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Abstract

The construction and theoretical analysis of the most popular universally consistent
nonparametric density estimators hinge on one functional property: smoothness.
In this paper we investigate the theoretical implications of incorporating a multi-
view latent variable model, a type of low-rank model, into nonparametric density
estimation. To do this we perform extensive analysis on histogram-style estimators
that integrate a multi-view model. Our analysis culminates in showing that there
exists a universally consistent histogram-style estimator that converges to any
multi-view model with a finite number of Lipschitz continuous components at
a rate of Õ(1/ 3

√
n) in L1 error. In contrast, the standard histogram estimator

can converge at a rate slower than 1/ d
√
n on the same class of densities. We

also introduce a new nonparametric latent variable model based on the Tucker
decomposition. A rudimentary implementation of our estimators experimentally
demonstrates a considerable performance improvement over the standard histogram
estimator. We also provide a thorough analysis of the sample complexity of our
Tucker decomposition-based model and a variety of other results. Thus, our paper
provides solid theoretical foundations for extending low-rank techniques to the
nonparametric setting.

1 Introduction

Nonparametric density estimators are density estimators capable of estimating a density p while
making few to no assumptions on p. Two commonly used nonparametric density estimators include
the histogram estimator and the kernel density estimator (KDE). A common characteristic of these
two estimators is that they make estimation tractable via a hyperparameter that relates to smoothness,
namely bin width and bandwidth. Large bin width or bandwidth allows for good control of estimation
error* at the cost of increased approximation error via large bin volume for the histogram and
smoothing for KDEs. Selection of this parameter is crucial for estimator performance. In fact a recent
survey on bandwidth selection for KDEs found at least 30 methods for setting this value along with a
few surveys dedicated to the topic [15].

While nonparametric density estimation has been shown to be effective for many tasks, it has been
observed empirically that estimator performance typically declines as data dimensionality increases,
a manifestation of the curse of dimensionality. For the histogram and KDE this phenomenon has
concrete mathematical analogs. For example, these estimators are only universally consistent† if

*For an estimator V restricted space a of densities P , the estimation error refers to the difference between
‖V − p‖ and minq∈P ‖p− q‖, where p is the target density. This is similar to estimator variance.

†A density estimator is universally consistent if it asymptotically recovers any density.
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n → ∞ and h → 0, with nhd → ∞, where n is the number of samples, d is the data dimension,
and h is the bin width for the histogram and bandwidth parameter for the KDE [14]. One may
then wonder whether there exists some other way to constrain model capacity so as to alleviate this
exponential dependence on dimension.

In this paper we theoretically analyze the advantages of including a constraint akin to matrix/tensor
rank in a nonparametric density estimator. We do so by analyzing histogram-style estimators
(estimators that output a density that are piecewise constant on bins defined by a grid) that are
enforced to have a low-rank PARAFAC or Tucker decomposition. Enforcing this low-rank constraint
in the histogram estimator allows for much faster rates on h→ 0, while still controlling estimation
error. This can remove the exponential penalty on rate of convergence that dimensionality produces
with the standard histogram estimator.

The bulk of this work focuses on analysis of hypothetical estimators that, while offering large
statistical advantages over the standard histogram estimator, are not computationally tractable. At the
end of this work we include experiments demonstrating that low-rank histograms, computed using
an off-the-shelf nonnegative tensor factorization library [23], consistently outperform the standard
histogram estimator.

1.1 Density Models

Here we introduce the low-rank models that will be used to constrain our estimators. The first is
a multi-view model. A multi-view model p is a finite mixture p =

∑k
i=1 wifi whose components

are separable densities fi = pi,1 ⊗ pi,2 ⊗ · · · ⊗ pi,d ‡ [19, 1, 37, 36]. A multi-view model has the
following form

p (x1, x2, . . . , xd) =

k∑
i=1

wipi,1 (x1) pi,2 (x2) · · · pi,d (xd) . (1)

A multi-view model with one component is typically called a naive Bayes model. For the estimators
we propose, the component marginals pi,j will have the form of one-dimensional histograms and
the number of components k will be limited to restrict estimator capacity. When k = 1 the model
is equivalent to a naive Bayes model, p (x1, x2, . . . , xd) = p1 (x1) p2 (x2) · · · pd (xd). When the
component marginals pi,j are histograms increasing k expands the set of potential estimates from
naive Bayes models when k = 1 to all possible histogram estimates.

The models in this paper are motivated by nonnegative tensor factorizations so we term them generally
as nonparametric nonnegative tensor factorization (NNTF) models. The previous model was related
to nonnegative PARAFAC [34]. Our second model is based on the nonnegative Tucker decomposition
[22]. A density in this model utilizes d collections, F1, . . . ,Fd, of k one-dimensional densities,
Fi = {pi,1, . . . , pi,k}, and some probability measure that randomly selects one density from each
Fi. This measure a can be represented by a tensor W ∈ Rk×d

where the probability of selecting
(p1,i1 , . . . , pd,id) from F1×· · ·×Fd isWi1,...,id . To sample from this model we first randomly select
the marginal distributions p1,i1 , . . . , pd,id according to W , and an observation is sampled according
to the d-dimensional distribution p1,i1 ⊗ p2,i2 ⊗ · · · ⊗ p2,i2 . The density of this model is

p (x1, x2, . . . , xd) =

k∑
i1=1

· · ·
k∑

id=1

Wi1,...,idp1,i1(x1)p2,i2(x2) · · · pd,id(xd). (2)

We are unaware of previous works investigating this model for general probability distributions so
we will simply term it the Tucker model. Again we will investigate estimators where the component
marginals are one-dimensional histograms and small k corresponds to reduced model capacity.
We remark that Tucker decompositions typically have a rank vector [k1, . . . , kd] which for our
model would mean that each Fi contains ki vectors and W would lie in Rk1×···×kd . This sort of rank
restriction could be used in our methods however, for simplicity, we just set k1 = k2 = · · · = kd , k.

‡For two functions f, g let f ⊗ g : (x, y) 7→ f(x)g(y). This is analogous to the tensor product of L2

functions.
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1.2 Overview of Results

The principal contribution of this paper is to analyze the advantage of incorporating rank restriction
into density estimation. In Section 2.1 we precisely introduce the multi-view histogram and a
histogram based on the Tucker model. With these models we investigate how quickly we can let
bin width h go to zero and rank k grow, in relation to the amount of data n, while still being able to
control estimation error and select an estimator that is nearly optimal for the allowable set. For the
multi-view histogram we show that one can control estimation error so long as k/h is asymptotically
dominated by n and for the Tucker histogram we need k/h + kd to be asymptotically dominated
by n (we are omitting logarithmic factors here for convenience). This stands in stark contrast to
standard space of histogram estimators which requires 1/hd to be asymptotically dominated by n.
We furthermore show that these estimators are universally consistent and that these rates cannot be
significantly improved.

For a second style of analysis we provide finite-sample bounds on the convergence of NNTF histogram
estimators. We then construct a class of universally consistent density estimators that converge at
rate Õ(1/ 3

√
n)§ on all densities that are a multi-view model with Lipschitz continuous component

marginals. Note that the NNTF histogram estimators we construct do not require the target density
to be an NNTF model to function well. Our estimators will select a good estimator so long as there
exists any NNTF histogram that approximates the target density well; so our hypothetical estimators
“fail elegantly” in some sense. We further show that the standard histogram can converge at a rate
ω(1/ d

√
n)¶ on the same class of densities. In Section 3 we experimentally investigate the efficacy of

using NNTF histograms on real-world data. In lieu of the computationally intractable methods we
investigated in our theoretical analyses, we use an existing low-rank nonnegative Tucker factorization
algorithm to fit an NNTF histogram to data. Surprisingly even this method outperforms the standard
histogram estimator with very high statistical significance. Lastly we mention that this paper is an
extension of [42] and contains a fair amount of overlap with that text.

1.3 Previous Work

Nonparametric density estimation has been extensively studied with the histogram estimator and
KDE being some of the most well-known methods. There do exist, however, alternative methods for
density estimation, e.g. the forest density estimator [24] and k-nearest neighbor density estimator
[25]. The L1, L2, and L∞ convergence of the histogram and KDE has been studied extensively [14,
9, 40, 16]. The KDE is generally regarded as the superior density estimator, with some mathematical
justification [14, 35]. Numerous modifications and extensions of the KDE have been proposed
including utilizing variable bandwidth [39], robust KDEs [20, 41, 44], methods for enforcing support
boundary constraints [33], and a supervised variant [43]. The work [46] investigated using KDEs
for nonparametric mixture modeling. Finally we mention [21] that demonstrated that uniform
convergence of a KDE to its population estimate suffered when the intrinsic dimension of the
data was lower than the ambient dimension, a phenomenon seemingly at odds with the curse of
dimensionality.

For our review of NNTF models we also include a general review of tensor/matrix factorizations
since both can be viewed being low-rank models. In particular, for the multi-view model we have the
following analogy

k∑
i=1

wipi,1 (x1) pi,2 (x2) · · · pi,d (xd) ∼
k∑
i=1

λivi,1 ⊗ vi,2 ⊗ · · · ⊗ vi,d. (3)

A great deal of work has gone into leveraging low-rank assumptions to improve matrix estimation,
particularly in the field of compressed sensing [10, 30]. The most basic version of compressed
sensing is concerned with estimating a “tall” vector x from a “short” vector y , Ax where A is a
known “short and fat” matrix. One can recover y if it is sparse and A satisfies a property known as
the restricted isometry property (RIP) [47, 7]. These methods can be extended to the estimation of
matrices when x is a low-rank matrix [30, 26, 27]. In this extension A is an order-3 tensor which acts

§fn ∈ Õ(gn) ⇐⇒ ∃k s.t. fn ∈ O
(
gn logk gn

)
¶fn ∈ ω (gn) ⇐⇒ |fn/gn| → ∞ in probability. In d-dimensional space the standard histogram can

converge slower than 1/ d
√
n.
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as a linear operator on x and satisfies an adjusted form of RIP. RIP commonly arises from matrices
and tensors whose entries are random. Because of this compressed sensing techniques are useful
in settings where one wants to estimate x from random linear transforms of x. For example, in
matrix completion observing the (i, j)-th entry of x can be represented as an inner product of x
with an indicator matrix ei,j , i.e. 〈x, ei,j〉F . Thus the random observed indices (i1, j1) , (i2, j2) , . . .
can be represented as random matrices ei1,j1 , ei2,j2 , . . . which are then stacked into A. Now A is a
random linear operator that is applied to x to represent the observation of random entries of x and the
methods of compressed sensing can be used to recover x. Compressed sensing has also proven useful
for multivariate regression and autoregressive models [26, 27]. Such techniques don’t appear to be
extensible to histogram estimation due to the lack of a linear sampling scheme.

General matrix/tensor factorization, including nonnegative matrix/tensor factorizations, has been
extensively studied despite being inherently difficult due to non-convexity. The identifiability and
recovery of mixtures of product distributions was studied in [18, 38, 13]. The special case of mixtures
of power distributions has also been investigated [29, 45]. The works [11, 5] present potential
theoretical grounds for avoiding the computational difficulties of nonnegative matrix factorization.
One notable approach to tensor factorization is to assume, in the tensor representation in (3), that d ≥ 3
and the collections of vectors v1,j , . . . ,vk,j are linearly independent for all j. Under this assumption
we are guaranteed that the factorization (3) is unique [1, 18]. In [4] the authors present a method
for recovering this factorization efficiently and demonstrate its utility for a variety of tasks. This
work was extended in [36] to recover a multi-view KDE satisfying an analogous linear independence
assumption and theoretically analyze the estimator’s convergence to the true low-rank components.
In [36] the authors investigate the sample complexity of their estimator but do not demonstrate that
their technique has potential for improving rates for nonparametric density estimation in general. In
[37] it was observed that using low-rank embeddings can improve density estimation. A multi-view
histogram was investigated in [17] where the authors present an identifiability result and algorithm for
recovering latent factors of the distribution. The related works [2, 3] consider a low-rank characteristic
function as an approach to improving nonparametric density estimation. Though earlier works have
observed that a low-rank approach improves nonparametric density estimation [37, 36, 17, 2, 3], we
are the first to demonstrate this through theoretical analysis of sample complexity. Finally we note
that the Tucker decomposition has been utilized in Bayesian statistics [32]. We are unaware of any
literature on factoring functions in Rd → R in a Tucker-inspired as we do in (2).

2 Theoretical Results

In this section we mathematically demonstrate that histogram estimators can achieve greater perfor-
mance by restricting to NNTF models and using a proper procedure to select a representative from
these using data. To simplify analysis we will only consider densities on the unit cube [0, 1)

d and
analyze the number of bins per dimension b which is the inverse of the bin width, i.e. b = 1/h. To
state our results precisely we must introduce a fair amount of notation.

2.1 Notation

We will denote the L1 and L2 Lebesgue space norms via a 1 or 2 subscript. Let Dd be the set of
all densities on [0, 1)

d. By density we mean probability measures that are absolutely continuous
with respect to the d-dimensional Lebesgue measure on [0, 1)d. We define a probability vector or
probability tensor to simply mean a vector or tensor whose entries are nonnegative and sum to
one. Let ∆b denote the set of probability vectors in Rb and Td,b the set of probability tensors in
Rb×d ||. The product symbol

∏
will always mean the standard outer product, e.g. set product**

or tensor product, when the multiplicands are not real numbers††. The natural numbers N will
always denote positive integers. For any natural number b let [b] = {1, . . . , b}. We will let 1 be
the indicator function and Conv be the convex hull. Later we will use projection operator where
ProjS x , arg mins∈S ‖x− s‖2; for every instance in this work this projection is unique.

||Rb×d

is the set of b× · · · × b︸ ︷︷ ︸
d times

tensors. For example Rb×2

is the set of b× b matrices.

**For sets S1, . . . , Sd we have
∏d

i=1 Si = S1 × · · · × Sd = {(s1, . . . , sd) : si ∈ Si∀i}.
††For functions f1, . . . , fd then

∏d
i=1 fi = f1 ⊗ · · · ⊗ fd : (x1, . . . , xd) 7→

∏d
i=1 fi (xi).
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We will now construct the space of histograms on [0, 1)
d. We begin with one-dimensional histograms,

which will serve as the pi,j terms in (1) or (2). We define h1,b,i with i ∈ [b] to be the one-dimensional
histogram where all weight is allocated to the ith bin. Formally we define this as

h1,b,i (x) , b1

(
i− 1

b
≤ x < i

b

)
.

Note that this is a valid density due to the leading b coefficient. We use these to construct higher-
dimensional histograms. For a multi-index A ∈ [b]

d, let

hd,b,A ,
d∏
i=1

h1,b,Ai
,

i.e. the d-dimensional histogram with b bins per dimension whose entire density is allocated to the
bin indexed by A. Finally we define Λd,b,A to be the support of hd,b,A, i.e. the “bins” of a histogram
estimator,

Λd,b,A ,
d∏
i=1

[
Ai − 1

b
,
Ai
b

)
.

For a dataset X = (X1, . . . , Xn) in [0, 1)d, the standard histogram estimator is

Hd,b (X ) ,
1

n

n∑
i=1

∑
A∈[b]d

hd,b,A1 (Xi ∈ Λd,b,A) .

Let Hd,b , Conv
({
hd,b,A

∣∣∣A ∈ [b]
d
})

, the set of all d-dimensional histograms with b bins per

dimension. LetHkd,b be the set of histograms with at most k separable components, i.e.

Hkd,b ,


k∑
i=1

wi

d∏
j=1

pi,j

∣∣∣∣∣∣w ∈ ∆k, pi,j ∈ H1,b

 . (4)

We will refer to elements in this space as multi-view histograms. Elements in this space have the
same form as (1) in Section 1.1. Similarly we define the space of Tucker histograms to be

H̃kd,b =

 ∑
S∈[k]d

WS

d∏
i=1

pi,Si

∣∣∣∣∣∣W ∈ Td,k, pi,j ∈ H1,b

 .

These have the same form as (2) in Section 1.1.

We emphasize that the collections of densitiesHkd,b and H̃kd,b are primary objects of interest in this
paper. The results we present are concerned with finding good density estimators restricted to these
sets as k and b vary.

2.2 Estimator Theoretical Results

We present two approaches to the analysis of NNTF histogram estimators. All proofs and additional
results are contained in the appendix.

First we provide an asymptotic analysis of NNTF histogram estimators in terms of estimation error
control: how fast can we let b and k grow, with respect to n, while still controlling estimation error
over all densities? An advantage of this analysis is that we can demonstrate that these rates are
approximately optimal (up to logarithmic terms).

For our second approach we present finite-sample bound analysis. In this analysis we first present
a distribution-dependent bound that, for an estimator restricted to Hkd,b, depends on n, b, k and
minq∈Hk

d,b
‖p− q‖1 where p is the data generating “target” distribution. We follow this up with

distribution-free bounds.
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Distribution-free bounds for nonparametric density estimation require that the target distribution
belong to a well-behaved class of distributions (such as Sobolev or Hölder classes) to enable bounding
of the approximation error [40]. Our distribution-free finite-sample analysis assumes that the target
density is a multi-view model whose component marginals are Lipschitz continuous. We construct
an estimator that converges at a rate of approximately 1/ 3

√
n on this class of densities, independent

of d. For comparison we show that the standard histogram estimator can converge at a rate worse
than 1/ d

√
n on this same class of densities. We mention again that this estimator shouldn’t fail

catastrophically when these distributional assumptions aren’t exactly met so long as its approximation
error, minp∈Hk

d,b
‖p− q‖1, isn’t large. For brevity, and because the results are virtually direct

analogues of their multi-view histogram counterparts, we reserve all finite-sample results for Tucker
histogram for the appendix.

Main Technical Tools Our results rely on finding L1 ε-coverings of the spaces of NNTF histograms
and using Theorem 3.7 from [6] to select a good representative from that collection. The aforemen-
tioned theorem is a slight extension of Theorem 6.3 in [9] and is essentially proven in [48]. As was
mentioned in [6], the application of these results typically does not yield a computationally practical
algorithm. Likewise our results are simply meant to highlight the potential of NNTF models and are
not practically implementable as is.

2.2.1 Asymptotic Error Control

The following theorem states that one can control the estimation error of multi-view histograms with
k components and b bins per dimension so long as n ∼ bk (omitting logarithmic factors). Recall that
the standard histogram estimator requires n ∼ bd, so we have removed the exponential dependence of
bin rate on dimensionality. Here and elsewhere the ∼ symbol is not a precise mathematical statement
but rather signifies that the two values should be of the same order in a general sense. In the following
b and k are functions of n so the space of histograms changes as one acquires more data.
Theorem 2.1. For any pairs of sequences b→∞ and k →∞ satisfying

n/(bk log(b) + k log(k))→∞,
there exists an estimator Vn ∈ Hkd,b such that, for all ε > 0

sup
p∈Dd

P

(
‖Vn − p‖1 > 3 min

q∈Hk
d,b

‖p− q‖1 + ε

)
→ 0,

where Vn is a function of X1, . . . , Xn
iid∼ p.

The sample complexity for the multi-view histogram is perhaps more accurately approximated as
being on the order of dbk however the d disappears in the asymptotic analysis. The following theorem
states that one can control the error of Tucker histogram estimates so long as n ∼ bk + kd (omitting
logarithmic factors).
Theorem 2.2. For any pairs of sequences b→∞ and k →∞ satisfying

n/
(
bk log(b) + kd log

(
kd
))
→∞,

there exists an estimator Vn ∈ H̃kd,b such that, for all ε > 0

sup
p∈Dd

P

(
‖Vn − p‖1 > 3 min

q∈H̃k
d,b

‖p− q‖1 + ε

)
→ 0,

where Vn is a function of X1, . . . , Xn
iid∼ p.

Allowing b to grow as aggressively as possible we achieve consistent estimation so long as n ∼ b log b
and k grows sufficiently slowly, regardless of dimensionality.

Corollary 2.1. For all d, b, k fix Rkd,b to be either Hkd,b or H̃kd,b‡‡. For any sequence b → ∞ with
n/ (b log b)→∞, there exists a sequence k →∞ and estimator Vn ∈ Rkd,b such that, for all ε > 0

sup
p∈Dd

P

(
‖Vn − p‖1 > 3 min

q∈Rk
d,b

‖p− q‖1 + ε

)
→ 0,

‡‡R is fixed toH or H̃ and doesn’t change as n, b, k vary.
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where Vn is a function of X1, . . . , Xn
iid∼ p.

The following result shows that the approximation error of the estimators in Theorem 2.1, Theorem
2.2, and Corollary 2.1 go to zero for all densities. Thus these estimators are universally consistent
even when the NNTF model assumption is not satisfied.

Lemma 2.1. Let p ∈ Dd. If k →∞ and b→∞ then minq∈Hk
d,b
‖p− q‖1 → 0.

A straightforward consequence of this is that the Tucker histogram approximation error also goes to
zero.

Lemma 2.2. Let p ∈ Dd. If k →∞ and b→∞ then minq∈H̃k
d,b
‖p− q‖1 → 0.

The next theorem shows that the rate on bk in Theorem 2.1 cannot be made significantly faster.

Theorem 2.3. Let d ≥ 2, b → ∞, and k → ∞ with b ≥ k and n/ (bk) → 0. There exists no
estimator Vn ∈ Hkd,b such that, for all ε > 0, the following limit holds

sup
p∈Dd

P

(
‖Vn − p‖1 > 3 min

q∈Hk
d,b

‖p− q‖1 + ε

)
→ 0,

where Vn is a function of X1, . . . , Xn
iid∼ p.

Likewise the rate on bk + kd can also not be significantly improved in Theorem 2.2.

Theorem 2.4. Let d ≥ 2, b→∞, and k →∞ with b ≥ k and n/
(
bk + kd

)
→ 0. There exists no

estimator Vn ∈ H̃kd,b such that, for all ε > 0, the following limit holds

sup
p∈Dd

P

(
‖Vn − p‖1 > 3 min

q∈H̃k
d,b

‖p− q‖1 + ε

)
→ 0,

where Vn is a function of X1, . . . , Xn
iid∼ p.

2.2.2 Finite-Sample and Distribution-Independent Bounds

In this section we investigate the convergence of multi-view histogram estimators to densities that
satisfy the multi-view assumption. This will be done via a standard bias/variance decomposition style
of argument. We begin with the following distribution-dependent finite-sample bound.

Proposition 2.1. Let d, b, k, n ∈ N and 0 < δ ≤ 1. There exists an estimator Vn ∈ Hkd,b such that

sup
p∈Dd

P

‖p− Vn‖1 > 3 min
q∈Hk

d,b

‖p− q‖1 + 7

√
2bdk log(4bdkn)

n
+ 7

√
log( 3

δ )

2n

 < δ,

where Vn is a function of X1, . . . , Xn
iid∼ p.

To analyze the approximation error, ‖p − q‖1, we first consider the case where p has a single
component with L-Lipschitz marginals, so p =

∏d
i=1 pi. Using the indicator function over the unit

cube with Hölder’s Inequality we have that ‖p− q‖1 = ‖ (p− q)1‖1 ≤ ‖p− q‖2 ‖1‖2 = ‖p− q‖2.
It is possible to show that the L2 projection of p onto H1

d,b is achieved by simply projecting each
marginal to its best approximating one-dimensional marginal i.e. (see the appendix)

arg min
q∈H1

d,b

∥∥∥∥∥
d∏
i=1

pi − q

∥∥∥∥∥
2

=

d∏
i=1

ProjH1,b
pi.

Let LipL be the set of L-Lipschitz probability density functions [0, 1] and let mL , supf∈LipL
‖f‖2.

The following theorem characterizes the approximation error for separable densities with Lipschitz
continuous marginals.
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Theorem 2.5. Let b2 ≥ L2/12 and f1, . . . , fd be elements of LipL then∥∥∥∥∥
d∏
i=1

fi − ProjH1
d,b

d∏
i=1

fi

∥∥∥∥∥
1

≤

√
m2d
L −

(
m2
L −

L2

12b2

)d
.

We show in the appendix that this decays at a rate ofO
(
b−1
)

and that this rate is tight. To characterize
the behavior of mL we have the following.

Proposition 2.2. Let mL = supf∈LipL
‖f‖2, then

m2
L =

{
L2/12 + 1 0 ≤ L ≤ 2√

8L
9 L ≥ 2

.

The following theorem is a finite-sample bound for a well-constructed multi-view histogram estimator.

Theorem 2.6. Fix n, d, k ∈ N, L ≥ 2, and 1 ≥ δ > 0. There exists b and an estimator Vn ∈ Hkd,b
such that

sup
p∈Q

P

‖Vn − p‖1 > 21dk1/3L
d+3
12

n
1
3

√
log(3Ldkn) + 7

√
log( 3

δ )

2n

 < δ,

where Q is the set of densities of the form
∑k
i=1 wi

∏d
j=1 pi,j with pi,j ∈ LipL, w ∈ ∆k, and Vn is

a function of X1, . . . , Xn
iid∼ p.

Here we analyze the asymptotic rate at which the estimator in Theorem 2.6 converges to a large class
of multi-view models. To this end let

Qd =


k′∑
i=1

wipi,1 ⊗ · · · ⊗ pi,d | k′ ∈ N, w ∈ ∆k′ , L
′ ≥ 0, pi,j ∈ LipL′

 ,

i.e. Qd is the space of all multi-view models whose component marginals are all Lipschitz continuous.
Consider letting L→∞, k →∞, and δ → 0 in Theorem 2.6 arbitrarily slowly as n→∞. For some
element p in Qd its respective maximum Lipschitz constant and component number, L′ and k′, are
fixed, so for sufficiently large n we have L > L′ and k > k′ and the bound from Theorem 2.6 applies.
From this it follows that ‖Vn − p‖1 ∈ Õ (1/ 3

√
n). So we can construct an estimator that converges at

rate Õ (1/ 3
√
n) for any multi-view model in Qd, independent of dimension! This rate appears to be

approximately optimal since “for smooth densities, the average L1 error for the histogram estimate
must vary at least as n−1/3” ([14], p. 99). For comparison the histogram estimator’s convergence
rate is hindered exponentially in dimension.

Proposition 2.3. Let Vn be the standard histogram estimator with n/bd →∞. There exists p ∈ Qd

such that ‖Vn − p‖1 ∈ ω(1/ d
√
n).

2.3 Discussion

While Theorem 2.6 gives an estimator with good convergence, the class of densities Q is somewhat
restrictive and likely not realistic for many situations where one would want to apply a nonparametric
density estimator. Proposition 2.1, on the other hand, is not so restrictive since it depends on
minq∈Hk

d,b
‖p− q‖1, and more clearly conveys the message of this paper. Typical works on multi-

view nonparametric density estimation assume that the target density p is a multi-view model and are
interested in recovering the model components pi,j and w from (1). Similarly to how the standard
histogram estimator doesn’t assume p ∈ Hd,b our work isn’t meant to assume that p is a multi-view
model, but is instead meant to explore the benefits of including a hyperparameter k, in addition to
b, to restrict rank of the estimator. Just as the histogram can approximate any density as b → ∞,
Lemmas 2.1 and 2.2 show that the inclusion of k does not hinder the approximation power of the
estimator.
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To explore the trade-off between b and k first observe that setting k = bd gives Hkd,b = Hd,b since
one can allocate one component to each bin. Theorem 2.1 and Proposition 2.1 with k = bd gives a
sample complexity of approximately n ∼ bd+1 which coincides with standard histogram estimator.
Alternatively, setting k = 1 restricts the estimator to separable histograms H1

d,b, with a sample
complexity of approximately n ∼ b. Thus we have a span of k yielding different estimators with
maximal k corresponding to the standard histogram and minimal k corresponding to a naive Bayes
assumption. We observe in Section 3 that this trade-off is useful in practice: we virtually never want
k to be maximized.

3 Experiments

The previous section proved the existence of estimators that select NNTF histograms that offer
advantages over the standard histogram. Unfortunately these estimators are not computationally
tractable and only demonstrate the potential benefit incorporating an NNTF model in nonparametric
density estimation. It would be nonetheless interesting to observe the behavior of an NNTF histogram
estimator, even if it lacks the theoretical guarantees developed in the previous section. To this end we
consider an L2-minimizing NNTF histogram estimator. For all d, b, k fixRkd,b to be eitherHkd,b or
H̃kd,b. We consider an estimator Un, that attempts to minimize

Un = argminp̂∈Rk
d,b
‖p̂− p‖22 .

Note that
‖p̂− p‖22 = ‖p̂‖22 − 2 〈p, p̂〉+ ‖p‖22 . (5)

The ‖p‖22 term in (5) is not relevant when minimizing over p̂. Additionally for data X1, . . . , Xn
iid∼ p

the law of large numbers gives us

〈p, p̂〉 =

∫
[0,1)d

p(x)p̂(x)dx = EX∼p [p̂ (X)] ≈ 1

n

n∑
i=1

p̂(Xi)

so we may consider

Un , argminp̂∈Rd,b ‖p̂‖
2
2 −

2

n

n∑
i=1

p̂(Xi) (6)

as a practical version of (5) which is conveniently equivalent to nonnegative tensor factorization (see
the appendix).

Risk expressions for nonparametric density estimation based on L2-minimization similar to (6) have
appeared in previous works related to kernel density estimation [41, 8, 31]. Proving optimal rates on
bandwidth in these settings seems challenging, however.

Table 1: Experimental Results

Dataset d Red. Dim. Hist. Perf. Tucker Perf. Hist. Bins Tucker Bins Tucker k p-val.

MNIST

PCA

2 -1.455±0.089 -1.502±0.102 6.531±1.499 8.375±1.780 4.968±1.976 5e-4
3 -2.040±0.196 -2.268±0.195 4.781±0.738 6.718±1.565 5.781±1.340 2e-4
4 -3.532±0.996 -4.014±0.655 4.031±0.585 5.343±1.018 4.375±0.695 2e-3
5 -4.673±1.026 -6.157±2.924 3.468±0.499 4.343±0.592 3.281±0.514 4e-5

Rand.

2 -2.034±0.100 -2.099±0.102 6.062±1.197 7.562±1.657 2.062±1.784 3e-5
3 -3.086±0.207 -3.331±0.387 4.812±0.526 6.843±1.227 2.687±1.959 1e-4
4 -4.307±0.290 -5.731±0.435 3.500±0.559 5.656±0.642 2.593±1.497 8e-7
5 -6.327±0.522 -9.539±1.053 3.250±0.433 4.718±0.571 2.562±1.087 8e-7

Diabetes

PCA

2 -2.079±0.122 -2.212±0.132 5.718±1.304 7.468±1.478 1.062±0.242 8e-6
3 -3.010±0.364 -3.606±0.420 3.593±0.860 7.062±1.058 1.843±1.543 2e-6
4 -4.002±0.415 -4.423±0.701 3.000±0.000 5.906±0.804 2.343±1.107 2e-3
5 -6.139±0.661 -6.043±1.192 3.000±0.000 3.750±0.968 1.843±0.617 0.91

Rand.

2 -3.074±0.224 -3.277±0.287 6.843±1.227 9.250±1.936 1.093±0.384 7e-5
3 -4.726±0.483 -5.353±0.751 4.968±0.769 8.406±1.343 1.625±1.672 2e-5
4 -6.017±0.873 -7.732±1.497 4.062±0.704 6.718±1.328 2.093±1.155 1e-5
5 -8.986±1.292 -12.61±2.477 3.062±0.242 5.093±0.521 2.531±0.865 2e-6

For our experiments we used the Tensorly library [23] to perform the nonnegative Tucker decom-
position [22] with Tucker rank [k, k, . . . , k] which was then projected to the simplex of probability
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tensors using [12]. We also performed experiments with nonnegative PARAFAC decompositions
using [34, 23]. These decompositions performed poorly. This is potentially because the PARAFAC
optimization is more difficult or the additional flexibility of the Tucker decomposition was more
appropriate for the experimental datasets.

3.1 Experimental Setup

Our experiments were performed on the Scikit-learn [28] datasets MNIST and Diabetes [28], with
labels removed. We use the estimated risk from (6) to evaluate estimator performance (which may
cause negative performance values, however lower values always indicate smaller estimated L2-
distance). Our experiments considered estimating histograms in d = 2, 3, 4, 5 dimensional space. We
consider two forms of dimensionality reduction. First we consider projecting the dataset onto its
top d principle components. We also performed experiments projecting each dataset onto a random
subspace of dimension d. These random subspaces were constructed so that each additional dimension
adds a new index without affecting the others. To do this, we first randomly select an orthonormal
basis for each dataset that remains unchanged for all experiments v1, v2, . . .. Then to transform a
point X to dimension d we perform the following transform: Xreduced dim. = [v1 · · · vd]T X . We
consider both transforms since PCA may select dimensions where the features tend to be independent,
e.g. a multivariate Gaussian. After dimensionality reduction we scale and translate the data to fit in
the unit cube.

With our preprocessed dataset, each experiment consisted of randomly selecting 200 samples for
training and using the rest to evaluate performance (again using (6)). For the estimators we tested all
combinations using 1 to bmax bins per dimension and k from 1 to kmax. As d increased the best cross
validated b and k value decreased, so we reduced bmax and kmax for larger d to reduce computational
time, while still leaving a sizable gap between the best cross validated b and k and bmax and kmax
across all runs of all experiment. For d = 2, 3 we have bmax = 15 and kmax = 10; for d = 4 we
have bmax = 12 and kmax = 8; for d = 5 we have bmax = 8 and kmax = 6. For parameter fitting we
used random subset cross validation repeated 80 times using 40 of the 200 samples to evaluate the
performance of the estimator fit using the other 160 samples. Performing 80 folds of cross validation
was necessary because of the high variance of the histogram’s estimated risk. This high variance is
likely due to the noncontinuous nature of the histogram estimator itself and the noncontinuity of the
histogram as a function of the data, i.e. slightly moving one training sample can potentially change
histogram bin in which it lies. Each experiment was run 32 times and we report the mean and standard
deviations of estimator performance as well as the best parameters found from cross validation. We
additionally apply the two-tailed Wilcoxon signed rank test to the 32 pairs of performance results to
statistically determine if the mean performance between the standard histogram and our algorithm
are different and report the corresponding p-value.

3.2 Results

Our results are presented in Table 1. Apart from the density estimators’ performance (“Hist. Perf.”
and “Tucker Perf.”) this table contains the mean and standard deviation over the 32 trials for the
optimal cross validated parameters for the estimators. This includes the number of bins, corresponding
to b from the earlier sections, and the Tucker rank k. We see that the Tucker histogram usually
outperforms the standard histogram (“Tucker Perf.” is less than “Hist. Perf.”) with high statistical
significance (small p-val). As one would expect, the Tucker histogram cross validates for more
bins, presumably reducing the k in exchange for more bins. Note that the MNIST PCA experiments
always cross validated for the largest k and yielded less statistically significant performance increases
(outside of the unusual Diabetes PCA d = 5 experiment). Presumably this experiment fit the NNTF
assumption the least well (hence the large k) and thus received the least benefit.

4 Conclusion

In this paper we have theoretically and experimentally demonstrated the advantages of including
rank restriction into nonparametric density estimation. In particular, rank restriction may be a way to
overcome the curse of dimensionality since it reduces the sample complexity penalty incurred from
dimensionality from exponential to linear. This paper is an initial theoretical foray for demonstrating
the potential of combining rank restriction with nonparametric methods.
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