Appendix

Contents of Main Article and Appendix

1 Introduction 1
1.1 Further Related Work . 2

2 Setting and Notation $\quad 2$
3 Conditional Posterior Sampling Algorithm 3
4 Regret of Conditional Posterior Sampling 4
4.1 Decoupling Coefficient and its Relation to Other Complexity Measures 6
4.2 Interpretation of Theorem 1 . 7

5 Proof Overview of Theorem 1 8
6 Conclusion 10
A Full Proof of Theorem $1 \quad 14$
A. 1 Generalization of Theorem 1 . 14
A. 2 Proof of Theorem 2 . 15

B Proofs for Decoupling Coefficient Bounds 22
B. 1 Proof of Proposition 1 (Linear MDP) . 22
B. 2 Proof of Proposition 2 (Generalized Linear Value Functions) 22
B. 3 Proof of Proposition 3 (Bellman-Eluder dimension Reduction) 23

A Full Proof of Theorem 1

A. 1 Generalization of Theorem 1

Instead of proving Theorem 1 directly, we will prove a slightly more general version that we will state formally in Theorem 2. In short, this version considers a more general family of posteriors that include an extra parameter $\alpha \in(0,1]$. The original posterior of Algorithm 1 in Theorem 1 corresponds to the case of $\alpha=1$.

First, we introduce some notations used in the proof. We define

$$
\operatorname{Reg}(f)=\left(V_{1}^{\star}\left(x^{1}\right)-V_{1}^{\pi_{f}}\left(x^{1}\right)\right)
$$

Given state action pair $\left[x^{h}, a^{h}\right]$, we use the notation $\left[x^{h+1}, r^{h}\right] \sim P^{h}\left(\cdot \mid x^{h}, a^{h}\right)$ to denote the joint probability of sampling the next state $x^{h+1} \sim P^{h}\left(\cdot \mid x^{h}, a^{h}\right)$ and reward $r^{h} \sim R^{h}\left(\cdot \mid x^{h}, a^{h}\right)$.
Let $\zeta_{s}=\left\{\left[x_{s}^{h}, a_{s}^{h}, r_{s}^{h}\right]\right\}_{h \in[H]}$ be the trajectory of the s-th episode. In the following, the notation S_{t} at time t includes all historic observations up to time t, which include both $\left\{\zeta_{s}\right\}_{s \in[t]}$ and $\left\{f_{s}\right\}_{s \in[t]}$. These observations are generated in the order $f_{1} \sim p_{0}(\cdot), \zeta_{1} \sim \pi_{f_{1}}, f_{2} \sim p\left(\cdot \mid S_{1}\right), \zeta_{2} \sim \pi_{f_{2}}, \ldots$.

Define the excess loss

$$
\begin{aligned}
\Delta L^{h}\left(f^{h}, f^{h+1} ; \zeta_{s}\right)= & \left(f^{h}\left(x_{s}^{h}, a_{s}^{h}\right)-r_{s}^{h}-f^{h+1}\left(x_{s}^{h+1}\right)\right)^{2} \\
& -\left(\mathcal{T}_{h}^{\star} f^{h+1}\left(x_{s}^{h}, a_{s}^{h}\right)-r_{s}^{h}-f^{h+1}\left(x_{s}^{h+1}\right)\right)^{2}
\end{aligned}
$$

and define the potential $\hat{\Phi}$, which contains the extra parameter α :

$$
\begin{align*}
& \hat{\Phi}_{t}^{h}(f)=-\ln p_{0}^{h}\left(f^{h}\right)+\alpha \eta \sum_{s=1}^{t-1} \Delta L^{h}\left(f^{h}, f^{h+1} ; \zeta_{s}\right) \tag{10}\\
& \\
& +\alpha \ln \mathbb{E}_{\tilde{f}^{h} \sim p_{0}^{h}} \exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(\tilde{f}^{h}, f^{h+1} ; \zeta_{s}\right)\right)
\end{align*}
$$

and define

$$
\Delta f^{1}\left(x^{1}\right)=f^{1}\left(x^{1}\right)-Q_{1}^{\star}\left(x^{1}\right),
$$

where $Q_{1}^{\star}\left(x^{1}\right)=V_{1}^{\star}\left(x^{1}\right)$ using our notation. Given S_{t-1}, we may define the following generalized posterior probability \hat{p}_{t} on \mathcal{F} :

$$
\begin{equation*}
\hat{p}_{t}(f) \propto \exp \left(-\sum_{h=1}^{H} \hat{\Phi}_{t}^{h}(f)+\lambda \Delta f^{1}\left(x^{1}\right)\right) . \tag{11}
\end{equation*}
$$

We will also introduce the following definition.
Definition 8. We define for $\alpha \in(0,1)$, and $\epsilon>0$:

$$
\kappa^{h}(\alpha, \epsilon)=(1-\alpha) \ln \mathbb{E}_{f^{h+1} \sim p_{0}^{h+1}} p_{0}^{h}\left(\mathcal{F}_{h}\left(\epsilon, f^{h+1}\right)\right)^{-\alpha /(1-\alpha)},
$$

and we define $\kappa^{h}(1, \epsilon)=\lim _{\alpha \rightarrow 1^{-}} \kappa^{h}(\alpha, \epsilon)$.
It is easy to check when $\alpha=1$, the posterior distribution of (11) is equivalent to the posterior $p\left(f \mid S_{t-1}\right)$ defined in (3).

When $\alpha=1$,

$$
\kappa^{h}(1, \epsilon)=\sup _{f^{h+1} \in \mathcal{F}_{h+1}} \ln \frac{1}{p_{0}^{h}\left(\mathcal{F}_{h}\left(\epsilon, f^{h+1}\right)\right)}<\infty .
$$

Therefore $\kappa(\epsilon)$ defined in Definition 1 can be written as

$$
\kappa(\epsilon)=\sum_{h=1}^{H} \kappa^{h}(1, \epsilon) .
$$

However, the advantage of using a value $\alpha<1$ is that $\kappa(\alpha, \epsilon)$ can be much smaller than $\kappa(1, \epsilon)$.
We will prove the following theorem for $\alpha \in(0,1)$, which becomes Theorem 1 when $\alpha \rightarrow 1$.

Theorem 2. Consider Algorithm 1 with the posterior sampling probability (3) replaced by (11). When $\eta b^{2} \leq 0.4$, we have

$$
\begin{aligned}
& \sum_{t=1}^{T} \mathbb{E}_{S_{t-1}} \mathbb{E}_{f_{t} \sim \hat{p}_{t}} \operatorname{Reg}\left(f_{t}\right) \\
\leq & \frac{\lambda}{\alpha \eta} \operatorname{dc}(\mathcal{F}, M, T, 0.25 \alpha \eta / \lambda)+(T / \lambda) \sum_{h=1}^{H}\left[\kappa^{h}(\alpha, \epsilon)-\ln p_{0}^{h}\left(\mathcal{F}_{h}\left(\epsilon, Q_{h+1}^{\star}\right)\right)\right] \\
& +\frac{\alpha}{\lambda} \eta \epsilon(5 \epsilon+2 b) T(T-1) H+T \epsilon .
\end{aligned}
$$

A. 2 Proof of Theorem 2

We need a number of technical lemmas. We start with the following inequality, which is the basis of our analysis.

Lemma 1.

$\mathbb{E}_{f \sim \hat{p}_{t}}\left(\sum_{h=1}^{H} \hat{\Phi}_{t}^{h}(f)-\lambda \Delta f^{1}\left(x^{1}\right)+\ln \hat{p}_{t}(f)\right)=\inf _{p} \mathbb{E}_{f \sim p(\cdot)}\left(\sum_{h=1}^{H} \hat{\Phi}_{t}^{h}(f)-\lambda \Delta f^{1}\left(x^{1}\right)+\ln p(f)\right)$.

Proof. This is a direct consequence of the well-known fact that (11) is the minimizer of the right hand side. This fact is equivalent to the fact that the KL-divergence of any $p(\cdot)$ and \hat{p}_{t} is non-negative.

We also have the following bound, which is needed to estimate the left hand side and right hand side of Lemma 1.
Lemma 2. For all function $f \in \mathcal{F}$, we have

$$
\mathbb{E}_{\left[x_{s}^{h+1}, r_{s}^{h}\right] \sim P^{h}\left(\cdot \mid x_{s}^{h}, a_{s}^{h}\right)} \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)=\left(\mathcal{E}_{h}\left(f ; x_{s}^{h}, a_{s}^{h}\right)\right)^{2} .
$$

Moreover, we have

$$
\mathbb{E}_{\left[x_{s}^{h+1}, r_{s}^{h}\right] \sim P^{h}\left(\cdot \mid x_{s}^{h}, a_{s}^{h}\right)} \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)^{2} \leq \frac{4 b^{2}}{3}\left(\mathcal{E}_{h}\left(f ; x_{s}^{h}, a_{s}^{h}\right)\right)^{2}
$$

Proof. For notation simplicity, we introduce the random variable

$$
Z=f^{h}\left(x_{s}^{h}, a_{s}^{h}\right)-r_{s}^{h}-f^{h+1}\left(x_{s}^{h+1}\right),
$$

which depends on $\left[x_{s}^{h+1}, r_{s}^{h}\right]$, conditioned on $\left[x_{s}^{h}, a_{s}^{h}\right]$. The expecation \mathbb{E} over Z is with respect to the joint conditional probability $P^{h}\left(\cdot \mid x_{s}^{h}, a_{s}^{h}\right)$. Then

$$
\mathbb{E} Z=\mathcal{E}_{h}\left(f ; x_{s}^{h}, a_{s}^{h}\right),
$$

and

$$
\Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)=Z^{2}-(Z-\mathbb{E} Z)^{2}
$$

Since

$$
\mathbb{E}\left[Z^{2}-(Z-\mathbb{E} Z)^{2}\right]=(\mathbb{E} Z)^{2}
$$

we obtain

$$
\mathbb{E}_{\left[x_{s}^{h+1}, r_{s}^{h}\right] \sim P^{h}\left(\cdot \mid x_{s}^{h}, a_{s}^{h}\right)} \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)=(\mathbb{E} Z)^{2}=\left(\mathcal{E}_{h}\left(f ; x_{s}^{h}, a_{s}^{h}\right)\right)^{2} .
$$

Also $Z \in[-b, b-1]$ and $\max Z-\min Z \leq b$ (when conditioned on $\left[x_{s}^{h}, a_{s}^{h}\right]$). This implies that

$$
\mathbb{E}\left(Z^{2}-(Z-\mathbb{E} Z)^{2}\right)^{2}=(\mathbb{E} Z)^{2}\left[4 \mathbb{E} Z^{2}-3(\mathbb{E} Z)^{2}\right] \leq \frac{4}{3} b^{2}(\mathbb{E} Z)^{2}
$$

We note that the maximum of $4 \mathbb{E} Z^{2}-3(\mathbb{E} Z)^{2}$ is achieved with $Z \in\{-b, 0\}$ and $\mathbb{E} Z=-2 b / 3$. This leads to the second desired inequality.

The above lemma implies the following exponential moment estimate.
Lemma 3. If $\eta b^{2} \leq 0.8$, then for all function $f \in \mathcal{F}$, we have

$$
\begin{aligned}
& \ln \mathbb{E}_{\left[x_{s}^{h+1}, r_{s}^{h}\right] \sim P^{h}\left(\cdot \mid x_{s}^{h}, a_{s}^{h}\right)} \exp \left(-\eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right) \\
\leq & \mathbb{E}_{\left[x_{s}^{h+1}, r_{s}^{h}\right] \sim P^{h}\left(\cdot \mid x_{s}^{h}, a_{s}^{h}\right)} \exp \left(-\eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right)-1 \\
\leq & -0.25 \eta\left(\mathcal{E}_{h}\left(f ; x_{s}^{h}, a_{s}^{h}\right)\right)^{2} .
\end{aligned}
$$

Proof. From $\eta b^{2} \leq 0.8$, we know that

$$
-\eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right) \leq 0.8
$$

This implies that

$$
\begin{aligned}
& \exp \left(-\eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right) \\
= & 1-\eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)+\eta^{2} \psi\left(-\eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right) \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)^{2} \\
\leq & 1-\eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)+0.67 \eta^{2} \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)^{2}
\end{aligned}
$$

where we have used the fact that $\psi(z)=\left(e^{z}-1-z\right) / z^{2}$ is an increasing function of z, and $\psi(0.8)<0.67$. It follows from Lemma 2 that

$$
\begin{aligned}
& \ln \mathbb{E}_{\left[x_{s}^{h+1}, r_{s}^{h}\right] \sim P^{h}\left(\cdot \mid x_{s}^{h}, a_{s}^{h}\right)} \exp \left(-\eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right) \\
\leq & \mathbb{E}_{\left[x_{s}^{h+1}, r_{s}^{h}\right] \sim P^{h}\left(\cdot \mid x_{s}^{h}, a_{s}^{h}\right)} \exp \left(-\eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right)-1 \\
\leq & \mathbb{E}_{\left[x_{s}^{h+1}, r_{s}^{h}\right] \sim P^{h}\left(\cdot \mid x_{s}^{h}, a_{s}^{h}\right)}\left[-\eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)+0.67 \eta^{2} \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)^{2}\right] \\
\leq & -0.25 \eta\left(\mathcal{E}_{h}\left(f ; x_{s}^{h}, a_{s}^{h}\right)\right)^{2},
\end{aligned}
$$

where the first inequality is due to $\ln z \leq z-1$. The last inequality used $0.67\left(4 \eta b^{2} / 3\right)<0.75$ and Lemma 2. This proves the desired bound.

The following lemma upper bounds the right hand side of Lemma 1.
Lemma 4. If $\eta b^{2} \leq 0.8$, then

$$
\begin{aligned}
& \inf _{p} \mathbb{E}_{S_{t-1}} \mathbb{E}_{f \sim p(\cdot)}\left[\sum_{h=1}^{H} \hat{\Phi}_{t}^{h}(f)-\lambda \Delta f^{1}\left(x^{1}\right)+\ln p(f)\right] \\
\leq & \lambda \epsilon+4 \alpha \eta(t-1) H \epsilon^{2}-\sum_{h=1}^{H} \ln p_{0}^{h}\left(\mathcal{F}_{h}\left(\epsilon, Q_{h+1}^{\star}\right)\right) .
\end{aligned}
$$

Proof. Consider any $f \in \mathcal{F}$. For any $\tilde{f}^{h} \in \mathcal{F}_{h}$ that only depends on S_{s-1}, we obtain from Lemma 3:

$$
\begin{equation*}
\mathbb{E}_{\zeta_{s}} \exp \left(-\eta \Delta L^{h}\left(\tilde{f}^{h}, f^{h+1}, \zeta_{s}\right)\right)-1 \leq-0.25 \eta \mathbb{E}_{\zeta_{s}}\left(\tilde{f}^{h}(x, a)-\mathcal{T}_{h}^{\star} f^{h+1}(x, a)\right)^{2} \leq 0 \tag{12}
\end{equation*}
$$

Now, let

$$
W_{t}^{h}=\mathbb{E}_{S_{t}} \mathbb{E}_{f \sim p(\cdot)} \ln \mathbb{E}_{\tilde{f} h \sim p_{0}^{h}} \exp \left(-\eta \sum_{s=1}^{t} \Delta L^{h}\left(\tilde{f}^{h}, f^{h+1}, \zeta_{s}\right)\right)
$$

then using the notation

$$
\hat{q}_{t}^{h}\left(\tilde{f}^{h} \mid f^{h+1}, S_{t-1}\right)=\frac{\exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(\tilde{f}^{h}, f^{h+1}, \zeta_{s}\right)\right)}{\mathbb{E}_{\tilde{f}^{\prime \prime} \sim p_{0}^{h}} \exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(\tilde{f}^{\prime h}, f^{h+1}, \zeta_{s}\right)\right)}
$$

we have

$$
\begin{aligned}
& W_{s}^{h}-W_{s-1}^{h}=\mathbb{E}_{S_{s}} \mathbb{E}_{f \sim p(\cdot)} \ln \mathbb{E}_{\tilde{f}^{h} \sim \hat{q}_{s}^{h}\left(\cdot \mid f^{h+1}, S_{s-1}\right)} \exp \left(-\eta \Delta L^{h}\left(\tilde{f}^{h}, f^{h+1}, \zeta_{s}\right)\right) \\
\leq & \mathbb{E}_{S_{s}} \mathbb{E}_{f \sim p(\cdot)}\left(\mathbb{E}_{\tilde{f}^{h} \sim \hat{q}_{s}^{h}\left(\cdot \mid f^{h+1}, S_{s-1}\right)} \exp \left(-\eta \Delta L^{h}\left(\tilde{f}^{h}, f^{h+1}, \zeta_{s}\right)\right)-1\right) \leq 0,
\end{aligned}
$$

where the first inequality is due to $\ln z \leq z-1$, and the second inequality is from (12).
By noticing that $W_{0}^{h}=0$, we obtain

$$
W_{t}^{h}=W_{0}^{h}+\sum_{s=1}^{t}\left[W_{s}^{h}-W_{s-1}^{h}\right] \leq 0
$$

That is:

$$
\begin{equation*}
\mathbb{E}_{S_{t-1}} \mathbb{E}_{f \sim p(\cdot)} \ln \mathbb{E}_{\tilde{f} h \sim p_{0}^{h}} \exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(\tilde{f}^{h}, f^{h+1}, \zeta_{s}\right)\right) \leq 0 \tag{13}
\end{equation*}
$$

This implies that for an arbitrary $p(\cdot)$:

$$
\begin{aligned}
& \mathbb{E}_{S_{t-1}} \mathbb{E}_{f \sim p(\cdot)}\left[\sum_{h=1}^{H} \hat{\Phi}_{t}^{h}(f)-\lambda \Delta f^{1}\left(x^{1}\right)+\ln p(f)\right] \\
= & \mathbb{E}_{S_{t-1}} \mathbb{E}_{f \sim p(\cdot)}\left[-\lambda \Delta f^{1}\left(x^{1}\right)+\alpha \eta \sum_{h=1}^{H} \sum_{s=1}^{t-1} \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right. \\
& +\alpha \sum_{h=1}^{H} \ln \mathbb{E}_{\tilde{f} h} \sim p_{0}^{h} \\
& \left.\exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(\tilde{f}^{h}, f^{h+1}, \zeta_{s}\right)\right)+\ln \frac{p(f)}{p_{0}(f)}\right] \\
\leq & \mathbb{E}_{S_{t-1}} \mathbb{E}_{f \sim p(\cdot)}\left[-\lambda \Delta f^{1}\left(x^{1}\right)+\sum_{h=1}^{H} \alpha \eta \sum_{s=1}^{t-1}\left(\mathcal{E}_{h}\left(f ; x_{s}^{h}, a_{s}^{h}\right)\right)^{2}+\ln \frac{p(f)}{p_{0}(f)}\right]
\end{aligned}
$$

where in the derivation, the first equality used the definition of $\hat{\Phi}_{t}^{h}(f)$ in (10); the second inequality used (13), and then used the first equality of Lemma 2 to bound the expectation of $\Delta L(\cdot)$ by \mathcal{E}_{h}.

Note that if for all h

$$
f^{h} \in \mathcal{F}_{h}\left(\epsilon, Q_{h+1}^{\star}\right)
$$

then $\left|f\left(x_{s}^{h}, a_{s}^{h}\right)-Q_{h}^{\star}\left(x_{s}^{h}, a_{s}^{h}\right)\right| \leq \epsilon$. Therefore using the Bellman equation, we know

$$
\left|\mathcal{E}_{h}\left(f ; x_{s}^{h}, a_{s}^{h}\right)\right| \leq\left|f\left(x_{s}^{h}, a_{s}^{h}\right)-Q_{h}^{\star}\left(x_{s}^{h}, a_{s}^{h}\right)\right|+\sup \left|f\left(x_{s+1}^{h}\right)-Q_{h}^{\star}\left(x_{s+1}^{h}\right)\right| \leq 2 \epsilon .
$$

Therefore

$$
\sum_{h=1}^{H} \alpha \eta \sum_{s=1}^{t-1}\left(\mathcal{E}_{h}\left(f ; x_{s}^{h}, a_{s}^{h}\right)\right)^{2} \leq 4 \alpha \eta H(t-1) \epsilon^{2}
$$

By taking $p(f)=p_{0}(f) I(f \in \mathcal{F}(\epsilon)) / p_{0}(\mathcal{F}(\epsilon))$, with $\mathcal{F}(\epsilon)=\prod_{h} \mathcal{F}_{h}\left(\epsilon, Q_{h+1}^{\star}\right)$, we obtain the desired bound.

The following lemma lower bounds the entropy term on the left hand side of Lemma 1.
Lemma 5. We have

$$
\begin{aligned}
\mathbb{E}_{f \sim \hat{p}_{t}(f)} \ln \hat{p}_{t}(f) \geq & \alpha \mathbb{E}_{f \sim \hat{p}_{t}} \ln \hat{p}_{t}(f)+(1-\alpha) \mathbb{E}_{f \sim \hat{p}_{t}} \sum_{h=1}^{H} \ln \hat{p}_{t}\left(f^{h}\right) \\
\geq & \frac{\alpha}{2} \sum_{h=1}^{H} \mathbb{E}_{f \sim \hat{p}_{t}} \ln \hat{p}_{t}\left(f^{h}, f^{h+1}\right) \\
& +(1-0.5 \alpha) \mathbb{E}_{f \sim \hat{p}_{t}} \ln \hat{p}_{t}\left(f^{1}\right)+(1-\alpha) \sum_{h=2}^{H} \mathbb{E}_{f \sim \hat{p}_{t}} \ln \hat{p}_{t}\left(f^{h}\right) .
\end{aligned}
$$

Proof. The first bound follows from the following inequality

$$
\mathbb{E}_{f \sim \hat{p}_{t}} \ln \frac{\hat{p}_{t}(f)}{\prod_{h=1}^{H} \hat{p}_{t}\left(f^{h}\right)} \geq 0
$$

which is equivalent to the known fact that mutual information is non-negative (or KL-divergence is non-negative). The second inequality is equivalent to

$$
\begin{equation*}
\mathbb{E}_{f \sim \hat{p}_{t}} \ln \hat{p}_{t}(f) \geq 0.5 \mathbb{E}_{f \sim \hat{p}_{t}} \ln \hat{p}_{t}\left(f^{1}\right)+0.5 \sum_{h=1}^{H} \mathbb{E}_{f \sim \hat{p}_{t}} \ln \hat{p}_{t}\left(f^{h}, f^{h+1}\right) \tag{14}
\end{equation*}
$$

To prove (14), we consider the following two inequalities:

$$
0.5 \mathbb{E}_{f \sim \hat{p}_{t}} \ln \hat{p}_{t}(f) \geq 0.5 \sum_{h=1}^{H} \mathbb{E}_{f \sim \hat{p}_{t}} \ln \hat{p}_{t}\left(f^{h}, f^{h+1}\right) I(h \text { is a odd number })
$$

and

$$
0.5 \mathbb{E}_{f \sim \hat{p}_{t}} \ln \hat{p}_{t}(f) \geq 0.5 \mathbb{E}_{f \sim \hat{p}_{t}} \ln \hat{p}_{t}\left(f^{1}\right)+0.5 \sum_{h=1}^{H} \mathbb{E}_{f \sim \hat{p}_{t}} \ln \hat{p}_{t}\left(f^{h}, f^{h+1}\right) I(h \text { is an even number }) .
$$

Both follow from the fact that mutual information is non-negative. By adding the above two inequalities, we obtain (14).

We will use the following decomposition to lower bound the left hand side of Lemma 1.

Lemma 6.

$$
\begin{aligned}
& \mathbb{E}_{S_{t-1}} \mathbb{E}_{f \sim \hat{p}_{t}}\left(\sum_{h=1}^{H} \hat{\Phi}_{t}^{h}(f)-\lambda \Delta f^{1}\left(x^{1}\right)+\ln \hat{p}_{t}(f)\right) \\
& \geq \underbrace{\mathbb{E}_{S_{t-1}} \mathbb{E}_{f \sim \hat{p}_{t}}\left[-\lambda \Delta f^{1}\left(x^{1}\right)+(1-0.5 \alpha) \ln \frac{\hat{p}_{t}\left(f^{1}\right)}{p_{0}^{1}\left(f^{1}\right)}\right]}_{A} \\
& \quad+\sum_{h=1}^{H} \underbrace{0.5 \alpha \mathbb{E}_{S_{t-1}} \mathbb{E}_{f \sim \hat{p}_{t}}\left[\eta \sum_{s=1}^{t-1} 2 \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)+\ln \frac{\hat{p}_{t}\left(f^{h}, f^{h+1}\right)}{p_{0}^{h}\left(f^{h}\right) p_{0}^{h+1}\left(f^{h+1}\right)}\right]}_{B_{h}} \\
& \quad+\sum_{h=1}^{H} \underbrace{\mathbb{E}_{S_{t-1}} \mathbb{E}_{f \sim \hat{p}_{t}}\left[\alpha \ln \mathbb{E}_{\tilde{f}^{h} \sim p_{0}^{h}} \exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(\tilde{f}^{h}, f^{h+1}, \zeta_{s}\right)\right)+(1-\alpha) \ln \frac{\hat{p}_{t}\left(f^{h+1}\right)}{p_{0}^{h+1}\left(f^{h+1}\right)}\right]}_{C_{h}} .
\end{aligned}
$$

Proof. We note from (10) that

$$
\begin{aligned}
\hat{\Phi}_{t}^{h}(f)= & -\ln p_{0}^{h}\left(f^{h}\right)+\alpha \eta \sum_{s=1}^{t-1} \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right) \\
& +\alpha \ln \mathbb{E}_{\tilde{f}^{h} \sim p_{0}^{h}} \exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(\tilde{f}^{h}, f^{h+1}, \zeta_{s}\right)\right) .
\end{aligned}
$$

Now we can simply apply the second inequality of Lemma 5.
We have the following result for A in Lemma 6.
Lemma 7. We have

$$
A \geq-\lambda \mathbb{E}_{S_{t-1}} \mathbb{E}_{f_{t} \sim \hat{p}_{t}(\cdot)} \Delta f_{t}^{1}\left(x^{1}\right)
$$

Proof. This follows from the fact that the following KL-divergence is nonnegative:

$$
\mathbb{E}_{f_{t} \sim \hat{p}_{t}} \ln \frac{\hat{p}_{t}\left(f_{t}^{1}\right)}{p_{0}^{1}\left(f_{t}^{1}\right)} \geq 0
$$

The following proposition is from Zhang [2005] . The proof is included for completeness.
Proposition 4. For each fixed $f \in \mathcal{F}$, we define a random variable for all s and h as follows:

$$
\begin{aligned}
\xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)= & -2 \eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right) \\
& -\ln \mathbb{E}_{\left[x_{s}^{h+1}, r_{s}^{h}\right] \sim P^{h}\left(\cdot \mid x_{s}^{h}, a_{s}^{h}\right)} \exp \left(-2 \eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right)
\end{aligned}
$$

Then for all h :

$$
\mathbb{E}_{S_{t-1}} \exp \left(\sum_{s=1}^{t-1} \xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right)=1
$$

Proof. We can prove the proposition by induction. Assume that the equation

$$
\mathbb{E}_{S_{t^{\prime}-1}} \exp \left(\sum_{s=1}^{t^{\prime}-1} \xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right)=1
$$

holds for some $1 \leq t^{\prime}<t$. Then

$$
\begin{aligned}
& \mathbb{E}_{S_{t^{\prime}}} \exp \left(\sum_{s=1}^{t^{\prime}} \xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right) \\
= & \mathbb{E}_{S_{t^{\prime}-1}} \exp \left(\sum_{s=1}^{t^{\prime}-1} \xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right) \mathbb{E}_{\left.f_{t^{\prime} \sim p\left(\cdot \mid S_{t^{\prime}-1}\right.}\right)} \cdot \mathbb{E}_{\zeta_{t^{\prime}} \sim \pi_{f_{t^{\prime}}}} \exp \left(\xi_{t^{\prime}}^{h}\left(f^{h}, f^{h+1}, \zeta_{t^{\prime}}\right)\right) \\
= & \mathbb{E}_{S_{t^{\prime}-1}} \exp \left(\sum_{s=1}^{t^{\prime}-1} \xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right)=1
\end{aligned}
$$

Note that in the derivation, we have used the fact that

$$
\mathbb{E}_{\zeta_{t^{\prime}} \sim \pi_{f_{t^{\prime}}}} \exp \left(\xi_{t^{\prime}}^{h}\left(f^{h}, f^{h+1}, \zeta_{t^{\prime}}\right)\right)=1
$$

The desired result now follows from induction.
The following lemma bounds B_{h} in Lemma 6. This is a key estimate in our analysis.
Lemma 8. Assume $\eta b^{2} \leq 0.4$, then

$$
B_{h} \geq 0.25 \alpha \eta \sum_{s=1}^{t-1} \mathbb{E}_{S_{t-1}} \mathbb{E}_{f \sim \hat{p}_{t}} \mathbb{E}_{\pi_{f_{s}}}\left(\mathcal{E}_{h}\left(f ; x_{s}^{h}, a_{s}^{h}\right)\right)^{2}
$$

Proof. Given any fixed $f \in \mathcal{F}$, we consider the random variable ξ_{s}^{h} in Proposition 4. It follows that

$$
\begin{aligned}
& \mathbb{E}_{f \sim \hat{p}_{t}}\left[\sum_{s=1}^{t-1}-\xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)+\ln \frac{\hat{p}_{t}\left(f^{h}, f^{h+1}\right)}{p_{0}^{h}\left(f^{h}\right) p_{0}^{h+1}\left(f^{h+1}\right)}\right] \\
\geq & \inf _{p} \mathbb{E}_{f \sim p}\left[\sum_{s=1}^{t-1}-\xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)+\ln \frac{p\left(f^{h}, f^{h+1}\right)}{p_{0}^{h}\left(f^{h}\right) p_{0}^{h+1}\left(f^{h+1}\right)}\right] \\
= & -\ln \mathbb{E}_{f}{ }_{f \sim p_{0}^{h}} \mathbb{E}_{f^{h+1} \sim p_{0}^{h+1}} \exp \left(\sum_{s=1}^{t-1} \xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right),
\end{aligned}
$$

In the above derivation, the last equation used the fact that the minimum over p is achieved at

$$
p\left(f^{h}, f^{h+1}\right) \propto p_{0}^{h}\left(f^{h}\right) p_{0}^{h+1}\left(f^{h+1}\right) \exp \left(\sum_{s=1}^{t-1} \xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right)
$$

This implies that

$$
\begin{aligned}
& \mathbb{E}_{S_{t-1}} \mathbb{E}_{f \sim \hat{p}_{t}}\left[\sum_{s=1}^{t-1}-\xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)+\ln \frac{\hat{p}_{t}\left(f^{h}, f^{h+1}\right)}{p_{0}^{h}\left(f^{h}\right) p_{0}^{h+1}\left(f^{h+1}\right)}\right] \\
\geq & \mathbb{E}_{S_{t-1}} \ln \mathbb{E}_{f^{h} \sim p_{0}^{h}} \mathbb{E}_{f^{h+1} \sim p_{0}^{h+1}} \exp \left(\sum_{s=1}^{t-1} \xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right) \\
\geq & -\ln \mathbb{E}_{f^{h} \sim p_{0}^{h}} \mathbb{E}_{f^{h+1} \sim p_{0}^{h+1}} \mathbb{E}_{S_{t-1}} \exp \left(\sum_{s=1}^{t-1} \xi_{s}^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right)=0 .
\end{aligned}
$$

The derivation used the concavity of \log and Proposition 4. Now in the definition of $\xi_{s}^{h}(\cdot)$, We can use Lemma 3 to obtain the bound

$$
\ln \mathbb{E}_{\left[x_{s}^{h+1}, r_{s}^{h}\right] \sim P^{h}\left(\cdot \mid x_{s}^{h}, a_{s}^{h}\right)} \exp \left(-2 \eta \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right) \leq-0.5 \eta\left(\mathcal{E}_{h}\left(f ; x_{s}^{h}, a_{s}^{h}\right)\right)^{2}
$$

which implies the desired result.
The following lemma bounds C_{h} in Lemma 6.
Lemma 9. We have for all $h \geq 1$:

$$
\left.C_{h} \geq-(1-\alpha)\right] \mathbb{E}_{S_{t-1}} \ln \mathbb{E}_{f^{h+1} \sim p_{0}^{h+1}}\left(\mathbb{E}_{f^{h} \sim p_{0}^{h}} \exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right)\right)^{-\alpha /(1-\alpha)}
$$

Proof. We have

$$
\begin{aligned}
& \mathbb{E}_{f \sim \hat{p}_{t}}\left[\alpha \ln \mathbb{E}_{\tilde{f}^{h} \sim p_{0}^{h}} \exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(\tilde{f}^{h}, f^{h+1}, \zeta_{s}\right)\right)+(1-\alpha) \ln \frac{\hat{p}_{t}\left(f^{h+1}\right)}{p_{0}^{h+1}\left(f^{h+1}\right)}\right] \\
\geq & (1-\alpha) \inf _{p^{h}} \mathbb{E}_{f \sim p^{h}}\left[\frac{\alpha}{1-\alpha} \ln \mathbb{E}_{\tilde{f}^{h} \sim p_{0}^{h}} \exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(\tilde{f}^{h}, f^{h+1}, \zeta_{s}\right)\right)+\ln \frac{p^{h}\left(f^{h+1}\right)}{p_{0}^{h+1}\left(f^{h+1}\right)}\right] \\
= & -(1-\alpha) \ln \mathbb{E}_{f^{h+1} \sim p_{0}^{h+1}}\left(\mathbb{E}_{f^{h} \sim p_{0}^{h}} \exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right)\right)^{-\alpha /(1-\alpha)},
\end{aligned}
$$

where the inf over p^{h} is achieved at

$$
p^{h}\left(f^{h+1}\right) \propto p_{0}^{h+1}\left(f^{h+1}\right)\left(\mathbb{E}_{f^{h} \sim p_{0}^{h}} \exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right)\right)^{-\alpha /(1-\alpha)}
$$

This leads to the lemma.
The above bound implies the following estimate of C_{h} in Lemma 6, which is easier to interpret.
Lemma 10. For all $h \geq 1$,

$$
C_{h} \geq-\alpha \eta \epsilon(2 b+\epsilon)(t-1)-\kappa^{h}(\alpha, \epsilon)
$$

Proof. For $f^{h} \in \mathcal{F}_{h}\left(\epsilon, f^{h+1}\right)$, we have

$$
\left|\Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right| \leq\left(\mathcal{E}_{h}\left(f, x_{s}^{h}, a_{s}^{h}\right)\right)^{2}+2 b\left|\mathcal{E}_{h}\left(f, x_{s}^{h}, a_{s}^{h}\right)\right| \leq \epsilon(2 b+\epsilon)
$$

It follows that

$$
\mathbb{E}_{f^{h} \sim p_{0}^{h}} \exp \left(-\eta \sum_{s=1}^{t-1} \Delta L^{h}\left(f^{h}, f^{h+1}, \zeta_{s}\right)\right) \geq p_{0}^{h}\left(\mathcal{F}_{h}\left(\epsilon, f^{h+1}\right)\right) \exp (-\eta(t-1)(2 b+\epsilon) \epsilon)
$$

This implies the bound.

The following result, referred to as the value-function error decomposition in Jiang et al. [2017], is well-known.

Proposition 5 (Jiang et al. [2017]). Given any f_{t}. Let $\zeta_{t}=\left\{\left[x_{t}^{h}, a_{t}^{h}, r_{t}^{h}\right]\right\}_{h \in[H]} \sim \pi_{f_{t}}$ be the trajectory of the greedy policy $\pi_{f_{t}}$, we have

$$
\operatorname{Reg}\left(f_{t}\right)=\mathbb{E}_{\zeta_{t} \sim \pi_{f_{t}}} \sum_{h=1}^{H} \mathcal{E}_{h}\left(f_{t}, x_{t}^{h}, a_{t}^{h}\right)-\Delta f^{1}\left(x^{1}\right)
$$

Equipped with all technical results above, we are ready to state the assemble all parts in the proof of Theorem 2:

Proof of Theorem 2. Let

$$
\delta_{t}^{h}=\lambda \mathcal{E}_{h}\left(f_{t}, x_{t}^{h}, a_{t}^{h}\right)-0.25 \alpha \eta \sum_{s=1}^{t-1} \mathbb{E}_{\pi_{s}}\left(\mathcal{E}_{h}\left(f_{t}, x_{s}^{h}, a_{s}^{h}\right)\right)^{2}
$$

Then from the definition of decoupling coefficient, we obtain

$$
\begin{equation*}
\sum_{t=1}^{T} \mathbb{E}_{S_{t-1}} \mathbb{E}_{f_{t} \sim \hat{p}_{t}} \mathbb{E}_{\zeta_{t} \sim \pi_{f_{t}}} \sum_{h=1}^{H} \delta_{t}^{h} \leq \frac{\lambda^{2}}{\alpha \eta} \operatorname{dc}(\mathcal{F}, M, T, 0.25 \alpha \eta / \lambda) \tag{15}
\end{equation*}
$$

From Proposition 5, we obtain

$$
\begin{aligned}
& \mathbb{E}_{S_{t-1}} \mathbb{E}_{f_{t} \sim \hat{p}_{t}} \lambda \operatorname{Reg}\left(f_{t}\right)-\mathbb{E}_{S_{t-1}} \mathbb{E}_{f_{t} \sim \hat{p}_{t}} \mathbb{E}_{\zeta_{t} \sim \pi_{f_{t}}} \sum_{h=1}^{H} \delta_{t}^{h} \\
= & -\lambda \mathbb{E}_{S_{t-1}} \mathbb{E}_{f_{t} \sim \hat{p}_{t}} \Delta f_{t}^{1}\left(x_{t}^{1}\right)+0.25 \alpha \eta \sum_{h=1}^{H} \sum_{s=1}^{t-1} \mathbb{E}_{S_{t-1}} \mathbb{E}_{f_{t} \sim \hat{p}_{t}} \mathbb{E}_{\pi_{f_{s}}}\left(\mathcal{E}_{h}\left(f_{t}, x_{s}^{h}, a_{s}^{h}\right)\right)^{2} \\
\leq & \mathbb{E}_{S_{t-1}} \mathbb{E}_{f \sim \hat{p}_{t}}\left(\sum_{h=1}^{H} \hat{\Phi}_{t}^{h}(f)-\lambda \Delta f^{1}\left(x^{1}\right)+\ln \hat{p}_{t}(f)\right)+\alpha \eta \epsilon(2 b+\epsilon)(t-1) H+\sum_{h=1}^{H} \kappa^{h}(\alpha, \epsilon) \\
= & \mathbb{E}_{S_{t-1}} \inf _{p} \mathbb{E}_{f \sim p}\left(\sum_{h=1}^{H} \hat{\Phi}_{t}^{h}(f)-\lambda \Delta f^{1}\left(x^{1}\right)+\ln p(f)\right) \\
& +\alpha \eta \epsilon(2 b+\epsilon)(t-1) H+\sum_{h=1}^{H} \kappa^{h}(\alpha, \epsilon) \\
\leq & \lambda \epsilon+\alpha \eta \epsilon(\epsilon+4 \epsilon+2 b)(t-1) H-\sum_{h=1}^{H} \ln p_{0}^{h}\left(\mathcal{F}\left(\epsilon, Q_{h+1}^{\star}\right)\right)+\sum_{h=1}^{H} \kappa^{h}(\alpha, \epsilon) .
\end{aligned}
$$

The first equality used the definition of δ_{t}^{h}. The first inequality used Lemma 6 and Lemma 7 and Lemma 8 and Lemma 10. The second equality used Lemma 1. The second inequality follows from Lemma 4.

By summing over $t=1$ to $t=T$, and use (15), we obtain the desired bound.
We are now ready to prove Theorem 1. Note that

$$
-\ln p_{0}^{h}\left(\mathcal{F}\left(\epsilon, Q_{h+1}^{\star}\right)\right) \leq \kappa^{h}(1, \epsilon)
$$

we have

$$
-\sum_{h=1}^{H} \ln p_{0}^{h}\left(\mathcal{F}\left(\epsilon, Q_{h+1}^{\star}\right)\right)+\sum_{h=1}^{H} \kappa^{h}(\alpha, \epsilon) \leq 2 \kappa(\epsilon) .
$$

By taking $\epsilon=b / T^{\beta}$, we obtain the desired result.

B Proofs for Decoupling Coefficient Bounds

B. 1 Proof of Proposition 1 (Linear MDP)

Proof of Proposition 1. Completeness follows from the fact that the Q function of any policy π is linear for linear MDPs. This follows directly from the Bellman equation.

$$
\begin{aligned}
Q_{h}^{\pi}(x, a)=r^{h}(x, a)+\mathbb{E}_{x^{\prime} \sim P^{h}}\left[V_{h+1}^{\pi}\left(x^{\prime}\right)\right] & =\left\langle\phi(x, a), \theta_{h}\right\rangle+\int_{\mathcal{S}} V_{h+1}^{\pi}\left(x^{\prime}\right)\left\langle\phi(x, a), d \mu_{h}\left(x^{\prime}\right)\right\rangle \\
& =\left\langle\phi(x, a), w_{h}^{\pi}\right\rangle
\end{aligned}
$$

where $w_{h}^{\pi}=\theta_{h}+\int_{\mathcal{S}} V_{h+1}^{\pi}\left(x^{\prime}\right) d \mu_{h}\left(x^{\prime}\right)$. Hence the optimal Q-function is in the function class.
Boundedness follows from $\|\phi(x, a)\| \leq 1$ and $\|f\| \leq(H+1) \sqrt{d}$.
Completeness follows by

$$
\begin{aligned}
{\left[\mathcal{T}_{h}^{\star} f^{h+1}\right](x, a) } & =r^{h}(x, a)+\mathbb{E}_{x^{\prime} \sim P^{h}}\left[\max _{a^{\prime} \in \mathcal{A}} f^{h+1}\left(x^{\prime}, a^{\prime}\right)\right] \\
& =\left\langle\phi(x, a), \theta_{h}\right\rangle+\int_{\mathcal{S}^{\prime} \in \mathcal{A}} \max _{a^{\prime}} f^{h+1}\left(x^{\prime}, a^{\prime}\right)\left\langle\phi(x, a), d \mu_{h}\left(x^{\prime}\right)\right\rangle=\left\langle\phi(x, a), v_{h}^{\pi}\right\rangle
\end{aligned}
$$

where $v_{h}^{\pi}=\theta_{h}+\int_{\mathcal{S}} \max _{a^{\prime} \in \mathcal{A}} f^{h+1}\left(x^{\prime}, a^{\prime}\right) d \mu_{h}\left(x^{\prime}\right)$.
Bounding the decoupling coefficient. By the same argument, the Bellman error is linear

$$
\mathcal{E}_{h}(f ; x, a)=\left\langle\phi(x, a), w^{h}(f)\right\rangle
$$

for some $w^{h}(f) \in \mathbb{R}^{d},\left\|w^{h}(f)\right\| \leq \sqrt{d} H$. Denote $\phi_{s}^{h}=\mathbb{E}_{\pi_{f_{s}}}\left[\phi\left(x^{h}, a^{h}\right)\right]$ and $\Phi_{t}^{h}=\lambda I+$ $\sum_{s=1}^{t} \phi\left(x^{h}, a^{h}\right) \phi\left(x^{h}, a^{h}\right)^{\top}$.

$$
\begin{aligned}
& \mathbb{E}_{\pi_{f_{t}}}\left[\mathcal{E}_{h}\left(f_{t} ; x_{t}^{h}, a_{t}^{h}\right)\right]-\mu \sum_{s=1}^{t-1} \mathbb{E}_{\pi_{f_{s}}}\left[\mathcal{E}_{h}\left(f_{t} ; x_{s}^{h}, a_{s}^{h}\right)^{2}\right] \\
& =w^{h}\left(f_{t}\right)^{\top} \phi_{t}^{h}-\mu w^{h}\left(f_{t}\right)^{\top} \sum_{s=1}^{t-1} \mathbb{E}_{\pi_{f_{s}}}\left[\phi\left(x^{h}, a^{h}\right) \phi\left(x^{h}, a^{h}\right)^{\top}\right] w^{h}\left(f_{t}\right) \\
& \leq w^{h}\left(f_{t}\right)^{\top} \phi_{t}^{h}-\mu w^{h}\left(f_{t}\right)^{\top} \Phi_{t-1}^{h} w^{h}\left(f_{t}\right)+\mu \lambda d H^{2} \\
& \leq \frac{1}{4 \mu}\left(\phi_{t}^{h}\right)^{\top}\left(\Phi_{t-1}^{h}\right)^{-1} \phi_{t}^{h}+\mu \lambda d H^{2}
\end{aligned}
$$

where the first inequality uses Jensen's inequality and the second is GM-AM inequality. Summing over all terms yields

$$
\begin{aligned}
& \sum_{t=1}^{T} \sum_{h=1}^{H}\left[\mathbb{E}_{\pi_{f_{t}}}\left[\mathcal{E}_{h}\left(f_{t} ; x_{t}^{h}, a_{t}^{h}\right)\right]-\mu \sum_{s=1}^{t-1} \mathbb{E}_{\pi_{f_{s}}}\left[\mathcal{E}_{h}\left(f_{t} ; x_{s}^{h}, a_{s}^{h}\right)^{2}\right]\right] \\
& \leq \sum_{h=1}^{H}\left[\frac{\ln \left(\operatorname{det}\left(\Phi_{T}^{h}\right)\right)-d \ln (\lambda)}{4 \mu}+\lambda \mu C_{1} T\right] \\
& \leq H\left(\frac{d \ln (\lambda+T / d)-d \ln (\lambda)}{4 \mu}+\lambda \mu d H^{2} T\right) .
\end{aligned}
$$

Setting $\lambda=\min \left\{1, \frac{1}{4 \mu^{2} H^{2} T}\right\}$ finishes the proof.

B. 2 Proof of Proposition 2 (Generalized Linear Value Functions)

Proof of Proposition 2. We assume w.l.o.g. that $k \leq 1 \leq K$, otherwise we can scale the features and the link function accordingly. By completeness assumption, there exists a $g_{t}^{h} \in \mathcal{F}_{h}$, such that $g_{t}^{h}=\mathcal{T}_{h}^{\star}\left(f_{t}^{h+1}\right)$. The Bellman error is

$$
\mathcal{E}_{h}(f ; x, a)=\sigma\left(\left\langle\phi(s, a), f_{t}^{h}\right)-\mathcal{E}_{h}(f ; x, a)=\sigma\left(\left\langle\phi(s, a), g_{t}^{h}\right) .\right.\right.
$$

By the Lipschitz property, we have for all $s \in[t]$

$$
k\left|\left\langle\phi(x, a), w\left(f_{s}\right)\right\rangle\right| \leq\left|\mathcal{E}_{h}\left(f_{s} ; x, a\right)\right| \leq K\left|\left\langle\phi(x, a), w^{h}\left(f_{s}\right)\right\rangle\right|
$$

for $w^{h}\left(f_{s}\right)=f_{s}^{h}-g_{s}^{h} \in \mathbb{R}^{d}$.
The remaining proof is analogous to the previous one. Denote $\phi_{s}^{h}=\mathbb{E}_{\pi_{f_{s}}}\left[\phi\left(x^{h}, a^{h}\right)\right]$ and $\Phi_{t}^{h}=$ $\lambda I+\sum_{s=1}^{t} \phi\left(x^{h}, a^{h}\right) \phi\left(x^{h}, a^{h}\right)^{\top}$.

$$
\begin{aligned}
& \mathbb{E}_{\pi_{f_{t}}}\left[\mathcal{E}_{h}\left(f_{t} ; x_{t}^{h}, a_{t}^{h}\right)\right]-\mu \sum_{s=1}^{t-1} \mathbb{E}_{\pi_{f_{s}}}\left[\mathcal{E}_{h}\left(f_{t} ; x_{s}^{h}, a_{s}^{h}\right)^{2}\right] \\
& \leq K\left|w^{h}\left(f_{t}\right)^{\top} \phi_{t}^{h}\right|-\mu k^{2} w^{h}\left(f_{t}\right)^{\top} \sum_{s=1}^{t-1} \mathbb{E}_{\pi_{f_{s}}}\left[\phi\left(x^{h}, a^{h}\right) \phi\left(x^{h}, a^{h}\right)^{\top}\right] w^{h}\left(f_{t}\right) \\
& \leq K\left|w^{h}\left(f_{t}\right)^{\top} \phi_{t}^{h}\right|-\mu k^{2} w^{h}\left(f_{t}\right)^{\top} \Phi_{t-1}^{h} w^{h}\left(f_{t}\right)+\lambda \mu k^{2} d H^{2} \\
& \leq \frac{K^{2}}{4 \mu k^{2}}\left(\phi_{t}^{h}\right)^{\top}\left(\Phi_{t-1}^{h}\right)^{-1} \phi_{t}^{h}+\mu k^{2} \lambda d H^{2}
\end{aligned}
$$

where the first inequality uses Jensen's inequality and the second is GM-AM inequality. Summing over all terms yields

$$
\begin{aligned}
& \sum_{t=1}^{T} \sum_{h=1}^{H}\left[\mathbb{E}_{\pi_{f_{t}}}\left[\mathcal{E}_{h}\left(f_{t} ; x_{t}^{h}, a_{t}^{h}\right)\right]-\mu \sum_{s=1}^{t-1} \mathbb{E}_{\pi_{f_{s}}}\left[\mathcal{E}_{h}\left(f_{t} ; x_{s}^{h}, a_{s}^{h}\right)^{2}\right]\right] \\
& \leq \sum_{h=1}^{H} K^{2}\left[\frac{\ln \left(\operatorname{det}\left(\Phi_{T}^{h}\right)\right)-d \ln (\lambda)}{4 \mu k^{2}}+\lambda \mu k^{2} C_{1} T\right] \\
& \leq H K^{2}\left(\frac{d \ln (\lambda+T / d)-d \ln (\lambda)}{4 \mu k^{2}}+\lambda \mu k^{2} d H^{2} T\right) .
\end{aligned}
$$

Setting $\lambda=\min \left\{1, \frac{1}{4 \mu^{2} k^{2} H^{2} T}\right\}$ finishes the proof.

B. 3 Proof of Proposition 3 (Bellman-Eluder dimension Reduction)

We require the following Lemma to prove the reduction of Bellman-Eluder dimension to the decoupling coefficient.
Lemma 11. Let $\mu_{1}, \mu_{2}, \ldots \mu_{t-1}$ denote the measures over $S \times A$ obtained by following the policy induced by $\left(f_{s}\right)_{s=1}^{t-1}$ at stage h and $\left\{\nu_{1}, \ldots, \nu_{M}\right\}$ be the set of unique measures in this set in decreasing order of occurrences and let $\left(N_{i}\right)_{i=1}^{M}$ be the number of times a measure appears in the sequence. If the the ε-Belmman-Eluder Dimension is E and $\left|\mathbb{E}_{x, a \sim \mu_{s}}\left[\mathcal{E}_{h}\left(f_{t} ; x, a\right)\right]\right|>\varepsilon$, then

$$
\begin{aligned}
& \sum_{s=1}^{t-1} \mathbb{E}_{x, a \sim \mu_{s}}\left[\mathcal{E}_{h}\left(f_{t} ; x, a\right)^{2}\right] \geq w_{t}^{h}\left(\mathbb{E}_{x, a \sim \mu_{t}}\left[\mathcal{E}_{h}\left(f_{t} ; x, a\right)\right]\right)^{2} \\
& \text { where } w_{t}^{h}= \begin{cases}N_{i} & \text { if } \mu_{t}=\nu_{i} \wedge i \in[E-1] \\
\left\lceil\frac{\sum_{i=E}^{M} N_{i}}{E}\right\rceil & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proof. If $\mu_{t}=\nu_{i}$, then the statement follows from Jensen's inequality. Otherwise by by the BellmanEluder dimension, for any set $\left(\mu_{i}^{\prime}\right)_{i=1}^{E}$ of pairwise different measures, it holds that

$$
\sum_{i=1}^{E} \mathbb{E}_{x, a \sim \mu_{i}^{\prime}}\left[\mathcal{E}_{h}\left(f_{t} ; x, a\right)^{2}\right] \geq\left(\mathbb{E}_{x, a \sim \mu_{t}}\left[\mathcal{E}_{h}\left(f_{t} ; x, a\right)\right]\right)^{2}
$$

It remains to show that we can construct at least $\left\lceil\frac{\sum_{i=E}^{M} N_{i}}{E}\right\rceil$ sets of E pairwise different measures. This follows trivially by selecting sets greedily from the largest remaining duplicates of measures.

Equipped with this lemma, we can now present the proof of Proposition 3:

Proof of Proposition 3. Denote $\epsilon_{t, s}^{h}=\mathbb{E}_{\left[x_{s}^{h}, a_{s}^{h}\right]}\left[\mathcal{E}_{h}\left(f_{t} ; x, a\right)\right]$, the LHS is

$$
\sum_{t=1}^{T} \sum_{h=1}^{H} \epsilon_{t t}^{h} \leq E H+\epsilon T H+\sum_{t=E+1}^{T} \sum_{h=1}^{H} \epsilon_{t t}^{h} \mathbb{I}\left\{\epsilon_{t t}^{h}>\epsilon\right\}
$$

For any $h \in[H]$, the RHS is bounded by Jensen's inequality, AM-GM inequality and CauchySchwarz

$$
\begin{aligned}
\mu \sum_{t=1}^{T} \sum_{s=1}^{t-1} \epsilon_{t s}^{h^{2}}+\frac{2 E(1+\ln (T))}{4 \mu} & \geq \sqrt{2 E(1+\ln (T)) \sum_{t=E+1}^{T} w_{t}^{h} \epsilon_{t t}^{h} \mathbb{I}_{\{ }\left\{\epsilon_{t t}^{h}>\epsilon\right\}} \\
& \geq \sqrt{\frac{2 E(1+\ln (T))}{\sum_{t=E+1}^{T} \frac{1}{w_{t}^{h}}} \sum_{t=E+1}^{T} \epsilon_{t t}^{h} \mathbb{I}\left\{\epsilon_{t t}^{h}>\epsilon\right\}}
\end{aligned}
$$

Finally we need to bound the sum of weights $\sum_{t=1}^{T} \frac{1}{w_{t}^{h}}$, which are defined in Lemma 11. Every time the measure μ_{t} is in the set of the $E-1$ most common measures, one of the counts N_{i} for $i \in[E-1]$ increases. Otherwise the count $\sum_{i \geq E} N_{i}$ increases by 1 . Hence

$$
\sum_{t=1}^{T} \frac{1}{w_{t}^{h}} \leq \sum_{i=1}^{E-1} \sum_{t=1}^{T} \frac{1}{t}+\sum_{t=1}^{T} \frac{E}{t} \leq 2 E(1+\ln (T))
$$

