Ov) +

∫ (∫
pθ(z|~o)pD(~o)d~o\v

)
ln qvφ (ov|z) dovdz

]

− 1

V

V∑
v=1

EpD(~o)

[
DKL

[
pθ(z|~o)‖rvψ(z|ov)

]]
=
V − 1

V

V∑
v=1

[
H (Ov) +

∫
pθ(z|~o)pD(~o) ln qvφ (ov|z) d~odz

]

− 1

V

V∑
v=1

EpD(~o)

[
DKL

[
pθ(z|~o)‖rvψ(z|ov)

]]
=
V − 1

V

V∑
v=1

[
H (Ov) + Epθ(z|~o)pD(~o)

[
ln qvφ (ov|z)

]]
− 1

V

V∑
v=1

EpD(~o)

[
DKL

[
pθ(z|~o)‖rvψ(z|ov)

]]
, (15)

where pθ (z|ov) =
∫
pθ(z|~o)pD(~o)d~o\v is a distribution that requires intractable integration w.r.t. the

unknown density pD(~o). Note that the equality in Eq. (13) holds due to the chain rule for MI (see
Section A.5). Similar to Eq. (12), maximization of Eq. (15) minimizes Eq. (14), the gap between
Eq. (13) and Eq. (15). Thus, our variational optimization scheme fits not only qvφ (ov|z) ≈ pθ (ov|z)
but also rvψ(z|ov) ≈ pθ(z|ov).
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A.3 Convex Combination (Eq. (8))

TCθ( ~O;Z) = (1− α)

(
V∑
v=1

Iθ (Ov;Z)− Iθ( ~O;Z)

)

+ α

(
1

V

V∑
v=1

[
(V − 1) Iθ (Ov;Z)− Iθ( ~O\v;Z | Ov)

])

=
V (1− α) + α (V − 1)

V

V∑
v=1

Iθ (Ov;Z)−
α

V

V∑
v=1

Iθ( ~O\v;Z | Ov)− (1− α) Iθ( ~O;Z)

≥ V − α
V

V∑
v=1

[
H (Ov) + Epθ(z|~o)pD(~o)

[
ln qvφ (ov|z)

]]
− α

V

V∑
v=1

EpD(~o)

[
DKL

[
pθ(z|~o)‖rvψ(z|ov)

]]
− (1− α)EpD(~o) [DKL [pθ(z|~o)‖r(z)]] , (16)

where 0 ≤ α ≤ 1.

A.4 Interaction Information and its Equivalence to TCθ( ~O;Z) when V = 2

When there are 2 views, Interaction Information (II) among O1, O2, and Z is defined as follows:

Iθ (O1;O2;Z) = Iθ (O1;Z)− Iθ (O1;Z | O2)

= Iθ (O2;Z)− Iθ (O2;Z | O1)

= I (O1;O2)− Iθ (O1;O2 | Z)

Applying the chain rule of MI (see Section A.5) to the first equality,
we can easily show the equivalence between Iθ (O1;O2;Z) and TCθ( ~O;Z):

Iθ (O1;O2;Z) = Iθ (O1;Z)− Iθ (O1;Z | O2)

= Iθ (O1;Z)− (−Iθ (O2;Z) + Iθ (O1, O2;Z)) = TCθ( ~O;Z) (17)

A.5 Chain Rule for Mutual Information

Iθ (Ov;Z)− Iθ( ~O;Z) = Epθ(z,ov)
[
ln
pθ (z|ov)
pθ(z)

]
− Epθ(z,~o)

[
ln
pθ(z|~o)
pθ(z)

]
=

∫ (∫
pθ(z|~o)pD(~o)d~o\v

)
ln
pθ (z|ov)
pθ(z)

dovdz

−
∫
pθ(z|~o)pD (~o) ln

pθ(z|~o)
pθ(z)

d~odz

=

∫
pθ(z|~o)pD (~o)

(
ln
pθ (z|ov)
pθ(z)

− ln
pθ(z|~o)
pθ(z)

)
d~odz

= −
∫
pθ(z|~o)pD (~o) ln

pθ(z|~o)
pθ(z|ov)

d~odz = −Epθ(z,~o)
[
ln
pθ(z|~o\v, ov)
pθ(z|ov)

]
= −Iθ( ~O\v;Z | Ov) (18)
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A.6 Connection to Multi-View Information Bottleneck (MIB)

MIB [11] is proposed for learning view-invariant representation between two views. Although one
can try to apply MIB to MVRL with more than 2 views by treating it as

(
V
2

)
pair-wise representation

learning, it combinatorially scales to the number of given views, making it infeasible to run with
many views.

Interestingly, we observe that designing pθ(z, ~o) as MoE of rvψ(z|ov) relates conditional VIBs in
Eq. (7) to the regularization terms used in MIB for discarding any view-specific information4.

V∑
v=1

EpD(~o)

[
DKL

[
pθ(z|~o)‖rvψ(z|ov)

]]
(19)

=

V∑
v=1

EpD(~o)

[
DKL

[
pθ(z|~o)‖rvψ(z|ov)

]]
+

V∑
i=1

EpD(~o)

[
DKL

[
riψ(z|oi)‖pθ(z|~o)

]]
−

V∑
i=1

EpD(~o)

[
DKL

[
riψ(z|oi)‖pθ(z|~o)

]]
(20)

=

V∑
v=1

EpD(~o)

[∫ (
1

V

V∑
i=1

riψ(z|oi)

)
ln

pθ(z|~o)
rvψ(z|ov)

dz

]
+

V∑
v=1

V∑
i=1

[
1

V
DKL

[
riψ(z|oi)‖pθ(z|~o)

]]

−
V∑
i=1

EpD(~o)

[
DKL

[
riψ(z|oi)‖pθ(z|~o)

]]
=

V∑
v=1

V∑
i=1

EpD(~o)

[
1

V

∫
riψ(z|oi) ln

pθ(z|~o)
rvψ(z|ov)

dz +
1

V

∫
riψ(z|oi) ln

riψ(z|oi)
pθ(z|~o)

dz

]

−
V∑
i=1

EpD(~o)

[
DKL

[
riψ(z|oi)‖pθ(z|~o)

]]
=

V∑
v=1

V∑
i=1

EpD(~o)

[
1

V

∫
riψ(z|oi) ln

riψ(z|oi)
rvψ(z|ov)

dz

]
−

V∑
i=1

EpD(~o)

[
DKL

[
riψ(z|oi)‖pθ(z|~o)

]]
≤

V∑
v=1

V∑
i=1

EpD(~o)

[
1

V
DKL

[
riψ(z|oi)‖rvψ(z|ov)

]]

=

V−1∑
v=1

V∑
i=v+1

EpD(~o)

[
2

V
DSKL

[
riψ(z|oi)‖rvψ(z|ov)

]]
, (21)

where DSKL

[
riψ(z|oi)‖rvψ(z|ov)

]
= 1

2DKL

[
riψ(z|oi)‖rvψ(z|ov)

]
+ 1

2DKL

[
rvψ(z|ov)‖riψ(z|oi)

]
.

Remarkably, each of DSKL terms in Eq. (21) is a regularization term used in MIB to discard any
information not shared by two views, which encourages each of view-specific encoder to learn
view-invariant representation only. Although Eq. (19) is a lower bound on Eq. (21), the gap Eq. (20)
between Eq. (21) and Eq. (19) clearly shows that the optimal solutions of Eq. (21) and Eq. (19) have
to be equal to:

r1ψ(z|o1) = r2ψ(z|o2) = ... = rVψ (z|ov)
Bearing in mind that our goal is to learn complete representation instead of view-invariant representa-
tion, Eq. (21) shows that MoE is not a good choice for the conditional VIBs.

B Comprehensive Experimental Results

In this section, we provide all the evaluations including any quantitative and qualitative results we
possibly missed in the main text due to the space limit.

4view-specific information is called superfluous information in MIB [11].
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B.1 Quantitative Results

We explicitly specify all the quantitative results we presented in Section 4. Some of additional results
are included to make our overall experiments more comprehensive.

B.1.1 Results in multi-view classification / translation on PolyMNIST

Table 1 and 2 specify the numbers used to plot Figure 2.

Models Total input views (Linear Classification) Total input views (Coherence)

(α) 1 2 3 4 5 1 2 3 4

MVAE 0.70 0.84 0.91 0.93 0.95 0.29 0.42 0.48 0.52
MMVAE 0.82 0.82 0.82 0.82 0.82 0.71 0.71 0.71 0.71
mmJSD 0.89 0.98 0.99 1.0 1.0 0.69 0.57 0.64 0.67
MoPoE 0.82 0.90 0.93 0.94 0.95 0.63 0.75 0.79 0.81

Ours (5/6) 0.94 0.99 1.0 1.0 1.0 0.59 0.77 0.83 0.86
Table 1: Comparisons on linaer classification and coherence accuracy. All the results are averaged
over 5 independent runs. We omit the standard error which are less than 0.01 in most cases.

Models Input view(s)

(α) View 2 Views 2,3 Views 2,3,4 Views 2,3,4,5

MVAE 94.06 ± 5.20 125.87 ± 5.97 138.46 ± 6.29 150.53 ± 6.58
MMVAE 228.86 ± 13.68 224.37 ± 14.28 220.76 ± 13.42 217.31 ± 11.89
mmJSD 194.96 ± 2.75 214.91 ± 3.69 218.44 ± 3.52 221.37 ± 3.64
MoPoE 169.70 ± 2.60 180.53 ± 2.11 188.92 ± 3.00 197.33 ± 3.56

Ours (5/6) 90.32 ± 1.72 99.44 ± 1.63 111.64 ± 1.53 122.51 ± 1.56
Table 2: Comparisons on FID scores averaged over 5 independent runs.

B.1.2 Ablation study in partial multi-view translation

To investigate the effect of α, we compare the performance of our method applying various settings
of α = {0.0, 0.7, 0.8, 0.9, 1.0}. The result is summarized in Table 3 below. In both cases of
using complete (η = 0) and incomplete (0.5) observations, α ≥ 0.7 yields significant performance
improvement comparing to α = 0.0. It clearly shows that the conditional VIB (α = 1) is very
effective on calibrating the representation across views compared to VIB counterpart without cross-
view calibration (α = 0). Setting α = 0.9 and α = 0.8 shows the best performance in each case of
η = 0 and η = 0.5 respectively, which implies that regularization using VIB can be also effective
when observations are sparse.

Models Views used to reconstruct HOG (η = 0.0) Views used to reconstruct HOG (η = 0.5)

(α) Gabor +WM +CENT. +GIST +LBP Gabor +WM +CENT. +GIST +LBP

MVAE 45.78 44.58 42.61 36.41 33.76 40.61 39.21 38.51 34.47 33.73
MMVAE 37.57 38.44 38.49 37.54 36.96 38.79 39.79 40.55 39.54 38.93
mmJSD 37.37 37.98 37.21 36.08 35.24 38.30 38.84 38.07 36.65 35.71
MoPoE 38.13 36.52 36.20 33.08 32.10 39.08 37.93 38.93 35.16 33.76

Ours (0.0) 51.27 45.68 42.95 36.05 33.41 40.51 39.22 38.52 34.49 33.79
Ours (0.7) 38.56 37.17 36.48 31.53 30.43 39.16 37.85 37.56 33.29 32.58
Ours (0.8) 38.50 37.11 36.42 31.41 30.32 39.13 37.79 37.55 33.24 32.51
Ours (0.9) 38.42 37.03 36.34 31.31 30.21 39.15 37.82 37.64 33.27 32.57
Ours (1.0) 38.38 37.04 36.36 31.33 30.22 39.25 37.95 37.92 33.58 33.07
Table 3: The translation performance trained with the complete dataset (η = 0, from the second to the
sixth columns) and incomplete dataset (η = 0.5, from the seventh to the last columns). We measure
the reconstruction error of the HOG by incrementally adding features, accumulated from the feature
in the second and seventh columns. The results are the average performance of 10 independent runs.
We omit the standard errors which are around 0.06 in most cases.
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B.1.3 Results in partial multi-view classification on 6 datasets including CUB and Animal

In addition to ORL, PIE, YaleB, and Handwritten, Figure 6 shows the partial multi-view classification
results on CUB and Animal which are datatsets composed of 2 views. The result shows that our
method achieves performance competitive to the strong baseline methods on those 2-view datasets.
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Figure 6: Classification performance on 6 datasets under various view missing rate.

B.1.4 Results in partial multi-view classification with additional baseline methods

We compare our method using incomplete dataset (η = 0.5) with additional state-of-the-art MVRL
methods such as CCA [18], KCCA [1], DCCA [3], DCCAE [41], DMF-MVC [53], MDcR [48],
ITML [9], LMNN [43], and CPM-Nets [50], as well as a naive baseline of concatenating all views
(FeatCon). Table 4 summarizes the result. Please note that α is chosen in Figure 5 and Figure 6
according to the result in Table 4 and fixed across all settings of η = {0, 0.1, 0.2, 0.3, 0.4, 0.5} for
each dataset.

Datasets (# of views)

Models S/U ORL (3) PIE (3) YaleB (3) CUB (2) Animal (2) HW (6)

CCA U 38.1 37.4 66.2 57.1 24.1 55.3
KCCA U 42.4 33.8 67.8 57.6 23.4 56.7
DCCA U 38.3 35.8 67.1 40.8 9.4 54.4

DCCAE U 35.6 36.3 67.6 47.5 10.4 54.4
DMF U 60.1 34.3 57.5 30.3 47.0 55.8

MDcR U 65.1 23.1 58.0 70.0 61.7 55.4
FeatCon U 66.3 36.3 59.8 70.8 61.9 87.1
ITML S 76.3 36.6 81.2 70.2 56.0 73.1

LMNN S 70.0 56.4 76.6 73.8 59.6 86.1
CPM (w/ class) S 88.9 61.8 91.0 76.3 67.3 91.0
CPM(w/o class) U 88.8 ± 0.9 54.9 ± 1.0 82.8 ± 1.3 63.8 ± 1.3 58.3 ± 0.2 86.5 ± 0.9

MVAE U 83.9 ± 1.5 53.8 ± 0.9 84.8 ± 0.6 78.8 ± 0.8 69.2 ± 0.3 90.6 ± 0.5
MMVAE U 90.1 ± 0.9 48.0 ± 0.7 92.2 ± 0.8 79.4 ± 0.9 69.0 ± 0.4 80.6 ± 0.4
mmJSD U 92.5 ± 1.03 55.2 ± 0.9 93.8 ± 0.7 78.3 ± 1.0 69.2 ± 0.4 93.6 ± 0.3
MoPoE U 91.5 ± 0.6 62.4 ± 1.0 94.4 ± 0.5 79.3 ± 0.6 69.0 ± 0.3 93.3 ± 0.2

Ours (α = 0.8) U 92.6 ± 0.7 61.7 ± 0.9 94.2 ± 0.5 79.2 ± 0.6 69.2 ± 0.3 93.2 ± 0.3
Ours (α = 0.9) U 93.0 ± 0.7 64.9 ± 0.9 94.0 ± 0.6 79.0 ± 0.6 69.2 ± 0.3 93.6 ± 0.3
Ours (α = 1.0) U 92.8 ± 0.9 60.5 ± 1.1 94.7 ± 0.7 78.6 ± 0.7 69.2 ± 0.3 94.3 ± 0.4
Table 4: Comparisons on classification accuracy (%) with missing rate η = 0.5. Each dataset is
specified with the number of views inside of the parentheses in the second row. S stands for supervised
learning and U stands for unsupervised learning in the second column. All the results are averaged
over 10 independent runs.
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The results when observations are complete (η = 0) are presented in Table 5 below.

Datasets (# of views)

Models ORL (3) PIE (3) YaleB (3) CUB (2) Animal (2) HW (6)

CPM (w/ class) 98.4 ± 0.4 92.0 ± 0.7 97.4 ± 0.5 90.1 ± 0.7 87.7 ± 0.1 94.0 ± 0.4
CPM (w/o class) 98.3 ± 0.3 87.3 ± 1.7 95.4 ± 0.7 88.2 ± 1.1 81.0 ± 0.2 91.2 ± 0.4

MVAE 98.8 ± 0.3 93.9 ± 0.3 99.5 ± 0.3 90.8 ± 0.6 86.7 ± 0.3 96.3 ± 0.3
MMVAE 97.5 ± 0.4 52.4 ± 1.0 97.9 ± 0.4 78.8 ± 1.2 70.2 ± 0.4 81.1 ± 0.6
mmJSD 98.9 ± 0.2 83.6 ± 0.6 99.6 ± 0.1 90.9 ± 0.8 84.8 ± 0.4 97.6 ± 0.2
MoPoE 98.8 ± 0.3 91.9 ± 0.4 99.8 ± 0.1 91.2 ± 0.7 85.6 ± 0.4 96.5 ± 0.3

Ours (α = 0.8) 98.9 ± 0.3 94.9 ± 0.6 99.7 ± 0.1 91.5 ± 0.7 86.4 ± 0.3 96.7 ± 0.3
Ours (α = 0.9) 98.8 ± 0.3 93.7 ± 0.4 99.8 ± 0.2 91.5 ± 0.7 86.4 ± 0.3 97.0 ± 0.3
Ours (α = 1.0) 98.9 ± 0.3 90.1 ± 0.5 99.8 ± 0.2 91.7 ± 0.7 86.3 ± 0.3 96.6 ± 0.3

Table 5: Comparisons on classification accuracy (%) with missing rate η = 0. All the results are
averaged over 10 independent runs.
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B.2 Qualitative Results

We provide comprehensive qualitative results on PolyMNIST along with some examples in the
dataset.

B.2.1 Translation results on PolyMNIST [34] dataset

Digit Identities

View 0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

Table 6: Examples of samples in PolyMNIST.

Table 6 shows examples of PolyMNIST dataset, where each row is 0 ∼ 9 images in each view. Note
that many images in view 1 are remarkably blurry as follows:

0 1 2 3 4 5 6 7 8 9

Figures 8, 9, 10, and 11 summarize the qualitative results of conditional generations of each model,
where images above the green line are input observations from different view(s) ({2}, {2,3}, {2,3,4},
{2,3,4,5}) in the test set and images below the line are images in view 1 generated by models. Unlike
our method, all the baseline methods expose at least one of following three issues:

Mode collapse in MMVAE, mmJSD, MoPoE Generated images in view 1 fail to show diversities
in styles of backgrounds and digits, which can be observed by comparing rows in any figures.

Entangled representations in MMVAE, mmJSD, MoPoE Although styles of backgrounds and
digits are view-specific factors of variation, comparison among the same columns in Figures 8, 9, 10,
11 shows that those styles get affected by additional observations from new views.

Discarded shared information in MVAE Comparing images above and below the green line
in every figure clearly shows the failure in generating coherent samples whose digit identities are
supposed to match to conditioned images. Furthermore, it is not obvious that the coherence is
improved according to the increased number of given views.

On the other hand, our method expresses view-specific style variations independent of conditioned
views while showing better preservation of the digit identities as the number of given views increases.

MVAE MMVAE mmJSD MoPoE MVTCAE
Figure 8: Conditionally generated images of the view 1 given images from the view 2.
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MVAE MMVAE mmJSD MoPoE MVTCAE
Figure 9: Conditionally generated images of the view 1 given images from the views 2 and 3.

MVAE MMVAE mmJSD MoPoE MVTCAE
Figure 10: Conditionally generated images of the view 1 given images from the views 2, 3, and 4.

MVAE MMVAE mmJSD MoPoE MVTCAE
Figure 11: Conditionally generated images of the view 1 given images from the rest of views.

We present additional qualitative results in Figures 12, 13, 14, and 15 where images above the green
line are conditioned observations from different view(s) ({1}, {1,3}, {1,3,4}, {1,3,4,5}) in the test
set and images below the line are images in view 2 generated by models. Three issues we already
identified in Figures 8, 9, 10, 11 are similarly observed.

MVAE MMVAE mmJSD MoPoE MVTCAE
Figure 12: Conditionally generated images of the view 2 given images from the view 1.
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MVAE MMVAE mmJSD MoPoE MVTCAE
Figure 13: Conditionally generated images of the view 2 given images from the views 1 and 3.

MVAE MMVAE mmJSD MoPoE MVTCAE
Figure 14: Conditionally generated images of the view 2 given images from the views 1, 3, and 4.

MVAE MMVAE mmJSD MoPoE MVTCAE
Figure 15: Conditionally generated images of the view 2 given images from the rest of views.
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B.2.2 Translation results in Caltech-101 dataset trained with complete (η = 0) and
incomplete observations (η = 0.5)

We present qualitative results in Caltech-101 dataset using complete and incomplete training data
(η = 0, 0.5). In Figure 16 and Figure 17, HOG features reconstructed by our model trained with
incomplete data (η = 0.5) show the comparable quality to the ones reconstructed by ours with
complete data (η = 0), demonstrating the robustness of our method to partial observations. In
Figure 16 and Figure 17, the labels of features are lamp, starfish, stop sign, motorbike, umbrella,
scissors, airplane, butterfly, kangaroo, and watch.

Real Image Ground
Truth

Gabor +WM +CENT. +GIST +LBP

Figure 16: Qualitative results in multi-view translation using complete training data (η = 0.0). The
HOG feature is reconstructed by incrementally adding features, accumulated from the left-most
feature (i.e. Gabor).
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Real Image Ground
Truth

Gabor +WM +CENT. +GIST +LBP

Figure 17: Qualitative results in multi-view translation using incomplete training data (η = 0.5).
The HOG feature is reconstructed by incrementally adding features, accumulated from the left-most
feature (i.e. Gabor).
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C New Experimental Results on Additional Datasets
To see in depth if our method generalizes well when views are only composed of raw observations,
we conducted additional experiment with new datasets, which are Multi-PIE [13] and MNIST-
SVHN [30]. Evaluating on those two datasets, we fixed α = 0.9 for our method which was found to
be reasonable in the previous experiments. Please note that Multi-PIE is the source from which PIE
in Section 4.2.2 composed of 3 hand-crafted features are extracted, and thus they are different.

C.1 Additional Experimental Results on Multi-PIE in Pixels
To evaluate our method in multiple aspects, we follow the protocol similar to the one used in
Section 4.1.1. Specifically, after training all the models in an unsupervised manner using complete
observations, we evaluate the learned representation with 4 different metrics, which are linear
classification accuracy, conditional coherence accuracy, sample generation quality, and sample
diversity. We compare our method with MVAE [46], MMVAE [30], mmJSD [33], and MoPoE-
VAE [34] same as Section 4.1.1. For every method, we searched KL coefficient (β) optimal across
all metrics among {1, 2.5, 5, 10, 20}. Unlike ours and other baseline methods, we were not able to
find the optimal β for mmJSD that makes the model work commonly well across all tasks. Thus, we
report performance of mmJSD with two different settings of β = 1, 20. Other than β, we applied
same hyperparameters such as epochs, dimensions of latent variable, and batch size to be 300, 128,
and 16 respectively/ All the quantitative results below are averaged over 5 seeds (0∼4), where as the
qualitative results are from the single seed 0.

Dataset configuration Multi-PIE [13] is a dataset composed of 750K bust shot images of 337
human subjects with various facial expressions collected under the circumstance with 15 view points
and 19 illumination conditions. Following [35], we extract 250 subjects with 9 poses (within ±60◦),
19 illuminations, and 2 facial expressions and assign the first 200 subjects to training set and the rest
50 for testing set. We group 9 poses into 3 views, where the first view is composed of images with 4
poses within −60◦, the second view of images in 0◦, and the third view of images in +60◦. We call
first, second, and third views as L (Left), F (Frontal), and R (Right) respectively. For example:

L (Left) F (Frontal) R (Right)

Without applying any view-specific variation in view F, we choose variation in 19 illumination
conditions and 2 facial expressions as two shared factors of variation across views while variation in
4 poses in each of views L and R is chosen as a view-specific factor. As a result, each subject owns 38
tuples of 3 images of L,F,R views sharing the illumiation conditions and facial expressions, where the
image from each of views L and R is randomly chosen among 4 poses whenever the tuple is sampled.

Linear Classification To apply our method to classification, we fix the encoders and train two
linear classifier to predict illumination condition and facial expression using the joint representation
extracted from pθ(z|~o) feeding complete observations in training set. We count as positive prediction
only the case two classifiers simultaneously yields correct predictions on both illumination condition
and facial expression. We compute the average classification accuracy over all subsets with the same
subset size.

Model (β) Given 1 Given 2 Given 3 (All)

MVAE (1) 57.52 ± 0.83 63.22 ± 0.53 65.62 ± 0.65
MMVAE (1) 70.5 ± 0.33 70.61 ± 0.47 71.14 ± 0.44
mmJSD (1) 75.01 ± 0.56 77.61 ± 0.75 78.86 ± 0.74

mmJSD (20) 79.34 ± 0.66 82.18 ± 0.76 83.45 ± 0.93
MoPoE (1) 72.55 ± 0.89 74.03 ± 0.61 74.23 ± 0.43

MVTCAE (10) 80.48 ± 0.67 81.87 ± 0.79 82.07 ± 0.81
Table 7: Joint classification accuracy of 19 illumination conditions and 2 facial expressions using the
learned latent representation.

Table 7 summarizes the result of linear classification accuracy according to the number of input views.
The result shows that mmJSD (20) and ours show the best performances whose error bars overlap,
which implies that both methods can successfully extract the information shared across views.
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Conditional coherence To measure the conditional coherence accuracy, we extract the representa-
tion of every subset of views using pθ and generate views that are absent in the subset using qφ. Those
generated views are fed into the pretrained CNN-based classifier. We count as a correct prediction
if the prediction on both the illumination condition and the facial expression from the classifier
simultaneously matches two labels of the input view images. The results are averaged over all subsets
with the same size.

Target View # of Input Views

Model (β) L F R Given 1 Given 2

MVAE (1) 8.84 ± 0.69 39.7 ± 2.86 9.08 ± 0.29 18.09 ± 1.15 21.44 ± 1.15
MMVAE (1) 74.66 ± 0.68 85.1 ± 0.25 72.95 ± 0.89 77.54 ± 0.41 77.62 ± 0.44
mmJSD (1) 69.12 ± 1.97 83.45 ± 0.61 65.65 ± 2.07 73.7 ± 1.07 70.82 ± 1.03
mmJSD (20) 60.08 ± 0.47 75.22 ± 0.34 55.8 ± 1.39 68.77 ± 0.62 53.55 ± 0.55
MoPoE (1) 76.17 ± 0.32 85.37 ± 0.45 73.04 ± 0.8 77.36 ± 0.45 79.85 ± 0.52

MVTCAE (10) 82.58 ± 0.6 85.81 ± 0.15 82.77 ± 0.5 83.02 ± 0.28 85.1 ± 0.26
Table 8: Joint coherence accuracy in the conditionally generated samples with respect to illumination
conditions and facial expressions.

Table 8 summarizes the results of conditional coherence accuracy in two ways according to the
target view and the number of input views. The result shows that our method outperforms all the
comparing methods across all aspects. The results indicates that conditional VIBs in our method
are very effective to identifying the shared factors of variation and improving preservation of them
using additional input views. On the other hand, MVAE shows poor performance incomparable to
any comparing methods, which implies that augmenting ELBO of each view to the ELBO of the joint
views harms the preservation of shared factors of variation.

Sample quality To evaluate the sample quality of conditional generation, we reuse images gener-
ated for evaluating the conditional coherence by comparing them to the ground truth images in the
target view paired with their input view images. We quantify similarities between those generated
images and corresponding target images using LPIPS [52], which measures perceptual distance
between two images. Considering that each of generated images in view L and R can have any of
4 different poses, we compute LPIPS distance between the generated images and each of 4 target
images and count the minimum distance. The results are averaged over all subsets of input views
with the same size.

Target View # of Input Views

Model (β) L F R Given 1 Given 2

MVAE (1) 0.3262 0.1807 0.3180 0.2785 0.2679
MMVAE (1) 0.2953 0.1812 0.2931 0.2565 0.2566
mmJSD (1) 0.3207 0.1992 0.3180 0.2758 0.2863

mmJSD (20) 0.3595 0.2346 0.3564 0.3048 0.3409
MoPoE (1) 0.2868 0.1741 0.2855 0.2499 0.2466

MVTCAE (10) 0.2202 0.1673 0.2211 0.2046 0.1995
Table 9: LPIPS distance between generated samples and target images. Since views L and R have
variation of 4 different poses as their own factors of variation, there are four candidate target images
per generated sample if its target view is L or R. Thus, we count the minimum distance out of 4.
Standard errors are omitted since they are negligibly small.

Table 9 summarizes the results of the sample quality evaluation in two ways according to the target
view and the number of input views. The results shows that our method outperforms all the comparing
methods across all aspects. Compared to MMVAE, mmJSD, and MoPoE-VAE, our method shows
significant performance gap in the case target view is L or R while the gap is relatively small in the
case the target view is F. This is because those methods are using MoE as their joint representation
encoder that hardly expresses view-specific factors of variation, which results in generating blurry
images collapsing to one pose in views L and R (see Figure 19). Although MVAE generates samples
with variation in poses, those samples are not consistent to the given subject.
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Sample diversity We measure the view-specific diversity in the generated samples by entropy. We
extract the representation of subset of views {L,F,R,LF,FR} using pθ and generate 10 samples (per
instance) in any of views L,R that are absent in the input subset using qφ. Those 10 generated images
are fed into another pretrained CNN-based classifier which predicts the pose among 4 candidates in
the target view. To compute entropy, we first apply one-hot encoding to 10 predicted labels. Then we
normalize those 10 encodings to make their sum to be 1 and compute entropy which stands for the
diversity with respect to the pose. The results are averaged over all subsets with the same size.

Target View # of Input Views

Model (β) L R Given 1 Given 2

MVAE (1) 1.65 ± 0.01 1.59 ± 0.01 1.68 ± 0.01 1.48 ± 0.02
MMVAE (1) 0.05 ± 0.0 0.06 ± 0.01 0.05 ± 0.0 0.05 ± 0.0
mmJSD (1) 0.15 ± 0.02 0.16 ± 0.01 0.14 ± 0.01 0.19 ± 0.01
mmJSD (20) 0.42 ± 0.03 0.42 ± 0.02 0.37 ± 0.01 0.52 ± 0.01
MoPoE (1) 0.07 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 0.05 ± 0.0

MVTCAE (10) 1.70 ± 0.01 1.66 ± 0.01 1.72 ± 0.0 1.6 ± 0.01
Table 10: Diversity of poses in the generated samples.

Table 10 summarizes the result of measuring diversity in the generated samples by their entropy.
The result shows that our method significantly outperforms all the MoE-based methods (MMVAE,
mmJSD, MoPoE-VAE) due to their issues on preserving view-specific factors as we discussed in
Section 4.1.1. Our method even outperforms MVAE, which implies that conditional VIBs in our
method are greatly effective to the cross-view association without introducing any side effects.

Qualitative results Lastly, Figure 19 presents 4 samples of conditionally generated samples in
each of target views L and R feeding an image of the first subject in view F in the test set. The results
show that our method (bottom row) generates samples in the finest quality with the best preservation
of the subject’s identity and the highest diverisity in pose, which is consistent with what we observed
in the quantitative results above.

GT in F Generated samples in L Generated samples in R

Figure 19: Examples of conditional generation. The first 5 rows are results from MVAE, MMVAE,
mmJSD(1), mmJSD(20), and MoPoE. The bottom row is the result of our method.

Summary Showing state-of-the-art performance in the task of classification using the learned
representation, our algorithm absolutely outperforms all the baseline methods in the translation tasks.
It is remarkable that (1) even successfully preserving the information shared across views (observed
in Table 7, 8), our method generate samples not only in the best quality (observed in Table 9 and
Figure 19) but also in the highest diversity (observed in Table 10 and Figure 19).
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C.2 Additional Experimental Results on MNIST-SVHN

The table below summarizes the result of the experiment in MNIST-SVHN (MS) dataset averaged
over 5 runs with seeds 0 ∼ 4. The evaluation protocol, codebase, and hyperparameter settings follow
the experiments in the MoPoE-VAE [34] on MNIST-SVHN-Text (MST) dataset, which augments to
the original MS the text of digit IDs as the third modality. Please note that all the results below are
from the baseline implementations in the MoPoE-VAE codebase whose VAE architectures dedicated
to MNIST and SVHN are the same as the ones used by MMVAE. Lastly, we simply discarded the
third modality.

Models Representation Classification (RC) Coherent Generation (CG)

M (MNIST) S (SVHN) MS Joint M→S S→M

MVAE 87.38 58.23 87.37 42.98 56.65 35.63
MMVAE 72.83 60.89 66.89 42.45 26.76 74.94
mmJSD 88.58 81.44 93.81 12.73 22.33 65.44
MoPoE 82.48 70.62 87.96 44.95 21.23 72.38

MVTCAE 93.48 77.99 94.97 46.71 81.09 59.91

where representation classification (RC) is measured by the accuracy of the single linear classifier
trained on the latent representation as input (z from M only, z from S only, and z from jointly M and
S), and coherent generation (CG) is measured by the accuracy of the pretrained CNN classifier whose
input is the image generated by each model (e.g. Joint is measured from MNIST and SVHN images
generated from the same z sampled from the prior distribution, and M->S is measured by SVHN
images generated from MNIST images).

Among 6 different evaluation results, our method outperforms baseline methods in 4 tasks (RC /
MNIST and MS, CG / Joint and M->S) and performs competitive to the baselines in 1 task, RC /
SVHN. Our method performs relatively poor only in CG / S->M (ranked 4th), the advantage of our
method in M->S is much more noticeable. Comparing to strong baseline methods such as MMVAE,
mmJSD, and MoPoE-VAE, our method shows more balanced performance in two different directions
of CG, as measured in Joint, achieving the best average performance.
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D Dataset Statistics

We present information on all the datasets we used in Section 4 in detail. Each feature is treated as
one view in every dataset.

D.1 In Section 4.1.1

• PolyMNIST [34] is an image dataset composed of 5 views each of which is created by
fusing each of MNIST images with a background, a 28x28x3 sized patch randomly cropped
from one of five different images chosen by [34]. Each MNIST images is binarized, and
colors of its background image is inverted at the locations where the digit of the MNIST is
inserted. Some examples are showcased in Section B.2.1. License information of those 5
images used for backgrounds can be found in [34].

D.2 In Section 4.1.2 and 4.2.1

• Caltech-101 [23] is a image dataset collected for object recognition task. Images in Caltech-
101 are categorized as 101 different classes. From Caltech 101, six visual features are
extracted and compiled as a multiview dataset by Li et al. [24], which are are 48 di-
mensional Gabor feature [29], 40 dimensional wavelet moments (WM), 254 dimensional
CENTRIST [45] feature, 1984 dimensional HOG [8] feature, 512 dimensional GIST [29]
feature, and 928 dimensional LBP [28] feature.

D.3 In Section 4.2.2

1. ORL5 is a dataset composed of 400 facial images of 40 subjects. 4096 dimensional Intensity
feature, 3304 dimensional LBP feature, and 6750 dimensional Gabor feature are extracted.

2. PIE6 consists of 750K bust shot of 337 human subjects. A subset which contains 10 images
for each of 68 people is collected, 680 images in total. We use 484 dimensional Intensity
feature, 256 dimensional LBP feature, and 279 dimensional Gabor feature extracted from
the subset.

3. Yale Face Database B7 (YaleB) is a database which contains 5850 images of 10 subjects
captured with 585 different illumination conditions (65 illumination conditions for 9 different
poses). A subset which contains 650 images of 10 subjects is collected. We use 2500
dimensional Intensity feature, 3304 dimensional LBP feature, and 6750 dimensional Gabor
feature extracted from the subset.

4. CUB [40] is a dataset consists of 11788 images of birds that belong to 200 different classes.
A subset of 600 images that covers 10 categories are collected. 1024 dimensional GoogLeNet
visual feature and 300 dimensional doc2vec feature are are extracted from the subset.

5. Animal is a dataset composed of 10158 images of animals distributed across 50 classes.
Two different deep visual features are extracted, which are 4096 dimensional DECAF feature
and 4096 dimensional VGG19 feature.

6. Handwritten8 is a dataset that contains 2k handwritten digits of 0 to 9. Six features are
generated, which are 76 dimensional Fourier coefficients of the character shapes feature,
216 dimensional profile correlations feature, 64 dimensional Karhunen-love coefficients
feature, 240 dimensional (2× 3) pixel averages feature, 47 dimensional Zernike moment
feature, and 6 dimensional morphological feature.

Note that subsamples and features of ORL, PIE, YaleB, CUB, and Animal datasets are collected by
Zhang et al. [50]. As a result, there are 3 features in ORL, PIE, YaleB and 2 features in CUB, Animal,
whereas 6 features in Handwritten. Lastly, we followed the same preprocessing and training/test
splits used in Zhang et al. [50] for all six datasets employed in Section 4.2.2.

5https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
6http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
7http://vision.ucsd.edu/~leekc/ExtYaleDatabase/Yale%20Face%20Database.htm
8https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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E Implementation Details
We report implementation details in each experiment including the hyperparameters and the structures
of encoders and decoders. We used two codebases, one is implemented in PyTorch by MoPoE-VAE9

and the other is written in TensorFlow by CPM-Nets10. Except the joint representation encoder
uniquely determined by each model, MVAE, MMVAE, mmJSD, MoPoE-VAE, and our method share
the same network architectures and hyperparameter settings including the batch size, the size of
encdoer/decoder and latent variables, coefficient of reconstruction (w) and KL regularizations (β)
terms, and epochs. In the test phase, the representation fusion in each model is conducted using its
own joint representation encoder (as identified in Section 2.4), except mmJSD which learns to fuse
representations using its dynamic prior. For dimensionalities of inputs of encoders and outputs of
decoders, please read Section D. Further information can be found in our official implementation11.

E.1 In Section 4.1.1
Following MoPoE-VAE, we fixed w = 1 and β = 2.5 and ran for 300 epochs with 5 seeds (0 ∼ 4).
We also set network structures and dimension size of the latent variable (512) same as MoPoE-VAE.
We fixed α, the only hyperparameter our method uniquely has, to be 5

6 that equally weights the VIB
and conditional VIBs.

E.2 In Section 4.1.2 and 4.2.1
Fixing w = 200 and β = 1.0, we ran each model with 10 seeds (0 ∼ 9) for 10,000 epochs to ensure
that all the methods are converged. As an ablation study, we evaluated our method with various
settings of α = {0.0, 0.7, 0.8, 0.9, 1.0} as we reported in Section B.1.2, which results in α = 0.9 and
α = 0.8 showing the best performance when η = 0.0 and 0.5 resepectively. We adopted following
network architectures with 100-dimensional latent variables for all methods.

Dataset Caltech 101

Network Encoder rvψ(z|ov)
Input ov

Layer 1 FC. 200. ReLU
Layer 2 2× FC. 100 (µv, log σ2

v)

Network Decoder qvφ(ov|z)
Input z ∼ pθ(z|~o)

Layer 1 FC. 200. ReLU
Layer 2 FC. dim(ov)

E.3 In Section 4.2.2
We ensured that structures and sizes of our decoders are same as the ones used in the official
implementation of CPM-Nets. The only difference is the activation function being used. We used
ReLU in the middle of two fully connected (FC) layers. We chose the structures of our view-specific
encoders as the reverse of decoders, ensuring that the sizes of the latent variables we use are same as
the ones used in CPM-Nets as well. We described how α is chosen in Section B.1.4. For MVAE,
MMVAE, mmJSD, MoPoE, and ours, we applied the same encoder/decoder structures and ran for
the same number of epochs with 10 seeds (0 ∼ 9) per dataset to make fair comparison. We chose
w = 100 and β = 1.0 for all datasets. Dimensions of the latent variable and the epoch per dataset are
specified below.

Datasets

Hyperparamters ORL PIE YaleB CUB Animal Handwritten

Dimensions of z 256 150 128 128 512 128
Epochs 1,000 5,000 5,000 2,000 100 5,000

Table 11: Hyperparameters used in ORL, PIE, YaleB, CUB, Animal, and Handwritten datasets.

9https://github.com/thomassutter/MoPoE
10https://github.com/hanmenghan/CPM_Nets
11https://github.com/gr8joo/MVTCAE
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F Computation Resources

We used 10 systems equipped with following devices.

CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz

Memory: 32 Gb.

GPU: TITAN Xp

G Societal Impact

Positively, our method could be used to reduce the number of sensors in multi-sensor system without
losing sensor fusion accuracy, reducing carbon footprint and environmental waste due to redundant
sensors. Negatively, we see the possibility that our method could be exploited in wrongful manner,
such as Deepfake. Specifically, one might adopt our method to synthesize someone’s image in the
representation space and generate fake samples for fraudulent purposes. Similarly, our method can be
utilized in synthesizing voice for impostors.
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