A Method reference

In this section, we list the methods considered in this work in two forms: a form with momentum and correction terms and a form with the auxiliary iterates. The momentum and correction terms of an iteration are loosely defined as

$$
x_{k+1}=x_{k}^{+}+\underbrace{a_{k}\left(x_{k}^{+}-x_{k-1}^{+}\right)}_{\text {momentum term }}+\underbrace{b_{k}\left(x_{k}^{+}-x_{k}\right)}_{\text {correction term }} .
$$

In the proximal-point and prox-grad setup, similar definitions are made with the x_{k}° and x_{k}^{\oplus} terms. One of our main points is that the form with the auxiliary iterates has the advantage of better revealing the parallel and collinear structure, although the form with momentum and correction terms is more commonly presented in the accelerated methods literature. We separate the tables into existing methods and the novel methods we present.

A. 1 Existing Methods

Method name	With momentum	With auxiliary iterates
FGM [57]	$x_{k+1}=x_{k}^{+}+\frac{\theta_{k}-1}{\theta_{k+1}}\left(x_{k}^{+}-x_{k-1}^{+}\right)$ for $k=0,1, \ldots$, where $x_{-1}^{+}:=x_{0}, \theta_{0}=1$, and $\theta_{k+1}=$ $\frac{1+\sqrt{1+4 \theta_{k}^{2}}}{2}$ for $k=0,1, \ldots$	$\begin{aligned} x_{k} & =\frac{\theta_{k-1}^{2}}{\theta_{k}^{2}} x_{k-1}^{+}+\left(1-\frac{\theta_{k-1}^{2}}{\theta_{k}^{2}}\right) z_{k} \\ z_{k+1} & =z_{k}-\theta_{k} \frac{1}{L} \nabla f\left(x_{k}\right) \end{aligned}$ for $k=0,1, \ldots$, where $z_{0}=x_{0}$ and $\theta_{-1}=0$
OGM [29, 44]	$\begin{aligned} & \qquad x_{k+1}=x_{k}^{+}+\frac{\theta_{k}-1}{\theta_{k+1}}\left(x_{k}^{+}-x_{k-1}^{+}\right) \\ & \quad+\frac{\theta_{k}}{\theta_{k+1}}\left(x_{k}^{+}-x_{k}\right) \\ & \text { for } k=0,1, \ldots, K-1, \text { where } x_{-1}^{+}:=x_{0}, \theta_{0}=1, \\ & \theta_{k+1}=\frac{1+{\sqrt{1+4 \theta_{k}^{2}}}_{2}^{2}}{} \text { for } k=0,1, \ldots, K-1, \text { and } \theta_{K}= \\ & \frac{1+{\sqrt{1+8 \theta_{K-1}^{2}}}_{2}^{2}}{} \end{aligned}$	$\begin{aligned} x_{k} & =\frac{\theta_{k-1}^{2}}{\theta_{k}^{2}} x_{k-1}^{+}+\left(1-\frac{\theta_{k-1}^{2}}{\theta_{k}^{2}}\right) z_{k} \\ z_{k+1} & =z_{k}-2 \theta_{k} \frac{1}{L} \nabla f\left(x_{k}\right) \end{aligned}$ for $k=0,1, \ldots, K$, where $z_{0}=x_{0}$ and $\theta_{-1}=0$
OGM-G [47]	$\begin{gathered} x_{k+1}=x_{k}^{+}+\frac{\left(\theta_{k}-1\right)\left(2 \theta_{k+1}-1\right)}{\theta_{k}\left(2 \theta_{k}-1\right)}\left(x_{k}^{+}-x_{k-1}^{+}\right) \\ +\frac{2 \theta_{k+1}-1}{2 \theta_{k}-1}\left(x_{k}^{+}-x_{k}\right) \end{gathered}$ for $k=0,1, \ldots, K-1$, where $x_{-1}^{+}:=x_{0}, \theta_{K}=1$, $\theta_{k}=\frac{1+\sqrt{1+4 \theta_{k+1}^{2}}}{2}$ for $k=1,2, \ldots, K-1$, and $\theta_{0}=$ $\frac{1+\sqrt{1+8 \theta_{1}^{2}}}{2}$	$\begin{aligned} x_{k} & =\frac{\theta_{k+1}^{4}}{\theta_{k}^{4}} x_{k-1}^{+}+\left(1-\frac{\theta_{k+1}^{4}}{\theta_{k}^{4}}\right) z_{k} \\ z_{k+1} & =z_{k}-\theta_{k} \frac{1}{L} \nabla f\left(x_{k}\right) \end{aligned}$ for $k=0,1, \ldots, K-1$, where $z_{0}=x_{0}$ and $z_{1}=z_{0}-$ $\frac{\theta_{0}+1}{2} \frac{1}{L} \nabla f\left(x_{0}\right)$
$\begin{gathered} \text { SC-FGM } \\ {[60,(2.2 .22)]} \end{gathered}$	$x_{k+1}=x_{k}^{+}+\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\left(x_{k}^{+}-x_{k-1}^{+}\right)$ for $k=0,1, \ldots$, where $\kappa=\frac{L}{\mu}$ and $x_{-1}^{+}:=x_{0}$	$\begin{aligned} x_{k} & =\frac{\sqrt{\kappa}}{\sqrt{\kappa}+1} x_{k-1}^{+}+\frac{1}{\sqrt{\kappa}+1} z_{k} \\ z_{k+1} & =\frac{1}{\sqrt{\kappa}} x_{k}^{++}+\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}} z_{k} \end{aligned}$ for $k=0,1, \ldots$, where $z_{0}=x_{0}$
non-stationary SC-FGM [19, §4.5]	$\begin{gathered} x_{k+1}=x_{k}^{+}+\alpha_{k}\left(x_{k}^{+}-x_{k-1}^{+}\right) \\ \text {where } \kappa=\frac{L}{\mu}, x_{-1}^{+}:=x_{0}, A_{0}=0, A_{1}=\left(1-\kappa^{-1}\right)^{-1} \\ A_{k+2}=\frac{2 A_{k+2}+1+\sqrt{4 A_{k+1}+4 \kappa^{-1} A_{k+1}^{2}+1}}{2\left(1-\kappa^{-1}\right)}, \text { and } \\ \alpha_{k}=\frac{\left(A_{k+2}-A_{k+1}\right)\left(A_{k+1}\left(1-\kappa^{-1}\right)-A_{k}-1\right)}{A_{k+2}\left(2 \kappa^{-1} A_{k+1}+1\right)-\kappa^{-1} A_{k+1}^{2}} \text { for } k=0,1, \ldots \end{gathered}$	$\begin{aligned} x_{k} & =\left(1-\gamma_{k}\right) x_{k-1}^{+}+\gamma_{k} z_{k} \\ z_{k+1} & =\kappa^{-1} \delta_{k} x_{k}^{++}+\left(1-\kappa^{-1} \delta_{k}\right) z_{k} \end{aligned}$ for $k=0,1, \ldots$ where $z_{0}=x_{0}$, $\gamma_{k}=\frac{\left(A_{k+1}-A_{k}\right)\left(1+\kappa^{-1} A_{k}\right)}{A_{k+1}+2 \kappa^{-1} A_{k} A_{k+1}-\kappa^{-1} A_{k}^{2}} \text {, and } \delta_{k}=\frac{A_{k+1}-A_{k}}{1+\kappa^{-1} A_{k+1}}$ $\text { for } k=0,1, \ldots$

Method name	With momentum	With auxiliary iterates																					
SC-OGM [63]	$\begin{aligned} x_{k+1}=x_{k}^{+}+ & \frac{\kappa-1}{\sqrt{8 \kappa+1}+2+\kappa}\left(x_{k}^{+}-x_{k-1}^{+}\right) \\ & +\frac{\kappa-1}{\sqrt{8 \kappa+1}+2+\kappa}\left(x_{k}^{+}-x_{k}\right) \end{aligned}$ for $k=0,1, \ldots$, where $\kappa=\frac{L}{\mu}$ and $x_{-1}^{+}:=x_{0}$	$\begin{aligned} x_{k}= & \frac{\sqrt{8 \kappa+1}+3}{2(\sqrt{8 \kappa+1}+2+\kappa)} x_{k-1}^{+} \\ & \quad+\frac{\sqrt{8 \kappa+1}+1+2 \kappa}{2(\sqrt{8 \kappa+1}+2+\kappa)} z_{k} \\ z_{k+1}= & \frac{\sqrt{1+8 \kappa}+5-2 \kappa}{\sqrt{1+8 \kappa}+3} x_{k}^{++}+\frac{2 \kappa-2}{\sqrt{1+8 \kappa}+3} z_{k} \end{aligned}$ for $k=0,1, \ldots$, where $z_{0}=x_{0}$																					
TMM [78]	$\begin{aligned} x_{k+1}=x_{k}^{+}+ & \frac{(\sqrt{\kappa}-1)^{2}}{\sqrt{\kappa}(\sqrt{\kappa}+1)}\left(x_{k}^{+}-x_{k-1}^{+}\right) \\ & +\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}}\left(x_{k}^{+}-x_{k}\right) \end{aligned}$ for $k=0,1, \ldots$, where $x_{-1}^{+}:=x_{0}$ and $\kappa=\frac{L}{\mu}$	$\begin{aligned} x_{k} & =\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1} x_{k-1}^{+}+\frac{2}{\sqrt{\kappa}+1} z_{k} \\ z_{k+1} & =\frac{1}{\sqrt{\kappa}} x_{k}^{++}+\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}} z_{k} \end{aligned}$ for $k=0,1, \ldots$, where $z_{0}=x_{0}$																					
Geometric descent [13, 30]	$\begin{aligned} z_{0} & =x_{0}^{++}, R_{0}^{2}= \\ \lambda_{k+1} & =\underset{\lambda \in \mathbb{R}}{\arg \min } f((1 \\ x_{k+1} & =\left(1-\lambda_{k+1}\right) z_{1} \end{aligned}$ If $\frac{\mid \nabla f\left(x_{k}\right) \\|^{2}}{\mu^{2}}<\frac{R_{k}^{2}}{2}$, $\begin{aligned} z_{k+1} & =x_{k+1}^{++} \\ R_{k+1}^{2} & =\\| \nabla f \end{aligned}$ If $\frac{\left\\|\nabla f\left(x_{k}\right)\right\\|^{2}}{\mu^{2}} \geq \frac{R_{k}^{2}}{2}$, $\begin{aligned} z_{k+1} & =\left(1-\frac{R_{k}^{2}+\left\\|x_{k+1}-z_{k}\right\\|}{2\left\\|x_{k+1}^{++}-z_{k}\right\\|^{2}}\right. \\ R_{k+1}^{2} & =R_{k}^{2}-\frac{\left\\|\nabla f\left(x_{k}\right)\right\\|^{2}}{\mu^{2} \kappa}-\left(\frac{1}{1}\right. \end{aligned}$	$\left.\begin{array}{l} \left(\begin{array}{l} \left.1-\frac{1}{\kappa}\right) \frac{\left\\|\nabla f\left(x_{0}\right)\right\\|^{2}}{\mu^{2}} \\ \left.-\lambda) c_{t}+\lambda x_{k}^{+}\right) \\ +\lambda_{k+1} x_{k}^{+} \end{array}\right. \\ \left(x_{k+1}\right) \\|^{2} / \mu^{2} \\ 1-\kappa^{-1} \end{array} \quad \begin{array}{l} 2, z_{k}+\frac{R_{k}^{2}+\left\\|x_{k+1}-z_{k}\right\\|^{2}}{2\left\\|x_{k+1}^{++}-z_{k}\right\\|^{2}} x_{k+1}^{++} \\ 2_{k}^{2}+\left\\|x_{k+1}-z_{k}\right\\|^{2} \\ 2\left\\|x_{k+1}^{++}-z_{k}\right\\|^{2} \end{array}\right)^{2} .$																					
ITEM [73]		$\begin{gathered} x_{k}=\gamma_{k} x_{k-1}^{+}+\left(1-\gamma_{k}\right) z_{k} \\ z_{k+1}=\kappa^{-1} \delta_{k} x_{k}^{++}+\left(1-\kappa^{-1} \delta_{k}\right) z_{k} \\ \text { for } k=0,1, \ldots, \text { where } z_{0}=x_{0}, A_{0}=0, \kappa=\frac{L}{\mu}, \\ \gamma_{k}=\frac{A_{k}}{\left(1-\kappa^{-1}\right) A_{k+1}} \text { and } \delta_{k}=\frac{\left(1-\kappa^{-1}\right)^{2} A_{k+1}-\left(1+\kappa^{-1}\right) A_{k}}{1+\kappa^{-1}+\kappa^{-1} A_{k}} \\ \text { for } k=0,1, \ldots \end{gathered}$																					
ISTA [20]	$x_{k+1}=x_{k}^{\oplus}$	for $k=0,1, \ldots$																					

Method name	With momentum	With auxiliary iterates
FISTA [11]	$x_{k+1}=x_{k}^{\oplus}+\frac{\theta_{k}-1}{\theta_{k+1}}\left(x_{k}^{\oplus}-x_{k-1}^{\oplus}\right)$ for $k=0,1, \ldots$, where $x_{-1}^{\oplus}:=x_{0}, \theta_{0}=1$, and $\theta_{k+1}=$ $\frac{1+\sqrt{1+4 \theta_{k}^{2}}}{2}$ for $k=0,1, \ldots$	$\begin{aligned} x_{k} & =\frac{\theta_{k-1}^{2}}{\theta_{k}^{2}} x_{k-1}^{\oplus}+\left(1-\frac{\theta_{k-1}^{2}}{\theta_{k}^{2}}\right) z_{k} \\ z_{k+1} & =z_{k}-\theta_{k} \frac{1}{L} \tilde{\nabla}_{L} F\left(x_{k}\right) \end{aligned}$ for $k=0,1, \ldots$, where $z_{0}=x_{0}$
FPGM-m [45]	$\begin{aligned} & x_{k+1}=x_{k}^{\oplus}+\frac{\theta_{k}-1}{\theta_{k+1}}\left(x_{k}^{\oplus}-\right. \\ & x_{k+1}=x_{k}^{\oplus} \quad \text { for } m \leq k \leq \end{aligned}$ where $x_{-1}^{\oplus}:=x_{0}, \theta_{0}=1$, and $\theta_{k+1}=$	-1) for $0 \leq k \leq m-1$ $\frac{\sqrt{1+4 \theta_{k}^{2}}}{2}$ for $k=0,1, \ldots, m-1$
Güler 1 [37]	$x_{k+1}=x_{k}^{\circ}+\frac{\theta_{k}-1}{\theta_{k+1}}\left(x_{k}^{\circ}-x_{k-1}^{\circ}\right)$ for $k=0,1, \ldots$, where $x_{-1}^{\circ}:=x_{0}, \theta_{0}=1$, and $\theta_{k+1}=$ $\frac{1+\sqrt{1+4 \theta_{k}^{2}}}{2}$ for $k=0,1, \ldots$	$\begin{aligned} x_{k} & =\frac{\theta_{k-1}^{2}}{\theta_{k}^{2}} x_{k-1}^{\circ}+\left(1-\frac{\theta_{k-1}^{2}}{\theta_{k}^{2}}\right) z_{k} \\ z_{k+1} & =z_{k}-\theta_{k} \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right) \end{aligned}$ for $k=0,1, \ldots$, where $z_{0}=x_{0}$ and $\theta_{-1}=0$
Güler 2 [37]	$x_{k+1}=x_{k}^{\circ}+\frac{\theta_{k}-1}{\theta_{k+1}}\left(x_{k}^{\circ}-x_{k-1}^{\circ}\right)+\frac{\theta_{k}}{\theta_{k+1}}\left(x_{k}^{\circ}-x_{k}\right)$ for $k=0,1, \ldots$, where $x_{-1}^{\circ}:=x_{0}, \theta_{0}=1$, and $\theta_{k+1}=$ $\frac{1+\sqrt{1+4 \theta_{k}^{2}}}{2}$ for $k=0,1, \ldots$	$\begin{aligned} x_{k} & =\frac{\theta_{k-1}^{2}}{\theta_{k}^{2}} x_{k-1}^{\circ}+\left(1-\frac{\theta_{k-1}^{2}}{\theta_{k}^{2}}\right) z_{k} \\ z_{k+1} & =z_{k}-2 \theta_{k} \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right) \end{aligned}$ for $k=0,1, \ldots$, where $z_{0}=x_{0}$ and $\theta_{-1}=0$

A. 2 Novel methods

Method name	With momentum	With auxiliary iterates
FISTA-G	$\begin{aligned} & x_{k+1}=x_{k}^{\oplus}+\frac{\varphi_{k+1}-\varphi_{k+2}}{\varphi_{k}-\varphi_{k+1}}\left(x_{k}^{\oplus}-x_{k-1}^{\oplus}\right) \\ & \text { for } k=0,1, \ldots, K-1 \text {, where } x_{-1}^{\oplus}:=x_{0}, \varphi_{K+1}=0, \\ & \varphi_{K}=1, \text { and } \\ & \varphi_{k}=\frac{\varphi_{k+2}^{2}-\varphi_{k+1} \varphi_{k+2}+2 \varphi_{k+1}^{2}+\left(\varphi_{k+1}-\varphi_{k+2}\right) \sqrt{\varphi_{k+2}^{2}+3 \varphi_{k+1}^{2}}}{\text { for } k=0,1, \ldots, K-1} \varphi_{k+1+\varphi_{k+2}} \end{aligned}$	$\begin{aligned} x_{k} & =\frac{\varphi_{k+1}}{\varphi_{k}} x_{k-1}^{\oplus}+\left(1-\frac{\varphi_{k+1}}{\varphi_{k}}\right) z_{k} \\ z_{k+1} & =z_{k}-\frac{\varphi_{k}}{\varphi_{k}-\varphi_{k+1}} \frac{1}{L} \tilde{\nabla}_{L} F\left(x_{k}\right) \end{aligned}$ for $k=0,1, \ldots, K$, where $z_{0}=x_{0}$
G-FISTA-G	$\begin{aligned} & x_{k+1}= x_{k}^{\oplus}+\frac{\varphi_{k+1}-\varphi_{k+2}}{\varphi_{k}-\varphi_{k+1}}\left(x_{k}^{\oplus}-x_{k-1}^{\oplus}\right) \\ & \quad+\frac{\varphi_{k+1}-\varphi_{k+2}}{\varphi_{k+1}}\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}-\frac{\varphi_{k}}{\varphi_{k}-\varphi_{k+1}}\right)\left(x_{k}^{\oplus}-x_{k}\right) \\ & \text { for } k=0,1, \ldots, K-1, \text { where } x_{-1}^{\oplus}:=x_{0}, \\ & \tau_{K}=\varphi_{K}=1, \varphi_{K+1}=0, \text { and }\left\{\varphi_{k}\right\}_{k=0}^{K-1} \text { and the } \\ & \text { nondecreasing nonnegative sequence }\left\{\tau_{k}\right\}_{k=0}^{K=1} \text { satisfying } \\ & \tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}=\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)+\frac{1}{} \\ & \text { and }\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)\left(\tau_{k+1}-\tau_{k}\right)-\frac{\tau_{k+1}}{2} \leq 0 \\ & \text { for } k=0,1, \ldots, K-1 \end{aligned}$	$\begin{aligned} x_{k} & =\frac{\varphi_{k+1}}{\varphi_{k}} x_{k-1}^{\oplus}+\left(1-\frac{\varphi_{k+1}}{\varphi_{k}}\right) z_{k} \\ z_{k+1} & =z_{k}-\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right) \frac{1}{L} \tilde{\nabla}_{L} F\left(x_{k}\right) \end{aligned}$ for $k=0,1, \ldots, K$, where $z_{0}=x_{0}$
FGM-G	$\begin{gathered} x_{k+1}=x_{k}^{+}+\frac{\varphi_{k+1}-\varphi_{k+2}}{\varphi_{k}-\varphi_{k+1}}\left(x_{k}^{+}-x_{k-1}^{+}\right) \\ \text {for } k=0,1, \ldots, K-1 \text {, where } x_{-1}^{+}:=x_{0}, \varphi_{K+1}=0, \\ \varphi_{K}=1, \text { and } \\ \varphi_{k}=\frac{\varphi_{k+2}^{-}-\varphi_{k+1} \varphi_{k+2}+2 \varphi_{k+1}^{2}+\left(\varphi_{k+1}-\varphi_{k+2}\right) \sqrt{\varphi_{k+2}^{2}+3 \varphi_{k+1}^{2}}}{\varphi_{k+1}+\varphi_{k+2}} \end{gathered}$ $\text { for } k=0,1, \ldots, K-1$	$\begin{aligned} x_{k} & =\frac{\varphi_{k+1}}{\varphi_{k}} x_{k-1}^{+}+\left(1-\frac{\varphi_{k+1}}{\varphi_{k}}\right) z_{k} \\ z_{k+1} & =z_{k}-\frac{\varphi_{k}}{\varphi_{k}-\varphi_{k+1}} \frac{1}{L} \nabla f\left(x_{k}\right) \end{aligned}$ for $k=0,1, \ldots, K$, where $z_{0}=x_{0}$
G-FGM-G	$\begin{aligned} & x_{k+1}= x_{k}^{+}+\frac{\varphi_{k+1}-\varphi_{k+2}}{\varphi_{k}-\varphi_{k+1}}\left(x_{k}^{+}-x_{k-1}^{+}\right) \\ & \quad+\frac{\varphi_{k+1}-\varphi_{k+2}}{\varphi_{k+1}}\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}-\frac{\varphi_{k}}{\varphi_{k}-\varphi_{k+1}}\right)\left(x_{k}^{+}-x_{k}\right) \\ & \text { for } k=0,1, \ldots, K-1 \text { where } x_{-1}^{+}:=x_{0}, \tau_{K}=\varphi_{K}=1, \\ & \varphi_{K+1}=0 \text {, and }\left\{\varphi_{k}\right\}_{k=1}^{K-1} \text { and the nondecreasing nonneg- } \\ & \text { ative sequence }\left\{\tau_{k}\right\}_{k=0}^{K=1} \text { satisfying } \\ & \tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}=\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)+1 \text { and } \\ &\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)\left(\tau_{k+1}-\tau_{k}\right)-\tau_{k+1} \leq 0 \text { for } \\ & k=0,1, \ldots, K-1 \end{aligned}$	$\begin{aligned} x_{k} & =\frac{\varphi_{k+1}}{\varphi_{k}} x_{k-1}^{+}+\left(1-\frac{\varphi_{k+1}}{\varphi_{k}}\right) z_{k} \\ z_{k+1} & =z_{k}-\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right) \frac{1}{L} \nabla f\left(x_{k}\right) \end{aligned}$ for $k=0,1, \ldots, K$, where $z_{0}=x_{0}$
Güler-G	$\begin{gathered} x_{k+1}=x_{k}^{\circ}+\frac{\left(\theta_{k}-1\right)\left(2 \theta_{k+1}-1\right)}{\theta_{k}\left(2 \theta_{k}-1\right)}\left(x_{k}^{\circ}-x_{k-1}^{\circ}\right) \\ +\frac{2 \theta_{k+1}-1}{2 \theta_{k}-1}\left(x_{k}^{\circ}-x_{k}\right) \\ \text { for } k=0,1, \ldots, K-1, \text { where } x_{-1}^{\circ}:=x_{0}, \theta_{K}=1, \text { and } \\ \theta_{k}=\frac{1+\sqrt{1+4 \theta_{k+1}^{2}}}{2} \text { for } k=0,1, \ldots, K-1 \end{gathered}$	$\begin{aligned} x_{k} & =\frac{\theta_{k+1}^{4}}{\theta_{k}^{4}} x_{k-1}^{\circ}+\left(1-\frac{\theta_{k+1}^{4}}{\theta_{k}^{4}}\right) z_{k} \\ z_{k+1} & =z_{k}-\theta_{k} \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right) \end{aligned}$ for $k=0,1, \ldots, K$, where $z_{0}=x_{0}$ and $\theta_{K+1}=0$

Method name	With momentum	With auxiliary iterates
G-Güler-G	$\begin{aligned} x_{k+1} & =x_{k}^{\circ}+\frac{\varphi_{k+1}-\varphi_{k+2}}{\varphi_{k}-\varphi_{k+1}}\left(x_{k}^{\circ}-x_{k-1}^{\circ}\right) \\ & +\frac{\varphi_{k+1}-\varphi_{k+2}}{\varphi_{k+1}}\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}-\frac{\varphi_{k}}{\varphi_{k}-\varphi_{k+1}}\right)\left(x_{k}^{\circ}-x_{k}\right) \end{aligned}$ for $k=0,1, \ldots, K-1$ where $x_{-1}^{\circ}:=x_{0}, \tau_{K}=\varphi_{K}=1$, $\varphi_{K+1}=0$, and $\left\{\varphi_{k}\right\}_{k=0}^{K-1}$ and the nondecreasing nonnegative sequence $\left\{\tau_{k}\right\}_{k=0}^{K-1}$ satisfying $\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}=\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)+1$ and $\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)\left(\tau_{k+1}-\tau_{k}\right)-\tau_{k+1} \leq 0$ for $k=$ $0,1, \ldots, K-1$	$\begin{aligned} x_{k} & =\frac{\varphi_{k+1}}{\varphi_{k}} x_{k-1}^{\circ}+\left(1-\frac{\varphi_{k+1}}{\varphi_{k}}\right) z_{k} \\ z_{k+1} & =z_{k}-\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right) \frac{1}{L} \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right) \end{aligned}$ for $k=0,1, \ldots, K$, where $z_{0}=x_{0}$
Proximal -TMM	$\begin{array}{r} x_{k+1}=x_{k}^{\circ}+\frac{(\sqrt{q}-1)^{2}}{\sqrt{q}+1}\left(x_{k}^{\circ}-x_{k-1}^{\circ}\right) \\ +(1-\sqrt{q})\left(x_{k}^{\circ}-x_{k}\right) \end{array}$ for $k=0,1, \ldots$, where $x_{-1}^{\circ}:=x_{0}$ and $q=\frac{\lambda \mu}{\lambda \mu+1}$	$\begin{aligned} & \qquad \qquad \begin{array}{l} x_{k}=\frac{1-\sqrt{q}}{1+\sqrt{q}} x_{k-1}^{\circ}+\left(1-\frac{1-\sqrt{q}}{1+\sqrt{q}}\right) z_{k} \\ z_{k+1}=\sqrt{q} x_{k}^{\circ \circ}+(1-\sqrt{q}) z_{k} \end{array} \\ & \text { for } k=0,1, \ldots \text {, where } x_{k}^{\circ \circ}=x_{k}-\left(\lambda+\frac{1}{\mu}\right) \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right), \\ & \text { and } x_{-1}^{\circ}=x_{0}=z_{0} \text { for } k=0,1, \ldots \end{aligned}$
Proximal -ITEM	$\begin{aligned} & \quad x_{k+1}=x_{k}^{\circ}+\alpha_{k}\left(x_{k}^{\circ}-x_{k-1}^{\circ}\right)+\beta_{k}\left(x_{k}^{\circ}-x_{k}\right) \\ & \text { for } k=0,1, \ldots, \text { where } q=\frac{\lambda \mu}{\lambda \mu+1}, x_{-1}^{\circ}:=x_{0}, A_{0}=0, \\ & A_{1}=(1-q)^{-1}, \\ & A_{k+2}=\frac{(1+q) A_{k+1}+2\left(1+\sqrt{\left(1+A_{k+1}\right)\left(1+q A_{k+1}\right)}\right.}{(1-q)^{2}}, \\ & \alpha_{k}=\frac{\left(2(1+q)+q(3+q) A_{k}+(1-q)^{2} q A_{k+1}\right)\left((1-q) A_{k+2}-A_{k+1}\right) A_{k}}{2(1-q)\left(1+q+q A_{k}\right)\left((1-q) A_{k+1}-A_{k}\right) A_{k+2}}, \\ & \text { and } \beta_{k}=\frac{\left(q A_{k}^{2}+2(1-q) A_{k+1}+(1-q) q A_{k} A_{k+1}\right)\left((1-q) A_{k+2}-A_{k+1}\right)}{2\left(1+q+q A_{k}\right)\left((1-q) A_{k+1}-A_{k}\right) A_{k+2}} \\ & \text { for } k=0,1, \ldots \end{aligned}$	$\begin{aligned} x_{k} & =\gamma_{k} x_{k-1}^{\circ}+\left(1-\gamma_{k}\right) z_{k} \\ z_{k+1} & =q \delta_{k} x_{k}^{\circ \circ}+\left(1-q \delta_{k}\right) z_{k} \end{aligned}$ for $k=0,1, \ldots$, where $z_{0}=x_{0}, x_{k}^{\circ \circ}=x_{k}-$ $\left(\lambda+\frac{1}{\mu}\right) \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right), \quad \gamma_{k}=\frac{A_{k}}{(1-q) A_{k+1}}$, and $\delta_{k}=$ $\frac{(1-q)^{2} A_{k+1}-(1+q) A_{k}}{2\left(1+q+q A_{k}\right)}$ for $k=0,1, \ldots$

B Omitted proofs of geometric observation and form of algorithm

In this section, we formally establish the basic geometric claims made in the main body.
First, we state parallel lemma (left) and Menelaus's lemma (right), which are classical results in Euclidean geometry:

$\overline{B C} \| \overline{B^{\prime} C^{\prime}}$ if and only if $\frac{\overline{A B}}{\overline{B B^{\prime}}}=\frac{\overline{A C}}{\overline{C C^{\prime}}} \quad \quad A^{\prime}, B^{\prime}, C^{\prime}$ is on line if and only if $\frac{\overline{A^{\prime} B}}{\overline{A A^{\prime}}} \cdot \frac{\overline{B^{\prime} C}}{\overline{B B^{\prime}}} \cdot \frac{\overline{C^{\prime} A}}{\overline{C C^{\prime}}}=1$

B. 1 Omitted proofs of observations

Proof of Observation 1 Figure 1 (left) depicts the plane of iteration of FGM. In the plane of iteration of FGM,

$$
\frac{\left\|x_{k}-x_{k-1}^{+}\right\|}{\left\|z_{k}-x_{k}\right\|}=\frac{1}{\theta_{k}-1}=\frac{1}{\frac{\theta_{k}-1}{\theta_{k+1}}+\frac{\left(\theta_{k}-1\right)\left(\theta_{k+1}-1\right)}{\theta_{k+1}}}=\frac{\left\|x_{k}^{+}-x_{k-1}^{+}\right\|}{\left\|x_{k+1}-x_{k}^{+}\right\|+\left\|z_{k+1}-x_{k+1}\right\|}=\frac{\left\|x_{k}^{+}-x_{k-1}^{+}\right\|}{\left\|z_{k+1}-x_{k}^{+}\right\|}
$$

by definition of z_{k}, x_{k+1}, z_{k+1}. Then the result comes from parallel lemma
Proof of Observation 2. Figure 1 (middle) depicts the plane of iteration of OGM. By extending $\overline{x_{k-1}^{+} x_{k}^{+}}$and defining new point B that meets with $\overleftrightarrow{z_{k} z_{k+1}}$, observation can also be shown by parallel lemma

Proof of Observation 3. Figure 2 (left) depicts the plane of iteration of SC-FGM. Apply Menelaus's lemma for $\triangle x_{k-1}^{+} x_{k} x_{k}^{+}$and $z_{k} z_{k+1} x_{k}^{++}$, that

$$
\frac{\left\|z_{k}-x_{k-1}^{+}\right\|}{\left\|z_{k}-x_{k}\right\|} \cdot \frac{\left\|z_{k+1}-x_{k}^{+}\right\|}{\left\|z_{k+1}-x_{k-1}^{+}\right\|} \cdot \frac{\left\|x_{k}^{++}-x_{k}\right\|}{\left\|x_{k}^{++}-x_{k}^{+}\right\|}=\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}} \cdot \frac{\sqrt{\kappa}-1}{\sqrt{\kappa}} \cdot \frac{\frac{1}{\mu}}{\frac{1}{\mu}-\frac{1}{L}}=1 .
$$

Proof of Observation 4 Figure 2 (middle) depicts the plane of iteration of TMM. By extending $\overline{x_{k}^{+} x_{k+1}}$ and defining new point Q that meets with $\overleftrightarrow{x_{k-1}^{+} x_{k}}$, Observation 4 can be shown by Menelaus's lemma for $\triangle Q x_{k} x_{k}^{+}$and $\overline{z_{k} z_{k+1} x_{k}^{++}}$.

B. 2 Parallel structure from momentum-based iteration

Lemma 1. An iteration of the form

$$
x_{k+1}=x_{k}^{+}+\frac{a_{k}-1}{a_{k+1}}\left(x_{k}^{+}-x_{k-1}^{+}\right)+b_{k+1}\left(x_{k}^{+}-x_{k}\right)
$$

Figure 5: Lemma 1 and Lemma 2
for $k=0,1, \ldots, K-1$, where $1 \leq a_{0}, 1<a_{k}$ for $k=1,2, \ldots, K-1$, and $1 \leq a_{K}$, can be equivalently expressed as

$$
\begin{aligned}
x_{k} & =\frac{\varphi_{k-1}}{\varphi_{k}} x_{k-1}^{+}+\left(1-\frac{\varphi_{k-1}}{\varphi_{k}}\right) z_{k} \\
z_{k+1} & =z_{k}-\frac{a_{k}+a_{k+1} b_{k+1}}{L} \nabla f\left(x_{k}\right)
\end{aligned}
$$

for $k=0,1, \ldots, K$, where $0=\varphi_{-1}, 0<\varphi_{k}, \frac{a_{k}-1}{a_{k}}=\frac{\varphi_{k-1}}{\varphi_{k}}$ for $k=1,2, \ldots, K$, and $\varphi_{K} \leq \infty$. (If $\varphi_{K}=\infty$, we define $\varphi_{K-1} / \varphi_{K}=0$.)

Proof. First, suppose x_{k} is not a minimizer which implies $\nabla f\left(x_{k}\right) \neq 0$ and neither $x_{k-1}^{+}, x_{k}, z_{k}$ are not the same. From first iteration of algorithm with auxiliary iterates, we know $x_{k-1}^{+}, x_{k}, z_{k}$ are collinear. Set A on the $\overleftarrow{x_{k-1}^{+} x_{k}^{+}}$that $\overline{A x_{k+1}} \| \overrightarrow{x_{k} x_{k}^{+}}$. Let B on the $\overleftarrow{x_{k}^{+} A}$ that $\overline{z_{k} B} \| \overrightarrow{x_{k} x_{k}^{+}}$. Lastly, we set $z_{k+1}:=\overleftrightarrow{z_{k} B} \cap \overleftrightarrow{x_{k}^{+} x_{k+1}}$ Then, the condition for parallel term style is satisfied. We will show that the formula above also holds.

Since $\overline{x_{k} x_{k}^{+}} \| \overline{z_{k} B}$, parallel lemma indicates that

$$
\frac{\left\|z_{k}-x_{k}\right\|}{\left\|x_{k}-x_{k-1}^{+}\right\|}=\frac{\left\|B-x_{k}^{+}\right\|}{\left\|x_{k}^{+}-x_{k-1}^{+}\right\|}=\frac{\varphi_{k-1}}{\varphi_{k}-\varphi_{k-1}}
$$

Since $\overline{A x_{k+1}} \| \overline{B z_{k+1}}$, parallel lemma indicates that

$$
\frac{\left\|z_{k+1}-x_{k}^{+}\right\|}{\left\|x_{k+1}-x_{k}^{+}\right\|}=\frac{\left\|B-x_{k}^{+}\right\|}{\left\|A-x_{k}^{+}\right\|}=\frac{\varphi_{k+1}}{\varphi_{k+1}-\varphi_{k}}
$$

Then,

$$
\frac{\left\|A-x_{k}^{+}\right\|}{\left\|x_{k}^{+}-x_{k-1}^{+}\right\|}=\frac{a_{k}-1}{a_{k+1}}=\frac{\varphi_{k+1}-\varphi_{k}}{\varphi_{k+1}} \cdot \frac{\varphi_{k-1}}{\varphi_{k}-\varphi_{k-1}}
$$

and this relation holds if $a_{k+1}=\frac{\varphi_{k+1}}{\varphi_{k+1}-\varphi_{k}} \Longleftrightarrow \frac{a_{k+1}-1}{a_{k+1}}=\frac{\varphi_{k}}{\varphi_{k+1}}$. (This strong condition is for easy Lyapunov analysis).
Lastly, by parallel lemma and previous condition,

$$
z_{k+1}-B=\frac{\left\|z_{k+1}-x_{k}^{+}\right\|}{\left\|x_{k+1}-x_{k}^{+}\right\|}\left(x_{k+1}-A\right)=a_{k+1} b_{k+1}\left(x_{k}^{+}-x_{k}\right)
$$

since $\left\|x_{k+1}-A\right\|=b_{k+1}\left\|x_{k}^{+}-x_{k}\right\|$ and

$$
B-z_{k}=\frac{\left\|z_{k}-x_{k-1}^{+}\right\|}{\left\|x_{k}-x_{k-1}^{+}\right\|}\left(x_{k}^{+}-x_{k}\right)=a_{k}\left(x_{k}^{+}-x_{k}\right)
$$

which indicates

$$
z_{k+1}=z_{k}-\left(a_{k}+a_{k+1} b_{k+1}\right) \frac{1}{L} \nabla f\left(x_{k}\right)
$$

If x_{k} is a minimizer which implies $\nabla f\left(x_{k}\right)=0$ and $z_{k+1}-z_{k}=x_{k}^{+}-x_{k}=0$, this is degenerate case. In this case, proof is trivial.

Lemma 2. An iteration of the form

$$
\begin{aligned}
x_{k} & =\frac{\varphi_{k-1}}{\varphi_{k}} x_{k-1}^{+}+\left(1-\frac{\varphi_{k-1}}{\varphi_{k}}\right) z_{k} \\
z_{k+1} & =z_{k}-\frac{\phi_{k}}{L} \nabla f\left(x_{k}\right)
\end{aligned}
$$

for $k=0,1, \ldots, K$, where $\left\{\varphi_{k}\right\}_{k=-1}^{K}$ is a nonnegative increasing sequence, can be equivalently expressed as

$$
x_{k+1}=x_{k}^{+}+\frac{\varphi_{k+1}-\varphi_{k}}{\varphi_{k+1}} \cdot \frac{\varphi_{k-1}}{\varphi_{k}-\varphi_{k-1}}\left(x_{k}^{+}-x_{k-1}^{+}\right)+\frac{\varphi_{k+1}-\varphi_{k}}{\varphi_{k+1}}\left(\phi_{k}-\frac{\varphi_{k}}{\varphi_{k}-\varphi_{k-1}}\right)\left(x_{k}^{+}-x_{k}\right)
$$

for $k=0,1, \ldots, K$.
Proof. Suppose x_{k} is not a minimizer which implies $\nabla f\left(x_{k}\right) \neq 0$. Set A on the $\overleftarrow{x_{k-1}^{+} x_{k}^{+}}$that $\overline{A x_{k+1}} \| \overline{x_{k} x_{k}^{+}}$. Let B on the $\overleftarrow{x_{k-1}^{+} x_{k}^{+}} \cap \overline{z_{k} z_{k+1}}$. Since $\overline{x_{k} x_{k}^{+}} \| \overline{z_{k} B}$ and $\overline{A x_{k+1}} \| \overline{B z_{k+1}}$,

$$
\begin{aligned}
A-x_{k}^{+} & =\left(B-x_{k}^{+}\right)-(B-A)=\left(B-x_{k}^{+}\right)-\frac{\varphi_{k}}{\varphi_{k+1}}\left(B-x_{k}^{+}\right) \\
& =\frac{\varphi_{k+1}-\varphi_{k}}{\varphi_{k+1}}\left(B-x_{k}^{+}\right)=\frac{\varphi_{k+1}-\varphi_{k}}{\varphi_{k+1}} \cdot \frac{\varphi_{k-1}}{\varphi_{k}-\varphi_{k-1}}\left(x_{k}^{+}-x_{k-1}^{+}\right)
\end{aligned}
$$

In addition, since $\overline{x_{k} x_{k}^{+}} \| \overline{z_{k} B}$ and $\overline{A x_{k+1}} \| \overline{B z_{k+1}}$,

$$
\begin{aligned}
x_{k+1}-A & =\frac{\varphi_{k+1}-\varphi_{k}}{\varphi_{k+1}}\left(z_{k+1}-B\right)=\frac{\varphi_{k+1}-\varphi_{k}}{\varphi_{k+1}}\left(\left(z_{k+1}-z_{k}\right)-\left(B-z_{k}\right)\right) \\
& =\frac{\varphi_{k+1}-\varphi_{k}}{\varphi_{k+1}}\left(\phi_{k}\left(x_{k}^{+}-x_{k}\right)-\frac{\varphi_{k}}{\varphi_{k}-\varphi_{k-1}}\left(x_{k}^{+}-x_{k}\right)\right) \\
& =\frac{\varphi_{k+1}-\varphi_{k}}{\varphi_{k+1}}\left(\phi_{k}-\frac{\varphi_{k}}{\varphi_{k}-\varphi_{k-1}}\right)\left(x_{k}^{+}-x_{k}\right) .
\end{aligned}
$$

If x_{k} is a minimizer which implies $\nabla f\left(x_{k}\right)=0$ and $z_{k+1}-z_{k}=x_{k}^{+}=x_{k}=0$, this is degenerate case. In this case, proof is trivial.

By Lemmas 1 and 2, there is a correspondence between the two algorithm forms.

Figure 6: Lemma 3 and Lemma 4

B. 3 Collinear structure from momentum-based iteration

Lemma 3. An iteration of the form

$$
x_{k+1}=x_{k}^{+}+a_{k}\left(x_{k}^{+}-x_{k-1}^{+}\right)+b_{k}\left(x_{k}^{+}-x_{k}\right),
$$

where $0<a_{k}$ and $0 \leq b_{k}$, for $k=0,1, \ldots$ can be equivalently expressed as

$$
\begin{aligned}
x_{k} & =\left(1-\varphi_{k}\right) x_{k-1}^{+}+\varphi_{k} z_{k} \\
z_{k+1} & =\left(1-\frac{a_{k} \varphi_{k}}{\left(1-\varphi_{k}\right) \varphi_{k+1}}\right) x_{k}^{++}+\frac{a_{k} \varphi_{k}}{\left(1-\varphi_{k}\right) \varphi_{k+1}} z_{k}
\end{aligned}
$$

for $k=0,1, \ldots$, where $\varphi_{k+1}=\left(a_{k}+b_{k}\right) \cdot \frac{\mu}{L-\mu}+\frac{a_{k} \varphi_{k}}{1-\varphi_{k}} \cdot \frac{L}{L-\mu}$, provided that $1>\varphi_{k}>0$ for $k=0,1, \ldots$
Proof. Suppose x_{k} is not a minimizer which implies $\nabla f\left(x_{k}\right) \neq 0$ and neither $x_{k-1}^{+}, x_{k}, z_{k}$ are not the same. From first iteration of algorithm with auxiliary iterates, we know $x_{k-1}^{+}, x_{k}, z_{k}$ are collinear. We inductively set z_{k}, and we set $Q:=\overleftrightarrow{x_{k-1}^{+} x_{k}} \cap \overleftrightarrow{x_{k}^{+} x_{k+1}}$ and $z_{k+1}:=\overleftrightarrow{x_{k}^{+} x_{k+1}} \cap \stackrel{x_{k}^{++} z_{k}}{\longleftrightarrow}$. Set A on the $\overleftrightarrow{x_{k-1}^{+} x_{k}^{+}}$that $\overrightarrow{A x_{k+1}}$ is parallel to $\overline{x_{k} x_{k}^{+}}$. Set $R:=\overleftrightarrow{x_{k-1}^{+} z_{k}} \cap \overline{A x_{k+1}}$. Set P on the $\overleftrightarrow{x_{k-1}^{+} z_{k}}$ that $\overline{P z_{k+1}}$ is parallel to $\overline{x_{k} x_{k}^{+}}$.
By parallel lemma

$$
\frac{\left\|x_{k}^{+}-x_{k}\right\|}{\|A-R\|}=\frac{\left\|x_{k}^{+}-x_{k-1}^{+}\right\|}{\left\|A-x_{k-1}^{+}\right\|}=\frac{1}{1+a_{k}}
$$

and

$$
\frac{\left\|x_{k}^{+}-x_{k}\right\|}{\left\|x_{k+1}-R\right\|}=\frac{\left\|x_{k}^{+}-x_{k}\right\|}{\left\|x_{k+1}-A\right\|+\|A-R\|}=\frac{1}{1+a_{k}+b_{k}} .
$$

Then, we have

$$
\frac{\left\|x_{k}-Q\right\|}{\left\|R-x_{k}\right\|}=\frac{\left\|x_{k}^{+}-x_{k}\right\|}{\left\|R-x_{k+1}\right\|-\left\|x_{k}^{+}-x_{k}\right\|}=\frac{1}{a_{k}+b_{k}}
$$

and

$$
\frac{\left\|x_{k}-x_{k-1}^{+}\right\|}{\left\|x_{k}-Q\right\|}=\frac{\left\|x_{k}-x_{k-1}^{+}\right\|}{\left\|R-x_{k}\right\|} \cdot \frac{\left\|R-x_{k}\right\|}{\left\|x_{k}-Q\right\|}=\frac{\left\|x_{k}-x_{k-1}^{+}\right\|}{\left\|R-x_{k}\right\|} \cdot \frac{\left\|A-x_{k}^{+}\right\|}{\left\|x_{k}^{+}-x_{k-1}^{+}\right\|}=\frac{a_{k}+b_{k}}{a_{k}} .
$$

Also parallel lemma implies

$$
\frac{\left\|R-x_{k}\right\|}{\|P-R\|}=\frac{\left\|x_{k+1}-x_{k}^{+}\right\|}{\left\|z_{k+1}-x_{k+1}\right\|}=\frac{\varphi_{k+1}}{1-\varphi_{k+1}}
$$

Applying Menelaus's lemma to $\triangle Q x_{k} x_{k}^{+}$and $\overline{z_{k} z_{k+1} x_{k}^{++}}$,

$$
\frac{\left\|z_{k+1}-x_{k}^{+}\right\|}{\left\|z_{k+1}-Q\right\|} \cdot \frac{\left\|x_{k}^{++}-x_{k}\right\|}{\left\|x_{k}^{++}-x_{k}^{+}\right\|} \cdot \frac{\left\|z_{k}-Q\right\|}{\left\|z_{k}-x_{k}\right\|}=1
$$

Using $\frac{\left\|z_{k+1}-x_{k}^{+}\right\|}{\left\|z_{k+1}-Q\right\|}=\frac{\left\|P-x_{k}\right\|}{\|P-Q\|}, \frac{\left\|x_{k}^{++}-z_{k+1}\right\|}{\left\|z_{k+1}-z_{k}\right\|}=\frac{\left\|z_{k}-P\right\|}{\left\|P-x_{k}\right\|}$, and previous formula, we get

$$
\varphi_{k+1}=\left(a_{k}+b_{k}\right) \cdot \frac{\mu}{L-\mu}+\frac{a_{k} \varphi_{k}}{1-\varphi_{k}} \cdot \frac{L}{L-\mu}
$$

Furthermore, parallel lemma and $\frac{\left\|z_{k}-x_{k}\right\|}{\left\|x_{k}-x_{k-1}^{+}\right\|}=\frac{1-\varphi_{k}}{\varphi_{k}}$ implies

$$
\frac{\left\|x_{k}-x_{k-1}^{+}\right\|}{\left\|R-x_{k}\right\|}=\frac{\left\|x_{k}^{+}-x_{k-1}^{+}\right\|}{\left\|A-x_{k}^{+}\right\|}=\frac{1}{a_{k}}
$$

and

$$
\frac{\|P-R\|}{\left\|z_{k}-P\right\|}=\frac{a_{k} \frac{1-\varphi_{k+1}}{\varphi_{k+1}}}{\frac{1-\varphi_{k}}{\varphi_{k}}-a_{k}\left(\frac{1-\varphi_{k+1}}{\varphi_{k+1}}+1\right)} .
$$

Therefore, we have

$$
\frac{\left\|x_{k}^{++}-z_{k+1}\right\|}{\left\|z_{k+1}-z_{k}\right\|}=\frac{\left\|P-x_{k}\right\|}{\left\|z_{k}-P\right\|}=\frac{\frac{a_{k}}{\varphi_{k+1}}}{\frac{1-\varphi_{k}}{\varphi_{k}}-\frac{a_{k}}{\varphi_{k+1}}}=\frac{a_{k} \varphi_{k}}{\left(1-\varphi_{k}\right) \varphi_{k+1}-a_{k} \varphi_{k}} .
$$

If x_{k} is a minimizer which implies $\nabla f\left(x_{k}\right)=0$ and $z_{k+1}=z_{k}=x_{k}^{++}$, this is degenerate case. In this case, proof is trivial.
Lemma 4. An iteration of the form

$$
\begin{aligned}
x_{k} & =\left(1-\varphi_{k}\right) x_{k-1}^{+}+\varphi_{k} z_{k} \\
z_{k+1} & =\left(1-\phi_{k}\right) x_{k}^{++}+\phi_{k} z_{k},
\end{aligned}
$$

where $0<\varphi_{k}$ and $0<\phi_{k}$, for $k=0,1, \ldots$ can be equivalently expressed as

$$
x_{k+1}=\frac{\left(1-\varphi_{k}\right) \varphi_{k+1} \phi_{k}}{\varphi_{k}}\left(x_{k}^{+}-x_{k-1}^{+}\right)+\frac{\varphi_{k+1}\left((\kappa-1)\left(1-\phi_{k}\right) \varphi_{k}-\phi_{k}\right)}{\varphi_{k}}\left(x_{k}^{+}-x_{k}\right)
$$

for $k=0,1, \ldots$.
Proof. Suppose x_{k} is not a minimizer which implies $\nabla f\left(x_{k}\right) \neq 0$. Set A on the $\overleftrightarrow{x_{k-1}^{+} x_{k}^{+}}$that $\overline{A x_{k+1}} \| \overline{x_{k} x_{k}^{+}}$. Set P on the $\overleftrightarrow{x_{k-1}^{+} z_{k}}$ that $\overrightarrow{P z_{k+1}} \| \overrightarrow{x_{k} x_{k}^{+}}$. Set $N:=\overleftrightarrow{x_{k}^{+} A} \cap \overleftrightarrow{P z_{k+1}}$. Lastly, set $R:=\overleftrightarrow{x_{k-1}^{+} z_{k}} \cap \overleftrightarrow{A x_{k+1}}$.
By parallel lemma we have

$$
\frac{\left\|P-x_{k}\right\|}{\left\|z_{k}-P\right\|}=\frac{\left\|x_{k}^{++}-z_{k+1}\right\|}{\left\|z_{k+1}-z_{k}\right\|}=\frac{\phi_{k}}{1-\phi_{k}}
$$

and

$$
\frac{\left\|R-x_{k}\right\|}{\|P-R\|}=\frac{\left\|x_{k+1}-x_{k}^{+}\right\|}{\left\|z_{k+1}-x_{k+1}\right\|}=\frac{\varphi_{k+1}}{1-\varphi_{k+1}} .
$$

Also $\frac{\left\|x_{k}-x_{k-1}^{+}\right\|}{\left\|z_{k}-x_{k}\right\|}=\frac{\varphi_{k}}{1-\varphi_{k}}$ and previous formula implies

$$
\frac{\left\|x_{k}-x_{k-1}^{+}\right\|}{\left\|P-x_{k}\right\|}=\frac{\varphi_{k}}{\phi_{k}\left(1-\varphi_{k}\right)}
$$

and

$$
\frac{\left\|x_{k}-x_{k-1}^{+}\right\|}{\left\|R-x_{k}\right\|}=\frac{\varphi_{k}}{\left(1-\varphi_{k}\right) \varphi_{k+1} \phi_{k}}
$$

Furthermore, we get

$$
A-x_{k}^{+}=\frac{\left\|A-x_{k}^{+}\right\|}{\left\|x_{k}^{+}-x_{k-1}^{+}\right\|}\left(x_{k}^{+}-x_{k-1}^{+}\right)=\frac{\left\|R-x_{k}\right\|}{\left\|x_{k}-x_{k-1}^{+}\right\|}\left(x_{k}^{+}-x_{k-1}^{+}\right)=\frac{\left(1-\varphi_{k}\right) \varphi_{k+1} \phi_{k}}{\varphi_{k}}\left(x_{k}^{+}-x_{k-1}^{+}\right)
$$

By parallel lemma we have

$$
\frac{\left\|x_{k}^{++}-x_{k}\right\|}{\left\|z_{k+1}-P\right\|}=\frac{\left\|x_{k}^{++}-z_{k}\right\|}{\left\|z_{k+1}-z_{k}\right\|}=\frac{1}{1-\phi_{k}}
$$

and

$$
\frac{\|N-P\|}{\left\|x_{k}^{+}-x_{k}\right\|}=\frac{\left\|P-x_{k-1}^{+}\right\|}{\left\|x_{k}-x_{k-1}^{+}\right\|}=\frac{\varphi_{k}+\left(1-\varphi_{k}\right) \phi_{k}}{\varphi_{k}}
$$

Using $\frac{\left\|x_{k}^{+}-x_{k}\right\|}{\left\|x_{k}^{++}-x_{k}\right\|}=\frac{1}{\kappa}$,

$$
\frac{\left\|z_{k+1}-P\right\|}{\left\|x_{k}^{+}-x_{k}\right\|}=\kappa\left(1-\phi_{k}\right)
$$

and previous formula implies

$$
\frac{\left\|z_{k+1}-N\right\|}{\left\|x_{k}^{+}-x_{k}\right\|}=\frac{\left\|z_{k+1}-P\right\|-\|N-P\|}{\left\|x_{k}^{+}-x_{k}\right\|}=\frac{(\kappa-1)\left(1-\phi_{k}\right) \varphi_{k}-\phi_{k}}{\varphi_{k}} .
$$

Finally, we get

$$
x_{k+1}-A=\frac{\left\|z_{k+1}-N\right\|}{\left\|x_{k}^{+}-x_{k}\right\|} \frac{\left\|x_{k+1}-A\right\|}{\left\|z_{k+1}-N\right\|}\left(x_{k}^{+}-x_{k}\right)=\frac{\varphi_{k+1}\left((\kappa-1)\left(1-\phi_{k}\right) \varphi_{k}-\phi_{k}\right)}{\varphi_{k}}\left(x_{k}^{+}-x_{k}\right) .
$$

If x_{k} is a minimizer which implies $\nabla f\left(x_{k}\right)=0$ and $z_{k+1}=z_{k}=x_{k}^{++}$, this is degenerate case. In this case, proof is trivial.

By Lemmas 3 and 4 there is a correspondence between the two algorithm forms.

C OGM-G analysis

Using Lemma 1. we can write OGM-G [47] as

$$
\begin{aligned}
x_{k} & =\frac{\theta_{k+1}^{4}}{\theta_{k}^{4}} x_{k-1}^{+}+\left(1-\frac{\theta_{k+1}^{4}}{\theta_{k}^{4}}\right) z_{k} \\
z_{k+1} & =z_{k}-\frac{\theta_{k}}{L} \nabla f\left(x_{k}\right),
\end{aligned}
$$

where $z_{0}=x_{0}$ and $z_{1}=z_{0}-\frac{\theta_{0}+1}{2 L} \nabla f\left(x_{0}\right)$ for $k=1,2, \ldots K$.
Theorem 5. Consider $\left(\mathbb{P}\right.$ with $g=0$. OGM-G's x_{K} exhibits the rate

$$
\left\|\nabla f\left(x_{K}\right)\right\|^{2} \leq \frac{2 L}{\theta_{0}^{2}}\left(f\left(x_{0}\right)-f_{\star}\right) \leq \frac{4 L}{(K+1)^{2}}\left(f\left(x_{0}\right)-f_{\star}\right)
$$

Proof. For $k=1,2, \ldots, K$, define

$$
\begin{aligned}
& U_{k}=\frac{1}{\theta_{k}^{2}}\left(\frac{1}{2 L}\left\|\nabla f\left(x_{K}\right)\right\|^{2}+\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|^{2}+f\left(x_{k}\right)-f\left(x_{K}\right)-\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{k-1}^{+}\right\rangle\right) \\
&+\frac{L}{\theta_{k}^{4}}\left\langle z_{k}-x_{k-1}^{+}, z_{k}-x_{K}^{+}\right\rangle
\end{aligned}
$$

and

$$
U_{0}=\frac{2}{\theta_{0}^{2}}\left(\frac{1}{2 L}\left\|\nabla f\left(x_{K}\right)\right\|^{2}+f\left(x_{0}\right)-f\left(x_{K}\right)\right)
$$

We can show that $\left\{U_{k}\right\}_{k=0}^{K}$ is nonincreasing. Using $\frac{1}{2 L}\left\|\nabla f\left(x_{K}\right)\right\|^{2} \leq f\left(x_{K}\right)-f\left(x_{K}^{+}\right) \leq f\left(x_{K}\right)-f_{\star}$, which follows from L-smoothness, we conclude with the rate

$$
\frac{1}{L}\left\|\nabla f\left(x_{K}\right)\right\|^{2}=U_{K} \leq U_{0} \leq \frac{2}{\theta_{0}^{2}}\left(f\left(x_{0}\right)-f_{\star}\right)
$$

and the bound $\theta_{0} \geq \frac{K+1}{\sqrt{2}}$ [47, Theorem 6.1]. Now, we complete the proof by showing that $\left\{U_{k}\right\}_{k=0}^{K}$ is nonincreasing. As we already showed $U_{1} \geq U_{2} \geq \cdots \geq U_{K}$ in Section 3.2, all that remains is to show $U_{0} \geq U_{1}$:

$$
\begin{aligned}
U_{0}- & U_{1} \\
=- & \frac{1}{\theta_{1}^{2}} f\left(x_{1}\right)+\frac{2}{\theta_{0}^{2}} f\left(x_{0}\right)+\left(\frac{1}{\theta_{1}^{2}}-\frac{2}{\theta_{0}^{2}}\right) f\left(x_{K}\right)-\frac{1}{\theta_{1}^{2}} \frac{1}{2 L}\left\|\nabla f\left(x_{1}\right)\right\|^{2}-\left(\frac{1}{\theta_{1}^{2}}-\frac{2}{\theta_{0}^{2}}\right) \frac{1}{2 L}\left\|\nabla f\left(x_{K}\right)\right\|^{2} \\
& +\frac{1}{\theta_{1}^{2}}\left\langle\nabla f\left(x_{1}\right), x_{1}-x_{0}^{+}\right\rangle-\frac{L}{\theta_{1}^{4}}\left\langle z_{1}-x_{0}^{+}, z_{1}-x_{K}^{+}\right\rangle \\
= & -\frac{1}{\theta_{1}^{2}}\left(f\left(x_{1}\right)-f\left(x_{0}\right)-\left\langle\nabla f\left(x_{1}\right), x_{1}-x_{0}^{+}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{1}\right)\right\|^{2}+\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2}\right) \\
& \quad-\left(\frac{1}{\theta_{1}^{2}}-\frac{2}{\theta_{0}^{2}}\right)\left(f\left(x_{0}\right)-f\left(x_{K}\right)-\left\langle\nabla f\left(x_{0}\right), x_{0}-x_{K}^{+}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2}+\frac{1}{2 L}\left\|\nabla f\left(x_{K}\right)\right\|^{2}\right) \\
& \quad+\left(\frac{1}{\theta_{1}^{2}}-\frac{1}{\theta_{0}^{2}}\right) \frac{1}{L}\left\|\nabla f\left(x_{0}\right)\right\|^{2}-\left(\frac{1}{\theta_{1}^{2}}-\frac{2}{\theta_{0}^{2}}\right)\left\langle\nabla f\left(x_{0}\right), x_{0}-x_{K}^{+}\right\rangle-\frac{L}{\theta_{1}^{4}}\left\langle z_{1}-x_{0}^{+}, z_{1}-x_{K}^{+}\right\rangle \\
\geq & \left(\frac{1}{\theta_{1}^{2}}-\frac{1}{\theta_{0}^{2}}\right) \frac{1}{L}\left\|\nabla f\left(x_{0}\right)\right\|^{2}-\left(\frac{1}{\theta_{1}^{2}}-\frac{2}{\theta_{0}^{2}}\right)\left\langle\nabla f\left(x_{0}\right), x_{0}-x_{K}^{+}\right\rangle-\frac{L}{\theta_{1}^{4}}\left\langle z_{1}-x_{0}^{+}, z_{1}-x_{K}^{+}\right\rangle \\
= & \frac{\theta_{0}+1}{\theta_{0}^{2}\left(\theta_{0}-1\right)} \frac{1}{L}\left\|\nabla f\left(x_{0}\right)\right\|^{2}-\frac{1}{\theta_{1}^{2} \theta_{0}}\left\langle\nabla f\left(x_{0}\right), x_{0}-x_{K}^{+}\right\rangle-\frac{L}{\theta_{1}^{4}}\left\langle z_{1}-x_{0}^{+}, z_{1}-x_{K}^{+}\right\rangle \\
= & 0
\end{aligned}
$$

where the inequality follows from the cocoercivity inequalities.

D Several preliminary inequalities

Lemma 5 ([60, (2.1.11)]). If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and L-smooth, then

$$
\begin{aligned}
& f(x)-f(y)+\langle\nabla f(x), y-x\rangle+\frac{1}{2 L}\|\nabla f(x)-\nabla f(y)\|^{2} \leq 0 \quad \forall x, y \in \mathbb{R}^{n} \\
& f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|x-y\|^{2} \quad \forall x, y \in \mathbb{R}^{n}
\end{aligned}
$$

Lemma 6. If $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is μ-strongly convex, then for all $u \in \partial g(x)$,

$$
g(x)+\langle u, y-x\rangle+\frac{\mu}{2}\|x-y\|^{2} \leq g(y) \quad \forall x, y \in \mathbb{R}^{n}
$$

Lemma 7 ([11, lemma 2.2]). Consider (P) in the prox-grad setup. Then for some $u \in \partial g\left(x^{\oplus}\right)$,

$$
\tilde{\nabla}_{L} F(x)=\nabla f(x)+u \quad \forall x \in \mathbb{R}^{n}
$$

Proof. Optimality condition for strongly convex function implies that there exist $u \in \partial g\left(x^{\oplus}\right)$ such that $\nabla f(x)+u+L\left(x^{\oplus}-x\right)=0$.

Lemma $8([45),(2.8)])$. Consider (P) in the prox-grad setup. Then for some $v \in \partial F\left(x^{\oplus}\right)$,

$$
\|v\| \leq 2\left\|\tilde{\nabla}_{L} F(x)\right\| \quad \forall x \in \mathbb{R}^{n}
$$

Proof. By Lemma 7, $\tilde{\nabla}_{L} F(x)=\nabla f(x)+u$ for some $u \in \partial g\left(x^{\oplus}\right)$. And there exist $v \in \partial F\left(x^{\oplus}\right)$ such that $v=\nabla f\left(x^{\oplus}\right)+u$. Thus we have

$$
\begin{align*}
\|v\| & \leq\left\|\nabla f\left(x^{\oplus}\right)-\nabla f(x)\right\|+\|\nabla f(x)+u\| \tag{1}\\
& \leq\left\|L\left(x-x^{\oplus}\right)\right\|+\left\|\tilde{\nabla}_{L} F(x)\right\| \tag{2}\\
& =2\left\|\tilde{\nabla}_{L} F(x)\right\| \tag{3}
\end{align*}
$$

(1) follows from triangle inequality and (2) follows from L-smootheness of f, and (3) follows from the definition of $\tilde{\nabla}_{L} F(x)$.

Lemma 9 ([59, Theorem 1]). Consider (P) in the prox-grad setup. Then

$$
\frac{1}{2 L}\left\|\tilde{\nabla}_{L} F(x)\right\|^{2} \leq F(x)-F\left(x^{\oplus}\right) \quad \forall x \in \mathbb{R}^{n}
$$

Proof. By Lemma 7 , for some $u \in \partial g\left(x^{\oplus}\right)$, we have

$$
\begin{align*}
F\left(x^{\oplus}\right) & \leq f(x)+\left\langle\nabla f(x), x^{\oplus}-x\right\rangle+\frac{L}{2}\left\|x^{\oplus}-x\right\|^{2}+g\left(x^{\oplus}\right) \tag{4}\\
& \leq f(x)+\left\langle L\left(x-x^{\oplus}\right)-u, x^{\oplus}-x\right\rangle+\frac{L}{2}\left\|x^{\oplus}-x\right\|^{2}+g\left(x^{\oplus}\right) \tag{5}\\
& =f(x)+g\left(x^{\oplus}\right)+\left\langle u, x-x^{\oplus}\right\rangle-\frac{L}{2}\left\|x^{\oplus}-x\right\|^{2} \\
& \leq F(x)-\frac{L}{2}\left\|x^{\oplus}-x\right\|^{2}=F(x)-\frac{1}{2 L}\left\|\tilde{\nabla}_{L} F(x)\right\|^{2} \tag{6}
\end{align*}
$$

(4) follows from L-smootheness of $f, 5$ follows from the definition of $\tilde{\nabla}_{L} F(x)$, and 6 follows from convexity of g.

Lemma 10 ([11, lemma 2.3]). Consider (P) in the prox-grad setup. Then

$$
\frac{1}{2 L}\left\|\tilde{\nabla}_{L} F(y)\right\|^{2}-\left\langle y-x, \tilde{\nabla}_{L} F(y)\right\rangle \leq F(x)-F\left(y^{\oplus}\right) \quad \forall x, y \in \mathbb{R}^{n}
$$

Proof. By L-smootheness of f, we have

$$
F\left(y^{\oplus}\right) \leq f(y)+\left\langle\nabla f(y), y^{\oplus}-y\right\rangle+\frac{L}{2}\left\|y^{\oplus}-y\right\|^{2}+g\left(y^{\oplus}\right)
$$

Using convexity of f and g and Lemma 7 for some $u \in \partial g\left(y^{\oplus}\right)$, we have

$$
\begin{aligned}
f(y)+\langle\nabla f(y), x-y\rangle & \leq f(x) \\
g\left(y^{\oplus}\right)+\left\langle u, x-y^{\oplus}\right\rangle & \leq g(x)
\end{aligned}
$$

Summing above three inequality, we obtain the lemma.

E Omitted proofs of Section 2

We present (G-FISTA-G) for the prox-grad setup:

$$
\begin{aligned}
x_{k} & =\frac{\varphi_{k+1}}{\varphi_{k}} x_{k-1}^{\oplus}+\left(1-\frac{\varphi_{k+1}}{\varphi_{k}}\right) z_{k} \\
z_{k+1} & =z_{k}-\frac{\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}}{L} \tilde{\nabla}_{L} F\left(x_{k}\right)
\end{aligned}
$$

for $k=0,1, \ldots, K$, where $z_{0}=x_{0}, L$ is smoothness constant of f, and the nonnegative sequence $\left\{\varphi_{k}\right\}_{k=0}^{K+1}$ and the nondecreasing nonnegative sequence $\left\{\tau_{k}\right\}_{k=0}^{K}$ satisfy $\varphi_{K+1}=0, \varphi_{K}=\tau_{K}=1$, and

$$
\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}=\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)+1, \quad\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)\left(\tau_{k+1}-\tau_{k}\right) \leq \frac{\tau_{k+1}}{2}
$$

for $k=0,1, \ldots, K-1$.
Theorem 6. Consider (P). G-FISTA-G's x_{K} exhibits the rate

$$
\left\|\tilde{\nabla}_{L} F\left(x_{K}\right)\right\|^{2} \leq 2 L \tau_{0}\left(F\left(x_{0}\right)-F_{\star}\right)
$$

Proof. For $k=0,1, \ldots, K$, define

$$
\begin{aligned}
U_{k}=\tau_{k}\left(\frac{1}{2 L}\right. & \left.\left\|\tilde{\nabla}_{L} F\left(x_{k}\right)\right\|^{2}+F\left(x_{k}^{\oplus}\right)-F\left(x_{K}^{\oplus}\right)-\left\langle\tilde{\nabla}_{L} F\left(x_{k}\right), x_{k}-x_{k-1}^{\oplus}\right\rangle\right) \\
& +\frac{L}{\varphi_{k}}\left\langle z_{k}-x_{k-1}^{\oplus}, z_{k}-x_{K}^{\oplus}\right\rangle
\end{aligned}
$$

(Note that $z_{K}=x_{K}$.) By plugging in the definitions and performing direct calculations, we get

$$
U_{K}=\frac{1}{2 L}\left\|\tilde{\nabla}_{L} F\left(x_{k}\right)\right\|^{2} \quad \text { and } \quad U_{0}=\tau_{0}\left(\frac{1}{2 L}\left\|\tilde{\nabla}_{L} F\left(x_{0}\right)\right\|^{2}+F\left(x_{0}^{\oplus}\right)-F\left(x_{K}^{\oplus}\right)\right)
$$

We can show that $\left\{U_{k}\right\}_{k=0}^{K}$ is nonincreasing. Using Lemma 9 , we conclude the rate with

$$
\frac{1}{2 L}\left\|\tilde{\nabla}_{L} F\left(x_{k}\right)\right\|^{2}=U_{K} \leq U_{0} \leq \tau_{0}\left(F\left(x_{0}\right)-F\left(x_{K}^{\oplus}\right)\right) \leq \tau_{0}\left(F\left(x_{0}\right)-F_{\star}\right)
$$

Now we complete the proof by showing that $\left\{U_{k}\right\}_{k=0}^{K}$ is nonincreasing. For $k=0,1, \ldots, K-1$, we have

$$
\begin{aligned}
0 \geq & \tau_{k+1}\left(F\left(x_{k+1}^{\oplus}\right)-F\left(x_{k}^{\oplus}\right)-\left\langle\tilde{\nabla}_{L} F\left(x_{k+1}\right), x_{k+1}-x_{k}^{\oplus}\right\rangle+\frac{1}{2 L}\left\|\tilde{\nabla}_{L} F\left(x_{k+1}\right)\right\|^{2}\right) \\
& +\left(\tau_{k+1}-\tau_{k}\right)\left(F\left(x_{k}^{\oplus}\right)-F\left(x_{K}^{\oplus}\right)-\left\langle\tilde{\nabla}_{L} F\left(x_{k}\right), x_{k}-x_{K}^{\oplus}\right\rangle+\frac{1}{2 L}\left\|\tilde{\nabla}_{L} F\left(x_{k}\right)\right\|^{2}\right) \\
= & \tau_{k+1}\left(\frac{1}{2 L}\left\|\tilde{\nabla}_{L} F\left(x_{k+1}\right)\right\|^{2}+F\left(x_{k+1}^{\oplus}\right)-F\left(x_{K}^{\oplus}\right)-\left\langle\tilde{\nabla}_{L} F\left(x_{k+1}\right), x_{k+1}-x_{k}^{\oplus}\right\rangle\right) \\
& -\tau_{k}\left(\frac{1}{2 L}\left\|\tilde{\nabla}_{L} F\left(x_{k}\right)\right\|^{2}+F\left(x_{k}^{\oplus}\right)-F\left(x_{K}^{\oplus}\right)-\left\langle\tilde{\nabla}_{L} F\left(x_{k}\right), x_{k}-x_{k-1}^{\oplus}\right\rangle\right) \\
& \underbrace{-\left\langle\tilde{\nabla}_{L} F\left(x_{k}\right), \tau_{k+1} x_{k}^{\oplus}-\tau_{k} x_{k-1}^{\oplus}-\left(\tau_{k+1}-\tau_{k}\right) x_{K}^{\oplus}\right\rangle-\tau_{k+1} \frac{1}{2 L}\left\|\tilde{\nabla}_{L} F\left(x_{k}\right)\right\|^{2}}_{:=T}
\end{aligned}
$$

where the inequality follows from the Lemma 10 Finally, we analyze T with the following geometric argument. Let $t \in \mathbb{R}^{n}$ be the projection of x_{K}^{\oplus} onto the plane of iteration. Then,

Figure 7: Plane of iteration of G-FISTA-G

$$
\begin{aligned}
& \frac{1}{L} T \stackrel{(\mathrm{i})}{=}\left\langle\overrightarrow{x_{k} x_{k}^{\oplus}},\left(\tau_{k+1}-\tau_{k}\right) \overrightarrow{t x_{k}^{\oplus}}+\tau_{k} \overrightarrow{x_{k-1}^{\oplus} x_{k}^{\oplus}}-\frac{\tau_{k+1}}{2} \overrightarrow{x_{k} x_{k}^{\oplus}}\right\rangle \\
& \stackrel{\text { (ii) }}{=}\left\langle\overrightarrow{x_{k} x_{k}^{\oplus}},\left(\tau_{k+1}-\tau_{k}\right)\left(\overrightarrow{t z_{k+1}}-\overrightarrow{z_{k} z_{k+1}}-\overrightarrow{x_{k} z_{k}}+\overrightarrow{x_{k} x_{k}^{\oplus}}\right)+\tau_{k}\left(\overrightarrow{x_{k-1}^{\oplus} x_{k}}+\overrightarrow{x_{k} x_{k}^{\oplus}}\right)-\frac{\tau_{k+1}}{2} \overrightarrow{x_{k} x_{k}^{\oplus}}\right\rangle \\
& \stackrel{\text { (iii) }}{=}\left\langle\overrightarrow{x_{k} x_{k}^{\oplus}},\left(\tau_{k+1}-\tau_{k}\right) \overrightarrow{t z_{k+1}}-\left(\tau_{k+1}-\tau_{k}\right)\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}-1\right) \overrightarrow{x_{k} x_{k}^{\oplus}}\right. \\
&\left.\quad+\tau_{k} \overrightarrow{x_{k} x_{k}^{\oplus}}-\frac{\tau_{k+1}}{2} \overrightarrow{x_{k} x_{k}^{\oplus}}-\left(\tau_{k+1}-\tau_{k}\right) \overrightarrow{x_{k} z_{k}}+\tau_{k}\left(\frac{\varphi_{k}}{\varphi_{k+1}}-1\right) \overrightarrow{x_{k} z_{k}}\right\rangle \\
& \stackrel{\text { (iv) }}{=}\left\langle\overrightarrow{x_{k} x_{k}^{\oplus}},\left(\tau_{k+1}-\tau_{k}\right) \overrightarrow{t z_{k+1}}+\frac{\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}}{\varphi_{k+1}} \overrightarrow{x_{k} z_{k}}\right\rangle \\
& \stackrel{(\mathrm{v})}{=} \frac{1}{\varphi_{k+1}}\left\langle\overrightarrow{x_{k}^{\oplus} z_{k+1}}-\overrightarrow{x_{k} z_{k}}, \overrightarrow{t z_{k+1}}\right\rangle+\frac{1}{\varphi_{k+1}}\left\langle\overrightarrow{t z_{k+1}}-\overrightarrow{t z_{k}}, \overrightarrow{x_{k} z_{k}}\right\rangle \\
& \quad \stackrel{\text { (vi) }}{=} \frac{1}{\varphi_{k+1}}\left\langle z_{k+1}-x_{k}^{\oplus}, z_{k+1}-x_{K}^{\oplus}\right\rangle-\frac{1}{\varphi_{k}}\left\langle z_{k}-x_{k-1}^{\oplus}, z_{k}-x_{K}^{\oplus}\right\rangle
\end{aligned}
$$

where (i) follows from the definition of t and the fact that we can replace x_{K}^{\oplus} with t, the projection of x_{K} onto the plane of iteration, without affecting the inner products, (ii) from vector addition, (iii) from the fact that $\overrightarrow{x_{k} x_{k}^{\oplus}}$ and $\overrightarrow{z_{k} z_{k+1}}$ are parallel and their lengths satisfy $\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right) \overrightarrow{x_{k} x_{k}^{\oplus}}=\overrightarrow{z_{k} z_{k+1}}$ and $\overrightarrow{x_{k-1}^{\oplus} x_{k}}$ and $\overrightarrow{x_{k} z_{k}}$ are parallel and their lengths satisfy $\left(\frac{\varphi_{k}}{\varphi_{k+1}}-1\right) \overrightarrow{x_{k} z_{k}}=\overrightarrow{x_{k-1}^{\oplus} x_{k}}$, (iv) from vector addition and

$$
\begin{equation*}
\frac{\tau_{k+1}}{2}-\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)\left(\tau_{k+1}-\tau_{k}\right) \geq 0 \tag{7}
\end{equation*}
$$

(v) from distributing the product and substituting $\overrightarrow{x_{k} x_{k}^{\oplus}}=\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}-1\right)^{-1}\left(\overrightarrow{x_{k}^{\oplus} z_{k+1}}-\overrightarrow{x_{k} z_{k}}\right)=$ $\left(\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)\right)^{-1}\left(\overrightarrow{x_{k}^{\oplus} z_{k+1}}-\overrightarrow{x_{k} z_{k}}\right)$ into the first term and $\overrightarrow{x_{k} x_{k}^{\oplus}}=\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)^{-1} \overrightarrow{z_{k} z_{k+1}}=$ $\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)^{-1}\left(\overrightarrow{t z_{k+1}}-\overrightarrow{t z_{k}}\right)$ into the second term, and (vi) from cancelling out the cross terms, using $\varphi_{k}^{-1} \overrightarrow{x_{k-1}^{\oplus} z_{k}}=\varphi_{k+1}^{-1} \overrightarrow{x_{k} \overrightarrow{z_{k}}}$, and by replacing t with x_{K}^{\oplus} in the inner products. In (v), we also used

$$
\begin{equation*}
\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}=\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)+1 \tag{8}
\end{equation*}
$$

Thus we conclude $U_{k+1} \leq U_{k}$ for $k=0,1,2, \ldots, K-1$.

Proof of Theorem 1. The conclusion of Theorem 1 follows from plugging FISTA-G's φ_{k} and τ_{k} into Theorem 6 If $\tau_{k}=\frac{2 \varphi_{k-1}}{\left(\varphi_{k-1}-\varphi_{k}\right)^{2}}$, we can check condition (8), condition (7), and

$$
\varphi_{k} \tau_{k}-\tau_{k+1} \varphi_{k+1}=\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)+1=\frac{\varphi_{k}}{\varphi_{k}-\varphi_{k+1}}
$$

Then using Lemma 2, we get the iteration of the form of FISTA-G. Furthermore, by Lemma $8,\|v\| \leq$ $2\left\|\tilde{\nabla}_{L} F(x)\right\|$ for some $v \in \partial F\left(x^{\oplus}\right)$. Thus we have

$$
\min \left\|\partial F\left(x_{K}^{\oplus}\right)\right\|^{2} \leq 4\left\|\tilde{\nabla}_{L} F\left(x_{K}\right)\right\|^{2} \leq \frac{264 L}{(K+2)^{2}}\left(F\left(x_{0}\right)-F_{\star}\right)
$$

Finally, it remains to show $\tau_{0} \leq \frac{33}{(K+2)^{2}}$ in the setup of Theorem 1
First, $\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}=\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)+1$ and $\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)\left(\tau_{k+1}-\tau_{k}\right)-\frac{\tau_{k+1}}{2}=0$ implies

$$
\varphi_{k+1}=\frac{1}{\tau_{k+1}-\tau_{k}}\left(\frac{\tau_{k+1}}{2\left(\tau_{k+1}-\tau_{k}\right)}-1\right)
$$

By substitution and direct calculation, we get

$$
a_{k+1}=a_{k}+\frac{\left(a_{k}-a_{k-1}\right) a_{k}}{\sqrt{a_{k}^{2}-a_{k} a_{k-1}+a_{k-1}^{2}}}
$$

where $\tau_{k}=\frac{1}{a_{K-k}}$. This is equivalent to

$$
\frac{a_{k+1}}{a_{k}}=1+\frac{\left(a_{k}-a_{k-1}\right)}{\sqrt{\left(a_{k}-a_{k-1}\right)^{2}+a_{k} a_{k-1}}} \Longleftrightarrow \frac{a_{k+1}}{a_{k}}=1+\frac{1}{\sqrt{1+\frac{a_{k}}{\frac{a_{k-1}}{a_{k-1}}+\frac{a_{k-1}}{a_{k}}-2}}} .
$$

Let $b_{k}=\frac{a_{k+1}}{a_{k}}$. Then, $b_{0}=1+\frac{1}{\sqrt{3}}$ by $\tau_{K}=\varphi_{K}=1$, and

$$
b_{k}=1+\frac{1}{\sqrt{\left.1+\frac{1}{\left(\sqrt{b_{k-1}}-\sqrt{b_{k-1}}\right.}\right)^{2}}} \Longleftrightarrow \frac{1}{\left(b_{k}-1\right)^{2}}=1+\frac{1}{\left(b_{k-1}-1\right)}+\frac{1}{\left(b_{k-1}-1\right)^{2}} .
$$

Let $c_{k}=\frac{1}{b_{k}-1}$. Then

$$
c_{k}^{2}=c_{k-1}^{2}+c_{k-1}+1
$$

where $c_{0}=\sqrt{3}$. Also, by definition,

$$
a_{k+1}=b_{k} b_{k-1} \ldots b_{0}=\left(1+\frac{1}{c_{k}}\right)\left(1+\frac{1}{c_{k-1}}\right) \ldots\left(1+\frac{1}{c_{0}}\right) .
$$

Using $c_{k}^{2}=c_{k-1}^{2}+c_{k-1}+1 \Longleftrightarrow \frac{c_{k}^{2}-1}{c_{k-1}^{2}}=1+\frac{1}{c_{k-1}}$, we have

$$
\begin{aligned}
& \left(\frac{c_{k}+1}{c_{k}}\right)\left(\frac{c_{k-1}+1}{c_{k-1}}\right) \ldots\left(\frac{c_{0}+1}{c_{0}}\right)=\frac{c_{k+1}^{2}-1}{c_{k}^{2}} \frac{c_{k}^{2}-1}{c_{k-1}^{2}} \ldots \frac{c_{1}^{2}-1}{c_{0}^{2}} \\
& =\left(\frac{c_{k+1}+1}{c_{k}}\right)\left(\frac{c_{k}+1}{c_{k-1}}\right) \ldots\left(\frac{c_{1}+1}{c_{0}}\right)\left(\frac{c_{k+1}-1}{c_{k}}\right)\left(\frac{c_{k}-1}{c_{k-1}}\right) \ldots\left(\frac{c_{1}-1}{c_{0}}\right) .
\end{aligned}
$$

And after reduction of fraction, we get

$$
\begin{aligned}
& \left(\frac{c_{k+1}+1}{c_{0}+1}\right)\left(\frac{c_{k+1}-1}{c_{k}}\right)\left(\frac{c_{k}-1}{c_{k-1}}\right) \ldots\left(\frac{c_{1}-1}{c_{0}}\right)=1 \\
& \Longleftrightarrow c_{k+1}^{2}-1=\left(c_{0}^{2}-1\right)\left(\frac{c_{k}}{c_{k}-1}\right)\left(\frac{c_{k-1}}{c_{k-1}-1}\right) \ldots\left(\frac{c_{0}}{c_{0}-1}\right) .
\end{aligned}
$$

$\frac{c_{k-2}+1}{c_{k}} \geq \frac{c_{k-2}}{c_{k}-1} \Longleftrightarrow c_{k} \geq c_{k-2}+1$ since $c_{k}^{2}=\left(c_{k-1}+\frac{1}{2}\right)^{2}+\frac{3}{4}$ implies $c_{k} \geq c_{k-1}+\frac{1}{2}$. Therefore,

$$
\left(\frac{c_{k}+1}{c_{k}}\right)\left(\frac{c_{k-1}+1}{c_{k-1}}\right) \ldots\left(\frac{c_{0}+1}{c_{0}}\right) \geq \frac{\left(c_{k}+1\right)\left(c_{k-1}+1\right)}{c_{k} c_{k-1}} \frac{\left(c_{1}-1\right)\left(c_{0}-1\right)}{c_{1} c_{0}\left(c_{0}^{2}-1\right)}\left(c_{k+1}^{2}-1\right) .
$$

Furthermore, we can show $c_{k} \geq \frac{k+3}{2}$ by induction. ($c_{0}=\sqrt{3} \geq \frac{3}{2}$ and if $c_{k} \geq \frac{k+3}{2}, c_{k+1} \geq c_{k}+\frac{1}{2} \geq \frac{k+4}{2}$.) Finally

$$
a_{k+1} \geq \frac{\left(c_{1}-1\right)\left(c_{0}-1\right)}{c_{1} c_{0}\left(c_{0}^{2}-1\right)}\left(c_{k+1}^{2}-1\right) \geq \frac{1}{33}(k+3)^{2} .
$$

For $k=K-1, \frac{1}{a_{K}}=\tau_{0}$ and we get wanted result.

F Omitted proofs of Section 3

We present (G-FGM-G) for the smooth convex setup

$$
\begin{aligned}
x_{k} & =\frac{\varphi_{k+1}}{\varphi_{k}} x_{k-1}^{+}+\left(1-\frac{\varphi_{k+1}}{\varphi_{k}}\right) z_{k} \\
z_{k+1} & =z_{k}-\frac{\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}}{L} \nabla f\left(x_{k}\right)
\end{aligned}
$$

for $k=0,1, \ldots, K$ where $z_{0}=x_{0}, L$ is smootheness constant of f, and the nonnegative sequence $\left\{\varphi_{k}\right\}_{k=0}^{K+1}$ and the nondecreasing nonnegative sequence $\left\{\tau_{k}\right\}_{k=0}^{K}$ satisfy $\varphi_{K+1}=0, \varphi_{K}=\tau_{K}=1$, and

$$
\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}=\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)+1, \quad\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)\left(\tau_{k+1}-\tau_{k}\right) \leq \tau_{k+1}
$$

for $k=0,1, \ldots, K-1$.
Note that G-FISTA-G had the parameter requirement $\leq \frac{\tau_{k+1}}{2}$ while G-FGM-G (and later G-Güler G) has $\leq \tau_{k+1}$. The parameter requirements are otherwise identical.
Theorem 7. Consider $\left(\mathbb{P}\right.$ with $g=0 . G-F G M-G$'s x_{K} exhibits the rate

$$
\left\|\nabla f\left(x_{K}\right)\right\|^{2} \leq 2 L \tau_{0}\left(f\left(x_{0}\right)-f_{\star}\right)
$$

Proof. For $k=0,1, \ldots, K$, define

$$
\begin{aligned}
U_{k}=\tau_{k} & \left(\frac{1}{2 L}\left\|\nabla f\left(x_{K}\right)\right\|^{2}+\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|^{2}+f\left(x_{k}\right)-f\left(x_{K}\right)-\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{k-1}^{+}\right\rangle\right) \\
& +\frac{L}{\varphi_{k}}\left\langle z_{k}-x_{k-1}^{+}, z_{k}-x_{K}^{+}\right\rangle
\end{aligned}
$$

(Note that $z_{K}=x_{K}$.) By plugging in the definitions and performing direct calculations, we get

$$
U_{K}=\frac{1}{L}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \quad \text { and } \quad U_{0}=\tau_{0}\left(\frac{1}{2 L}\left\|\nabla f\left(x_{K}\right)\right\|^{2}+\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2}+f\left(x_{0}\right)-f\left(x_{K}\right)\right)
$$

We can show that $\left\{U_{k}\right\}_{k=0}^{K}$ is nonincreasing. Using $\frac{1}{2 L}\left\|\nabla f\left(x_{K}\right)\right\|^{2} \leq f\left(x_{K}\right)-f\left(x_{K}^{+}\right) \leq f\left(x_{K}\right)-f\left(x_{\star}\right)$ and $\frac{1}{2 L}\left\|\nabla f\left(x_{0}\right)\right\|^{2} \leq f\left(x_{0}\right)-f\left(x_{0}^{+}\right) \leq f\left(x_{0}\right)-f_{\star}$, which follows from L-smoothness, we conclude the rate with

$$
\frac{1}{L}\left\|\nabla f\left(x_{K}\right)\right\|^{2}=U_{K} \leq U_{0} \leq 2 \tau_{0}\left(f\left(x_{0}\right)-f_{\star}\right)
$$

Now we complete the proof by showing that $\left\{U_{k}\right\}_{k=0}^{K}$ is nonincreasing. For $k=0,1, \ldots K-1$, we have

$$
\begin{aligned}
& 0 \geq \tau_{k+1}\left(f\left(x_{k+1}\right)-f\left(x_{k}\right)-\left\langle\nabla f\left(x_{k+1}\right), x_{k+1}-x_{k}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right\|^{2}\right) \\
& \quad+\left(\tau_{k+1}-\tau_{k}\right)\left(f\left(x_{k}\right)-f\left(x_{K}\right)-\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{K}\right\rangle+\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)-\nabla f\left(x_{K}\right)\right\|^{2}\right) \\
& =\tau_{k+1}\left(\frac{1}{2 L}\left\|\nabla f\left(x_{K}\right)\right\|^{2}+\frac{1}{2 L}\left\|\nabla f\left(x_{k+1}\right)\right\|^{2}+f\left(x_{k+1}\right)-f\left(x_{K}\right)-\left\langle\nabla f\left(x_{k+1}\right), x_{k+1}-x_{k}^{+}\right\rangle\right) \\
& \quad-\tau_{k}\left(\frac{1}{2 L}\left\|\nabla f\left(x_{K}\right)\right\|^{2}+\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|^{2}+f\left(x_{k}\right)-f\left(x_{K}\right)-\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{k-1}^{+}\right\rangle\right) \\
& \quad \underbrace{-\left\langle\nabla f\left(x_{k}\right), \tau_{k+1} x_{k}^{+}-\tau_{k} x_{k-1}^{+}-\left(\tau_{k+1}-\tau_{k}\right) x_{K}^{+}\right\rangle}_{:=T},
\end{aligned}
$$

where the inequality follows from the cocoercivity inequalities. Finally, we analyze T with the following geometric argument. Let $t \in \mathbb{R}^{n}$ be the projection of x_{K}^{+}onto the plane of iteration. Then,

Figure 8: Plane of iteration of G-FGM-G

$$
\begin{aligned}
& \frac{1}{L} T \stackrel{\text { (i) }}{=}\left\langle\overrightarrow{x_{k} x_{k}^{+}},\left(\tau_{k+1}-\tau_{k}\right) \overrightarrow{t x_{k}^{+}}+\tau_{k} \overrightarrow{x_{k-1}^{+} x_{k}^{+}}\right\rangle \\
& \stackrel{\text { (ii) }}{=}\left\langle\overrightarrow{x_{k} x_{k}^{+}},\left(\tau_{k+1}-\tau_{k}\right)\left(\overrightarrow{t z_{k+1}}-\overrightarrow{z_{k} z_{k+1}}-\overrightarrow{x_{k} z_{k}}+\overrightarrow{x_{k} x_{k}^{+}}\right)+\tau_{k}\left(\overrightarrow{x_{k-1}^{+} x_{k}}+\overrightarrow{x_{k} x_{k}^{+}}\right)\right\rangle \\
& \stackrel{\text { (iii) }}{=}\left\langle\overrightarrow{x_{k} x_{k}^{+}},\left(\tau_{k+1}-\tau_{k}\right) \overrightarrow{t z_{k+1}}-\left(\tau_{k+1}-\tau_{k}\right)\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}-1\right) \overrightarrow{x_{k} x_{k}^{+}}\right. \\
&\left.\quad+\tau_{k} \overrightarrow{x_{k} x_{k}^{+}}-\left(\tau_{k+1}-\tau_{k}\right) \overrightarrow{x_{k} z_{k}}+\tau_{k}\left(\frac{\varphi_{k}}{\varphi_{k+1}}-1\right) \overrightarrow{x_{k} z_{k}}\right\rangle \\
& \stackrel{\text { (iv) }}{=}\left\langle\overrightarrow{x_{k} x_{k}^{+}},\left(\tau_{k+1}-\tau_{k}\right) \overrightarrow{t z_{k+1}}+\frac{\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}}{\varphi_{k+1}} \overrightarrow{x_{k} z_{k}}\right\rangle \\
& \stackrel{\text { (v) }}{=} \frac{1}{\varphi_{k+1}}\left\langle\overrightarrow{x_{k}^{+} z_{k+1}}-\overrightarrow{x_{k} z_{k}}, \overrightarrow{t z_{k+1}}\right\rangle+\frac{1}{\varphi_{k+1}}\left\langle\overrightarrow{t z_{k+1}}-\overrightarrow{t z_{k}}, \overrightarrow{x_{k} z_{k}}\right\rangle \\
& \quad \stackrel{\text { (vi) }}{=} \frac{1}{\varphi_{k+1}}\left\langle z_{k+1}-x_{k}^{+}, z_{k+1}-x_{K}^{+}\right\rangle-\frac{1}{\varphi_{k}}\left\langle z_{k}-x_{k-1}^{+}, z_{k}-x_{K}^{+}\right\rangle
\end{aligned}
$$

where (i) follows from the definition of t and the fact that we can replace x_{K}^{+}with t, the projection of x_{K} onto the plane of iteration, without affecting the inner products, (ii) from vector addition, (iii) from the fact that $\overrightarrow{x_{k} x_{k}^{+}}$and $\overrightarrow{z_{k} z_{k+1}}$ are parallel and their lengths satisfy $\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right) \overrightarrow{x_{k} x_{k}^{+}}=\overrightarrow{z_{k} z_{k+1}}$ and $\overrightarrow{x_{k-1}^{+} x_{k}}$ and $\overrightarrow{x_{k} z_{k}}$ are parallel and their lengths satisfy $\left(\frac{\varphi_{k}}{\varphi_{k+1}}-1\right) \overrightarrow{x_{k} z_{k}}=\overrightarrow{x_{k-1}^{+} x_{k}}$, (iv) from vector addition and

$$
\begin{equation*}
\tau_{k+1}-\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)\left(\tau_{k+1}-\tau_{k}\right) \geq 0 \tag{9}
\end{equation*}
$$

(v) from distributing the product and substituting $\overline{x_{k} x_{k}^{+}}=\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}-1\right)^{-1}\left(\overrightarrow{x_{k}^{+} z_{k+1}}-\overrightarrow{x_{k} z_{k}}\right)=$ $\left(\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)\right)^{-1}\left(\overrightarrow{x_{k}^{+} z_{k+1}}-\overrightarrow{x_{k} z_{k}}\right)$ into the first term and $\overrightarrow{x_{k} x_{k}^{+}}=\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)^{-1} \overrightarrow{z_{k} z_{k+1}}=$ $\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)^{-1}\left(\overrightarrow{t z_{k+1}}-\overrightarrow{t z_{k}}\right)$ into the second term, and (vi) from cancelling out the cross terms, using $\varphi_{k}^{-1} \overrightarrow{x_{k-1}^{+} z_{k}}=\varphi_{k+1}^{-1} \overrightarrow{x_{k} z_{k}}$, and by replacing t with x_{K}^{+}in the inner products.In (v), we also used

$$
\begin{equation*}
\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}=\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)+1 \tag{10}
\end{equation*}
$$

Thus we conclude $U_{k+1} \leq U_{k}$ for $k=0,1, \ldots, K-1$.
Theorem 8. Consider (\mathbb{P} with $g=0$. FGM-G's x_{K} exhibits the rate

$$
\left\|\nabla f\left(x_{K}\right)\right\|^{2} \leq \frac{66 L}{(K+2)^{2}}\left(f\left(x_{0}\right)-f_{\star}\right)
$$

Proof. This follows from plugging FGM-G's φ_{k} and $\frac{2 \varphi_{k-1}}{\left(\varphi_{k-1}-\varphi_{k}\right)^{2}}$ into Theorem 7 s φ_{k} and τ_{k}. We can check condition (9), condition (10), and

$$
\varphi_{k} \tau_{k}-\tau_{k+1} \varphi_{k+1}=\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)+1=\frac{\varphi_{k}}{\varphi_{k}-\varphi_{k+1}}
$$

Then using Lemma 2, we get the iteration of the form of FGM-G
We present (G-Güler-G) for the proximal-point setup:

$$
\begin{aligned}
x_{k} & =\frac{\varphi_{k+1}}{\varphi_{k}} x_{k-1}^{\circ}+\left(1-\frac{\varphi_{k+1}}{\varphi_{k}}\right) z_{k} \\
z_{k+1} & =z_{k}-\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right) \lambda \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)
\end{aligned}
$$

for $k=0,1, \ldots, K$ where $z_{0}=x_{0}$ and the nonnegative sequence $\left\{\varphi_{k}\right\}_{k=0}^{K+1}$ and the nondecreasing nonnegative sequence $\left\{\tau_{k}\right\}_{k=0}^{K}$ satisfy $\varphi_{K+1}=0, \varphi_{K}=\tau_{K}=1$, and

$$
\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}=\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)+1, \quad\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)\left(\tau_{k+1}-\tau_{k}\right) \leq \tau_{k+1}
$$

for $k=0,1, \ldots, K-1$.
Theorem 9. Consdier (P) with $f=0$. G-Güler-G's x_{K} exhibits the rate

$$
\left\|\tilde{\nabla}_{1 / \lambda} g\left(x_{K}\right)\right\|^{2} \leq \frac{\tau_{0}}{\lambda}\left(g\left(x_{0}\right)-g_{\star}\right)
$$

Proof. For $k=0,1, \ldots, K$, define
$U_{k}=\tau_{k}\left(\lambda\left\|\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)\right\|^{2}+g\left(x_{k}^{\circ}\right)-g\left(x_{K}^{\circ}\right)-\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right) \cdot\left(x_{k}-x_{k-1}^{\circ}\right)\right)+\frac{1}{\lambda \varphi_{k}}\left\langle z_{k}-x_{k-1}^{\circ}, z_{k}-x_{K}^{\circ}\right\rangle$.
(Note that $z_{K}=x_{K}$.) By plugging in the definitions and performing direct calculations, we get

$$
U_{K}=\lambda\left\|\tilde{\nabla}_{1 / \lambda} g\left(x_{K}\right)\right\|^{2} \quad \text { and } \quad U_{0}=\tau_{0}\left(\lambda\left\|\tilde{\nabla}_{1 / \lambda} g\left(x_{0}\right)\right\|^{2}+g\left(x_{0}^{\circ}\right)-g\left(x_{K}^{\circ}\right)\right)
$$

We can show that $\left\{U_{k}\right\}_{k=0}^{K}$ is nonincreasing. Using $\lambda\left\|\tilde{\nabla}_{1 / \lambda} g\left(x_{0}\right)\right\|^{2} \leq g\left(x_{0}\right)-g\left(x_{0}^{\circ}\right)$, we conclude the rate with

$$
\lambda\left\|\tilde{\nabla}_{1 / \lambda} g\left(x_{K}\right)\right\|^{2}=U_{K} \leq U_{0} \leq \tau_{0}\left(g\left(x_{0}\right)-g\left(x_{K}^{\circ}\right)\right) \leq \tau_{0}\left(g\left(x_{0}\right)-g_{\star}\right)
$$

Now we complete the proof by showing that $\left\{U_{k}\right\}_{k=0}^{K}$ is nonincreasing. For $k=0,1, \ldots, K-1$, we have

$$
\begin{aligned}
0 \geq & \tau_{k+1}\left(g\left(x_{k+1}^{\circ}\right)-g\left(x_{k}^{\circ}\right)-\left\langle\tilde{\nabla}_{1 / \lambda} g\left(x_{k+1}\right), x_{k+1}-x_{k}^{\circ}\right\rangle+\lambda\left\|\tilde{\nabla}_{1 / \lambda} g\left(x_{k+1}\right)\right\|^{2}\right) \\
& +\left(\tau_{k+1}-\tau_{k}\right)\left(g\left(x_{k}^{\circ}\right)-g\left(x_{K}^{\circ}\right)-\left\langle\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right), x_{k}-x_{K}^{\circ}\right\rangle+\lambda\left\|\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)\right\|^{2}\right) \\
= & \tau_{k+1}\left(\lambda\left\|\tilde{\nabla}_{1 / \lambda} g\left(x_{k+1}\right)\right\|^{2}+g\left(x_{k+1}^{\circ}\right)-g\left(x_{K}^{\circ}\right)-\tilde{\nabla}_{1 / \lambda} g\left(x_{k+1}^{\circ}\right) \cdot\left(x_{k+1}-x_{k}^{\circ}\right)\right) \\
& -\tau_{k}\left(\lambda\left\|\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)\right\|^{2}+g\left(x_{k}^{\circ}\right)-g\left(x_{K}^{\circ}\right)-\tilde{\nabla}_{1 / \lambda} g\left(x_{k}^{\circ}\right) \cdot\left(x_{k}-x_{k-1}^{\circ}\right)\right) \\
& \underbrace{\left\langle\left\langle\tilde{\nabla}_{1 / \lambda} g\left(x_{k}^{\circ}\right), \tau_{k+1} x_{k}^{\circ}-\tau_{k} x_{k-1}^{\circ}-\left(\tau_{k+1}-\tau_{k}\right) x_{K}^{\circ}\right\rangle\right.}_{:=T},
\end{aligned}
$$

Figure 9: Plane of iteration of G-Güler-G
where the inequality follows from the convexity inequalities. Finally, we analyze T with the following geometric argument. Let $t \in \mathbb{R}^{n}$ be the projection of x_{K}° onto the plane of iteration. Then

$$
\begin{aligned}
& \frac{1}{L} T \stackrel{(\mathrm{i})}{=}\left\langle\overrightarrow{x_{k} x_{k}^{\circ}},\left(\tau_{k+1}-\tau_{k}\right) \overrightarrow{t x_{k}^{\mathrm{o}}}+\tau_{k} \overrightarrow{x_{k-1}^{\circ} x_{k}^{\circ}}\right\rangle \\
& \stackrel{\text { (ii) }}{=}\left\langle\overrightarrow{x_{k} x_{k}^{\circ}},\left(\tau_{k+1}-\tau_{k}\right)\left(\overrightarrow{t z_{k+1}}-\overrightarrow{z_{k} z_{k+1}}-\overrightarrow{x_{k} z_{k}}+\overrightarrow{x_{k} x_{k}^{\delta}}\right)+\tau_{k}\left(\overrightarrow{x_{k-1}^{\circ} x_{k}}+\overrightarrow{x_{k} x_{k}^{\delta}}\right)\right\rangle \\
& \stackrel{\text { (iii) }}{=}\left\langle\overrightarrow{x_{k} x_{k}^{\circ}},\left(\tau_{k+1}-\tau_{k}\right) \overrightarrow{t z_{k+1}}-\left(\tau_{k+1}-\tau_{k}\right)\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}-1\right) \overrightarrow{x_{k} x_{k}^{\circ}}\right. \\
&\left.\quad+\tau_{k} \overrightarrow{x_{k} x_{k}^{\circ}}-\left(\tau_{k+1}-\tau_{k}\right) \overrightarrow{x_{k} z_{k}}+\tau_{k}\left(\frac{\varphi_{k}}{\varphi_{k+1}}-1\right) \overrightarrow{x_{k} z_{k}}\right\rangle \\
& \stackrel{\text { (iv) }}{\geq}\left\langle\overrightarrow{x_{k} x_{k}^{\circ}},\left(\tau_{k+1}-\tau_{k}\right) \overrightarrow{t z_{k+1}}+\frac{\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}}{\varphi_{k+1}} \overrightarrow{x_{k} z_{k}}\right\rangle \\
& \stackrel{\text { (v) }}{=} \frac{1}{\varphi_{k+1}}\left\langle\overrightarrow{x_{k}^{\circ} z_{k+1}}-\overrightarrow{x_{k} z_{k}}, \overrightarrow{t z_{k+1}}\right\rangle+\frac{1}{\varphi_{k+1}}\left\langle\overrightarrow{t z_{k+1}}-\overrightarrow{t z_{k}}, \overrightarrow{x_{k} \overrightarrow{z_{k}}}\right\rangle \\
& \quad \stackrel{\text { (vi) }}{=} \frac{1}{\varphi_{k+1}}\left\langle z_{k+1}-x_{k}^{\circ}, z_{k+1}-x_{K}^{\circ}\right\rangle-\frac{1}{\varphi_{k}}\left\langle z_{k}-x_{k-1}^{\circ}, z_{k}-x_{K}^{\circ}\right\rangle,
\end{aligned}
$$

where (i) follows from the definition of t and the fact that we can replace x_{K}° with t, the projection of x_{K} onto the plane of iteration, without affecting the inner products, (ii) from vector addition, (iii) from the fact that $\overrightarrow{x_{k} x_{k}^{\delta}}$ and $\overrightarrow{z_{k} z_{k+1}}$ are parallel and their lengths satisfy $\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right) \overrightarrow{x_{k} x_{k}}=\overrightarrow{z_{k} z_{k+1}}$ and $\overrightarrow{x_{k-1}^{\circ} x_{k}}$ and $\overrightarrow{x_{k} z_{k}}$ are parallel and their lengths satisfy $\left(\frac{\varphi_{k}}{\varphi_{k+1}}-1\right) \overrightarrow{x_{k} z_{k}}=\overrightarrow{x_{k-1}^{\circ} x_{k}}$, (iv) from vector addition and

$$
\begin{equation*}
\tau_{k+1}-\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)\left(\tau_{k+1}-\tau_{k}\right) \geq 0 \tag{11}
\end{equation*}
$$

(v) from distributing the product and substituting $\overline{x_{k} x_{k}^{\circ}}=\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}-1\right)^{-1}\left(\overrightarrow{x_{k}^{\circ} z_{k+1}}-\overrightarrow{x_{k} z_{k}}\right)=$ $\left(\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)\right)^{-1}\left(\overrightarrow{x_{k}^{\circ} z_{k+1}}-\overrightarrow{x_{k} z_{k}}\right)$ into the first term and $\overrightarrow{x_{k} x_{k}^{\circ}}=\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)^{-1} \overrightarrow{z_{k} z_{k+1}}=$ $\left(\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}\right)^{-1}\left(\overrightarrow{t z_{k+1}}-\overrightarrow{t z_{k}}\right)$ into the second term, and (vi) from cancelling out the cross terms, using $\varphi_{k}^{-1} \overrightarrow{x_{k-1}^{\circ} z_{k}}=\varphi_{k+1}^{-1} \overrightarrow{x_{k} z_{k}}$, and by replacing t with x_{K}^{+}in the inner products.

$$
\begin{equation*}
\tau_{k} \varphi_{k}-\tau_{k+1} \varphi_{k+1}=\varphi_{k+1}\left(\tau_{k+1}-\tau_{k}\right)+1 \tag{12}
\end{equation*}
$$

Thus we conclude $U_{k+1} \leq U_{k}$ for $k=0,1, \ldots, K-1$.

Proof of Theorem 2. The conclusion of Theorem2follows from plugging Güler-G's φ_{k} and τ_{k} into Theorem 9 If $\tau_{k}=\theta_{k}^{-2}$ and $\varphi_{k}=\theta_{k}^{4}$, we can check conditions (11) and (12). Then using Lemma 2, we get the iteration of the form of Güler-G. Combining the $g\left(x_{K}^{\circ}\right)-g_{\star} \leq\left\|x_{0}-x_{\star}\right\|^{2} / \lambda(K+2)^{2}$ rate of Güler's second method [37, Theorem 6.1] with rate of Güler-G, we get the rate of Güler+Güler-G:

$$
\left\|\tilde{\nabla}_{1 / \lambda} g\left(x_{2 K}\right)\right\|^{2} \leq \frac{4}{\lambda(K+2)^{2}}\left(g\left(x_{K}^{\circ}\right)-g_{\star}\right) \leq \frac{4}{\lambda^{2}(K+2)^{4}}\left\|x_{0}-x_{\star}\right\|^{2} .
$$

G Omitted proofs of Section 4

Proof of Theorem 3. In the setup of Theorem 3, define

$$
U_{k}=g\left(x_{k-1}^{\circ}\right)-g_{\star}-\frac{\mu}{2}\left\|x_{k-1}^{\circ}-x_{\star}\right\|^{2}+\mu\left\|z_{k}-x_{\star}\right\|^{2}
$$

for $k=0,1, \ldots$. By plugging in the definitions and performing direct calculations, we get

$$
U_{0}=g\left(x_{0}\right)-g_{\star}+\frac{\mu}{2}\left\|x_{0}-x_{\star}\right\|^{2}
$$

We can show that $U_{k+1} \leq\left(1-\frac{1}{\sqrt{q}}\right)^{2} U_{k}$ for $k=-1,0, \ldots$ Using strong convexity, we conclude the rate with

$$
\mu\left\|z_{k}-x_{\star}\right\|^{2} \leq U_{k} \leq U_{0} \leq 2\left(g\left(x_{0}\right)-g_{\star}\right)
$$

Now we complete the proof by showing that $U_{k+1} \leq\left(1-\frac{1}{\sqrt{q}}\right)^{2} U_{k}$ for $k=-1,0, \ldots$ For $k=0,1, \ldots$, we have

$$
\begin{aligned}
U_{k+1}= & \left(1-\frac{1}{\sqrt{q}}\right)^{2} U_{k} \\
= & \left(g\left(x_{k}^{\circ}\right)-g_{\star}-\frac{\mu}{2}\left\|x_{k}^{\circ}-x_{\star}\right\|^{2}\right)-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left(g\left(x_{k-1}^{\circ}\right)-g_{\star}-\frac{\mu}{2}\left\|x_{k-1}^{\circ}-x_{\star}\right\|^{2}\right) \\
& +\mu\left\|z_{k+1}-x_{\star}\right\|^{2}-\mu\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left\|z_{k}-x_{\star}\right\|^{2} .
\end{aligned}
$$

For calculating the last term of difference, we use $(q-1) x_{k}-(1-\sqrt{q})^{2} x_{k-1}^{\circ}=2(\sqrt{q}-1) z_{k}$. Since

$$
\begin{aligned}
& \mu\left\|z_{k+1}-x_{\star}\right\|^{2}=\mu\left\|\frac{1}{\sqrt{q}}\left(x_{k}-\left(\frac{1}{\mu}+\lambda\right) \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)\right)+\left(1-\frac{1}{\sqrt{q}}\right) z_{k}-x_{\star}\right\|^{2} \\
&=\frac{\mu}{q}\left\|x_{k}-\left(\frac{1}{\mu}+\lambda\right) \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-x_{\star}\right\|^{2}+\mu\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left\|z_{k}-x_{\star}\right\|^{2} \\
&+2\left(1-\frac{1}{\sqrt{q}}\right) \frac{\mu}{\sqrt{q}}\left\langle x_{k}-\left(\frac{1}{\mu}+\lambda\right) \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-x_{\star}, z_{k}-x_{\star}\right\rangle
\end{aligned}
$$

we get
$\mu\left\|z_{k+1}-x_{\star}\right\|^{2}-\mu\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left\|z_{k}-x_{\star}\right\|^{2}$

$$
\begin{aligned}
& =\frac{\mu}{q}\left\|x_{k}-\left(\frac{1}{\mu}+\lambda\right) \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-x_{\star}\right\|^{2} \\
& +\frac{\mu}{q}\left\langle x_{k}-\left(\frac{1}{\mu}+\lambda\right) \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-x_{\star},(q-1)\left(x_{k}-x_{\star}\right)-(1-\sqrt{q})^{2}\left(x_{k-1}^{\circ}-x_{\star}\right)\right\rangle \\
& =\frac{\mu}{q}\left\langle x_{k}-\left(\frac{1}{\mu}+\lambda\right) \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-x_{\star},-\left(\frac{1}{\mu}+\lambda\right) \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)+q\left(x_{k}-x_{\star}\right)-(1-\sqrt{q})^{2}\left(x_{k-1}^{\circ}-x_{\star}\right)\right\rangle \\
& =\frac{\mu}{q}\left\langle x_{k}-\left(\frac{1}{\mu}+\lambda\right) \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-x_{\star}, q\left(x_{k}^{\circ}-x_{\star}\right)-(1-\sqrt{q})^{2}\left(x_{k-1}^{\circ}-x_{\star}\right)\right\rangle \\
& =\mu\left\langle x_{k}^{\circ}-\frac{1}{\mu} \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-x_{\star}, x_{k}^{\circ}-x_{\star}\right\rangle-\mu\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left\langle x_{k}^{\circ}-\frac{1}{\mu} \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-x_{\star}, x_{k-1}^{\circ}-x_{\star}\right\rangle \\
& =\left(1-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\right)\left\langle\mu x_{k}^{\circ}-\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-\mu x_{\star}, x_{k}^{\circ}-x_{\star}\right\rangle+\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left\langle\mu x_{k}^{\circ}-\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-\mu x_{\star}, x_{k}^{\circ}-x_{k-1}^{\circ}\right\rangle .
\end{aligned}
$$

Therefore, we can write difference of U_{k+1} and $\left(1-\frac{1}{\sqrt{q}}\right)^{2} U_{k}$ as

$$
\begin{aligned}
U_{k+1}- & \left(1-\frac{1}{\sqrt{q}}\right)^{2} U_{k} \\
= & \left(g\left(x_{k}^{\circ}\right)-g_{\star}-\frac{\mu}{2}\left\|x_{k}^{\circ}-x_{\star}\right\|^{2}\right)-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left(g\left(x_{k-1}^{\circ}\right)-g_{\star}-\frac{\mu}{2}\left\|x_{k-1}^{\circ}-x_{\star}\right\|^{2}\right) \\
& +\left(1-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\right)\left\langle\mu x_{k}^{\circ}-\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-\mu x_{\star}, x_{k}^{\circ}-x_{\star}\right\rangle+\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left\langle\mu x_{k}^{\circ}-\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-\mu x_{\star}, x_{k}^{\circ}-x_{k-1}^{\circ}\right\rangle \\
= & \left(g\left(x_{k}^{\circ}\right)-g_{\star}\right)-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left(g\left(x_{k-1}^{\circ}\right)-g_{\star}-\frac{\mu}{2}\left\|x_{k-1}^{\circ}-x_{\star}\right\|^{2}+\frac{\mu}{2}\left\|x_{k}^{\circ}-x_{\star}\right\|^{2}\right) \\
& -\left(1-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\right) \frac{\mu}{2}\left\|x_{k}^{\circ}-x_{\star}\right\|^{2}+\left(1-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\right)\left\langle\mu x_{k}^{\circ}-\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-\mu x_{\star}, x_{k}^{\circ}-x_{\star}\right\rangle \\
& \quad\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left\langle\mu x_{k}^{\circ}-\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-\mu x_{\star}, x_{k}^{\circ}-x_{k-1}^{\circ}\right\rangle \\
= & \left(g\left(x_{k}^{\circ}\right)-g_{\star}\right)-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left(g\left(x_{k-1}^{\circ}\right)-g_{\star}\right)+\left(1-\frac{1}{\sqrt{q}}\right)^{2} \frac{\mu}{2}\left\langle x_{k-1}^{\circ}-x_{k}^{\circ}, x_{k-1}^{\circ}+x_{k}^{\circ}-2 x_{\star}\right\rangle \\
& +\left(1-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\right)\left\langle\frac{\mu}{2}\left(x_{k}^{\circ}-x_{\star}\right)-\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right), x_{k}^{\circ}-x_{\star}\right\rangle \\
+ & \left(1-\frac{1}{\sqrt{q}}\right)^{2}\left\langle-\mu x_{k}^{\circ}+\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)+\mu x_{\star}, x_{k-1}^{\circ}-x_{k}^{\circ}\right\rangle \\
= & \left(g\left(x_{k}^{\circ}\right)-g_{\star}\right)-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left(g\left(x_{k-1}^{\circ}\right)-g_{\star}\right)+\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left\langle\frac{\mu}{2}\left(x_{k-1}^{\circ}-x_{k}^{\circ}\right)+\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right), x_{k-1}^{\circ}-x_{k}^{\circ}\right\rangle \\
& +\left(1-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\right)\left\langle\frac{\mu}{2}\left(x_{k}^{\circ}-x_{\star}\right)-\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right), x_{k}^{\circ}-x_{\star}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
&=-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\left(g\left(x_{k-1}^{\circ}\right)-g\left(x_{k}^{\circ}\right)-\left\langle\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right), x_{k-1}^{\circ}-x_{k}^{\circ}\right\rangle-\frac{\mu}{2}\left\|x_{k-1}^{\circ}-x_{k}^{\circ}\right\|^{2}\right) \\
&-\left(1-\left(1-\frac{1}{\sqrt{q}}\right)^{2}\right)\left(g_{\star}-g\left(x_{k}^{\circ}\right)-\left\langle\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right), x_{\star}-x_{k}^{\circ}\right\rangle-\frac{\mu}{2}\left\|x_{\star}-x_{k}^{\circ}\right\|^{2}\right) \\
& \leq 0
\end{aligned}
$$

where the inequality follows from strong convexity inequalities.
The case $U_{1} \leq\left(1-\frac{1}{\sqrt{q}}\right)^{2} U_{0}$ follows from the same argument with $x_{-1}^{\circ}=x_{0}$. Thus $U_{k+1} \leq\left(1-\frac{1}{\sqrt{q}}\right)^{2} U_{k}$ for $k=-1,0, \ldots$.

Following proof is a close adaptation of the convergence analysis of ITEM [19, Theorem 3].

Proof of Theorem 4. In the setup of Theorem 4, define

$$
U_{k}=A_{k}\left(g\left(x_{k-1}^{\circ}\right)-g_{\star}-\frac{\mu}{2}\left\|x_{k-1}^{\circ}-x_{\star}\right\|^{2}\right)+\left(A_{k} \mu+\mu+\frac{1}{\lambda}\right)\left\|z_{k}-x_{\star}\right\|^{2}
$$

for $k=0,1, \ldots$ By plugging in the definitions and performing direct calculations, we get

$$
U_{0}=\left(\mu+\frac{1}{\lambda}\right)\left\|x_{0}-x_{\star}\right\|^{2}
$$

We can show that $\left\{U_{k}\right\}_{k=0}^{\infty}$ is nonincreasing. Using strong convexity, we conclude the rate with

$$
\left(A_{k} \mu+\mu+\frac{1}{\lambda}\right)\left\|z_{k}-x_{\star}\right\|^{2} \leq U_{k} \leq U_{0}=\left(\mu+\frac{1}{\lambda}\right)\left\|z_{0}-x_{\star}\right\|^{2}
$$

And by

$$
A_{k}=\frac{(1+q) A_{k-1}+2\left(1+\sqrt{\left(1+A_{k-1}\right)\left(1+q A_{k-1}\right)}\right)}{(1-q)^{2}} \geq \frac{(1+q) A_{k-1}+2 \sqrt{q A_{k-1}^{2}}}{(1-q)^{2}}=\frac{A_{k-1}}{(1-\sqrt{q})^{2}}
$$

we get theorem through direct calculation.
Now we complete the proof by showing that $\left\{U_{k}\right\}_{k=0}^{\infty}$ is nonincreasing. For $k=1,2, \ldots$, we have
$U_{k+1}-U_{k}$

$$
\begin{aligned}
& =4 \frac{\lambda}{1-q} K_{2} P\left(A_{k+1}, A_{k}\right)\left\|(1-q) A_{k+1} \tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right)-\frac{\mu}{1+\lambda \mu} A_{k}\left(x_{k-1}^{\circ}-x_{\star}\right)+\frac{\mu}{1+\lambda \mu} K_{3}\left(z_{k}-x_{\star}\right)\right\|^{2} \\
& \quad-\frac{1}{\lambda(1-q)} K_{1} P\left(A_{k+1}, A_{k}\right)\left\|z_{k}-x_{\star}\right\|^{2} \\
& \quad+A_{k}\left(g\left(x_{k}^{\circ}\right)-g\left(x_{k-1}^{\circ}\right)+\left\langle\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right), x_{k-1}^{\circ}-x_{k}^{\circ}\right\rangle+\frac{\mu}{2}\left\|x_{k-1}^{\circ}-x_{k}^{\circ}\right\|^{2}\right) \\
& \quad \quad+\left(A_{k+1}-A_{k}\right)\left(g\left(x_{k}^{\circ}\right)-g_{\star}+\left\langle\tilde{\nabla}_{1 / \lambda} g\left(x_{k}\right), x_{\star}-x_{k}^{\circ}\right\rangle+\frac{\mu}{2}\left\|x_{\star}-x_{k}^{\circ}\right\|^{2}\right)
\end{aligned}
$$

$$
\leq 0
$$

where inequality follows from the strong convexity inequality,

$$
\begin{aligned}
K_{1} & =\frac{q^{2}}{(1+q)^{2}+(1-q)^{2} q A_{k+1}} \\
K_{2} & =\frac{(1+q)^{2}+(1-q)^{2} q A_{k+1}}{(1-q)^{2}\left(1+q+q A_{k}\right)^{2} A_{k+1}^{2}} \\
K_{3} & =(1+q) \frac{(1+q) A_{k}-(1-q)\left(2+q A_{k}\right) A_{k+1}}{(1+q)^{2}+(1-q)^{2} q A_{k+1}}
\end{aligned}
$$

$P(x, y)=(y-(1-q) x)^{2}-4 x(1+q y)$ and $P\left(A_{k+1}, A_{k}\right)=0$ by condition, and equality follows from direct calculation.

The case $U_{1} \leq U_{0}$ follows from the same argument with $x_{-1}^{\circ}=x_{0}$. Thus $U_{k+1} \leq U_{k}$ for $k=0,1, \ldots$.

H Other geometric and non-geometric views of acceleration

Geometric descent is an accelerated method designed expressly based on a geometric principle of shrinking balls for the smooth strongly convex setup [13, 16, 42]. Quadratic averaging is equivalent to geometric descent but has an interpretation of averaging quadratic lower bounds [30]. Both methods implicitly induce the collinear structure through steps equivalent to defining z_{k+1} as a convex combination of z_{k} and x_{k}^{++}. (In fact, our x_{k}^{++}notation comes from the geometric descent paper [13].) However, this line of work does not establish a rate faster than FGM or its corresponding proximal version, nor does it extend the geometric principle to the non-strongly convex setup.
The method of similar triangles (MST) is an accelerated method [32, 60, 1] with iterates forming similar triangles analogous to our illustration of FGM in Figure 1. One can also interpret acceleration as an approximate proximal point method with alternating upper and lower bounds and obtain the structure of similar triangles as a consequence [1]. The parallel structure we present generalizes the structure of similar triangles; the illustration of OGM and OGM-G in Figure 1 exhibits the parallel structure but not the similar triangles structure. To the best of our knowledge, the parallel structure we present is a geometric structure of acceleration that has not been considered, explicitly or implicitly, in prior works.
Linear coupling [4] interprets acceleration as a unification of gradient descent and mirror descent. The auxiliary iterates of our setup are referred to as the mirror descent iterates in the linear coupling viewpoint. However, the primary motivation of linear coupling is to unify gradient descent, which reduces the function value much when the gradient is large, with mirror descent, which reduces the function value much when the gradient is small. This motivation does not seem to be applicable to the problem setup of minimizing gradient magnitudes, the setup of OGM-G and FISTA-G.

The scaled relative graph (SRG) is another geometric framework for analyzing optimization algorithms; it establishes a correspondence between algebraic operations on nonlinear operators with geometric operations on subsets of the 2D plane [66, 40, 41, 68]. The SRG demonstrated that geometry can serve as a powerful tool for the analysis of optimization algorithms. However, there is no direct connection as the SRG has not been used to analyze accelerated optimization algorithms.

I Experiment

For scientific reproducibility, we include code for generating the synthetic data of the experiments. We furthermore clarify that since FPGM-m, FISTA, and FISTA+FISTA-G are not anytime algorithms (i.e., since the total iteration count K must be known in advance), the points in the plot of Figure 4 were generated with
a separate iteration. In other words, the plots for ISTA and FISTA were generated each with a single for-loop, while the plots for FPGM-m, FISTA, and FISTA+FISTA-G were generated with nested double for-loops.

```
import numpy as np
np.random.seed (419)
#l1 norm problem data
m, n, k = 60, 100, 20 # dimensions
lamb = 0.1 # lasso penalty constant
L = 324
x_true = np.zeros(n)
x_true[:k] = np.random.randn(k)
np.random.shuffle(x_true)
[U,_] = np.linalg.qr(np.random.randn(m,m))
[V,_] = np.linalg.qr(np.random.randn(n,n))
Sigma = np.zeros((m,n))
np.fill_diagonal(Sigma,np.abs(np.random.randn(m)))
np.fill_diagonal(Sigma[m-3:m,m-3:m],np.sqrt(L))
A = U @ Sigma @ V.T
b = A@x_true + 0.01 * np.random.randn(m)
#nuclear problem data
m, n, k = 60, 20, 20 # dimensions
lamb = 0.1 # nuclear norm penalty constant
L = 400
n2 = int(n* (n+1)/2)
x_true = np.zeros(n2)
x_true[:k] = np.random.randn(k)
np.random.shuffle(x_true)
[U,_] = np.linalg.qr(np.random.randn(m,m))
[V,_] = np.linalg.qr(np.random.randn(n2,n2))
Sigma = np.zeros((m,n2))
np.fill_diagonal(Sigma,np.abs(np.random.randn(m)))
np.fill_diagonal(Sigma[m-3:m,m-3:m],np.sqrt(L))
A = U @ Sigma @ V.T
b = A@x_true + 0.01 * np.random.randn(m)
```

