
A Method reference

In this section, we list the methods considered in this work in two forms: a form with momentum and correction terms and a form with the
auxiliary iterates. The momentum and correction terms of an iteration are loosely defined as

xk+1 = x+k + ak(x+k − x
+
k−1)︸ ︷︷ ︸

momentum term

+ bk(x+k − xk)︸ ︷︷ ︸
correction term

.

In the proximal-point and prox-grad setup, similar definitions are made with the x◦k and x⊕k terms. One of our main points is that the form
with the auxiliary iterates has the advantage of better revealing the parallel and collinear structure, although the form with momentum and
correction terms is more commonly presented in the accelerated methods literature. We separate the tables into existing methods and the
novel methods we present.

A.1 Existing Methods

Method name With momentum With auxiliary iterates

FGM [57]

xk+1 = x+k +
θk − 1

θk+1
(x+k − x

+
k−1)

for k = 0, 1, . . . , where x+−1 := x0, θ0 = 1, and θk+1 =
1+
√

1+4θ2k
2 for k = 0, 1, . . .

xk =
θ2k−1
θ2k

x+k−1 +

(
1−

θ2k−1
θ2k

)
zk

zk+1 = zk − θk
1

L
∇f(xk)

for k = 0, 1, . . . , where z0 = x0 and θ−1 = 0

OGM [29, 44]

xk+1 = x+k +
θk − 1

θk+1
(x+k − x

+
k−1)

+
θk
θk+1

(x+k − xk)

for k = 0, 1, . . . ,K − 1, where x+−1 := x0, θ0 = 1,

θk+1 =
1+
√

1+4θ2k
2 for k = 0, 1, . . . ,K − 1, and θK =

1+
√

1+8θ2K−1

2

xk =
θ2k−1
θ2k

x+k−1 +

(
1−

θ2k−1
θ2k

)
zk

zk+1 = zk − 2θk
1

L
∇f(xk)

for k = 0, 1, . . . ,K, where z0 = x0 and θ−1 = 0

OGM-G [47]

xk+1 = x+k +
(θk − 1)(2θk+1 − 1)

θk(2θk − 1)
(x+k − x

+
k−1)

+
2θk+1 − 1

2θk − 1
(x+k − xk)

for k = 0, 1, . . . ,K − 1, where x+−1 := x0, θK = 1,

θk =
1+
√

1+4θ2k+1

2 for k = 1, 2, . . . ,K − 1, and θ0 =
1+
√

1+8θ21
2

xk =
θ4k+1

θ4k
x+k−1 +

(
1−

θ4k+1

θ4k

)
zk

zk+1 = zk − θk
1

L
∇f(xk)

for k = 0, 1, . . . ,K − 1, where z0 = x0 and z1 = z0 −
θ0+1
2

1
L∇f(x0)

SC-FGM
[60, (2.2.22)]

xk+1 = x+k +

√
κ− 1√
κ+ 1

(x+k − x
+
k−1)

for k = 0, 1, . . . , where κ = L
µ and x+−1 := x0

xk =

√
κ√

κ+ 1
x+k−1 +

1√
κ+ 1

zk

zk+1 =
1√
κ
x++
k +

√
κ− 1√
κ

zk

for k = 0, 1, . . . , where z0 = x0

non-stationary
SC-FGM [19, §4.5]

xk+1 = x+k + αk(x+k − x
+
k−1)

where κ = L
µ , x+−1 := x0, A0 = 0, A1 = (1− κ−1)−1,

Ak+2 =
2Ak+2+1+

√
4Ak+1+4κ−1A2

k+1+1

2(1−κ−1) , and

αk = (Ak+2−Ak+1)(Ak+1(1−κ−1)−Ak−1)
Ak+2(2κ−1Ak+1+1)−κ−1A2

k+1
for k = 0, 1, . . .

xk = (1− γk)x+k−1 + γkzk

zk+1 = κ−1δkx
++
k +

(
1− κ−1δk

)
zk

for k = 0, 1, . . . where z0 = x0,
γk = (Ak+1−Ak)(1+κ

−1Ak)
Ak+1+2κ−1AkAk+1−κ−1A2

k
, and δk = Ak+1−Ak

1+κ−1Ak+1

for k = 0, 1, . . .
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Method name With momentum With auxiliary iterates

SC-OGM [63]

xk+1 = x+k +
κ− 1√

8κ+ 1 + 2 + κ
(x+k − x

+
k−1)

+
κ− 1√

8κ+ 1 + 2 + κ
(x+k − xk)

for k = 0, 1, . . . , where κ = L
µ and x+−1 := x0

xk =

√
8κ+ 1 + 3

2(
√

8κ+ 1 + 2 + κ)
x+k−1

+

√
8κ+ 1 + 1 + 2κ

2(
√

8κ+ 1 + 2 + κ)
zk

zk+1 =

√
1 + 8κ+ 5− 2κ√

1 + 8κ+ 3
x++
k +

2κ− 2√
1 + 8κ+ 3

zk

for k = 0, 1, . . . , where z0 = x0

TMM [78]

xk+1 = x+k +
(
√
κ− 1)2√

κ(
√
κ+ 1)

(x+k − x
+
k−1)

+

√
κ− 1√
κ

(x+k − xk)

for k = 0, 1, . . . , where x+−1 := x0 and κ = L
µ

xk =

√
κ− 1√
κ+ 1

x+k−1 +
2√
κ+ 1

zk

zk+1 =
1√
κ
x++
k +

√
κ− 1√
κ

zk

for k = 0, 1, . . . , where z0 = x0

Geometric
descent
[13, 30]

z0 = x++
0 , R2

0 =

(
1− 1

κ

)
‖∇f(x0)‖2

µ2

λk+1 = arg min
λ∈R

f((1− λ)ct + λx+k )

xk+1 = (1− λk+1)zk + λk+1x
+
k

If |∇f(xk)‖2
µ2 <

R2
k

2 ,

zk+1 = x++
k+1

R2
k+1 =

‖∇f(xk+1)‖2/µ2

1− κ−1
.

If ‖∇f(xk)‖2
µ2 ≥ R2

k

2 ,

zk+1 = (1− R2
k + ‖xk+1 − zk‖2

2‖x++
k+1 − zk‖2

)zk +
R2
k + ‖xk+1 − zk‖2

2‖x++
k+1 − zk‖2

x++
k+1

R2
k+1 = R2

k −
‖∇f(xk)‖2

µ2κ
−

(
R2
k + ‖xk+1 − zk‖2

2‖x++
k+1 − zk‖2

)2

ITEM [73]

xk+1 = x+k + αk(x+k − x
+
k−1) + βk(x+k − xk)

k = 0, 1, . . . , where κ = L
µ , x+−1 := x0, A0 = 0,

A1 = (1− κ−1)−1,

Ak+2 =
(1+κ−1)Ak+1+2(1+

√
(1+Ak+1)(1+κ−1Ak+1)

(1−κ−1)2 ,
αk = (2(1+κ−1)+κ−1(3+κ−1)Ak+(1−κ−1)2κ−1Ak+1)((1−κ−1)Ak+2−Ak+1)Ak

2(1−κ−1)(1+κ−1+κ−1Ak)((1−κ−1)Ak+1−Ak)Ak+2
,

and βk =
(κ−1A2

k+2(1−κ−1)Ak+1+(1−κ−1)κ−1AkAk+1)((1−κ−1)Ak+2−Ak+1)
2(1+κ−1+κ−1Ak)((1−κ−1)Ak+1−Ak)Ak+2

for k = 0, 1, . . .

xk = γkx
+
k−1 + (1− γk)zk

zk+1 = κ−1δkx
++
k + (1− κ−1δk)zk

for k = 0, 1, . . . , where z0 = x0, A0 = 0, κ = L
µ ,

γk = Ak

(1−κ−1)Ak+1
and δk = (1−κ−1)2Ak+1−(1+κ−1)Ak

1+κ−1+κ−1Ak

for k = 0, 1, . . .

ISTA [20] xk+1 = x⊕k for k = 0, 1, . . .
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Method name With momentum With auxiliary iterates

FISTA [11]

xk+1 = x⊕k +
θk − 1

θk+1
(x⊕k − x

⊕
k−1)

for k = 0, 1, . . . , where x⊕−1 := x0, θ0 = 1, and θk+1 =
1+
√

1+4θ2k
2 for k = 0, 1, . . .

xk =
θ2k−1
θ2k

x⊕k−1 +

(
1−

θ2k−1
θ2k

)
zk

zk+1 = zk − θk
1

L
∇̃LF (xk)

for k = 0, 1, . . . , where z0 = x0

FPGM-m [45]

xk+1 = x⊕k +
θk − 1

θk+1
(x⊕k − x

⊕
k−1) for 0 ≤ k ≤ m− 1

xk+1 = x⊕k for m ≤ k ≤ K

where x⊕−1 := x0, θ0 = 1, and θk+1 =
1+
√

1+4θ2k
2 for k = 0, 1, . . . ,m− 1

Güler 1 [37]
xk+1 = x◦k +

θk − 1

θk+1
(x◦k − x◦k−1)

for k = 0, 1, . . . , where x◦−1 := x0, θ0 = 1, and θk+1 =
1+
√

1+4θ2k
2 for k = 0, 1, . . .

xk =
θ2k−1
θ2k

x◦k−1 +

(
1−

θ2k−1
θ2k

)
zk

zk+1 = zk − θk∇̃1/λg(xk)

for k = 0, 1, . . . , where z0 = x0 and θ−1 = 0

Güler 2 [37]
xk+1 = x◦k +

θk − 1

θk+1
(x◦k − x◦k−1) +

θk
θk+1

(x◦k − xk)

for k = 0, 1, . . . , where x◦−1 := x0, θ0 = 1, and θk+1 =
1+
√

1+4θ2k
2 for k = 0, 1, . . .

xk =
θ2k−1
θ2k

x◦k−1 +

(
1−

θ2k−1
θ2k

)
zk

zk+1 = zk − 2θk∇̃1/λg(xk)

for k = 0, 1, . . . , where z0 = x0 and θ−1 = 0
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A.2 Novel methods

Method name With momentum With auxiliary iterates

FISTA-G

xk+1 = x⊕k +
ϕk+1 − ϕk+2

ϕk − ϕk+1
(x⊕k − x

⊕
k−1)

for k = 0, 1, . . . ,K − 1, where x⊕−1 := x0, ϕK+1 = 0,
ϕK = 1, and
ϕk =

ϕ2
k+2−ϕk+1ϕk+2+2ϕ2

k+1+(ϕk+1−ϕk+2)
√
ϕ2

k+2+3ϕ2
k+1

ϕk+1+ϕk+2

for k = 0, 1, . . . ,K − 1

xk =
ϕk+1

ϕk
x⊕k−1 +

(
1− ϕk+1

ϕk

)
zk

zk+1 = zk −
ϕk

ϕk − ϕk+1

1

L
∇̃LF (xk)

for k = 0, 1, . . . ,K, where z0 = x0

G-FISTA-G

xk+1 = x⊕k + ϕk+1−ϕk+2

ϕk−ϕk+1
(x⊕k − x

⊕
k−1)

+ ϕk+1−ϕk+2

ϕk+1

(
τkϕk − τk+1ϕk+1 − ϕk

ϕk−ϕk+1

)
(x⊕k − xk)

for k = 0, 1, . . . ,K − 1, where x⊕−1 := x0,
τK = ϕK = 1, ϕK+1 = 0, and {ϕk}K−1k=0 and the
nondecreasing nonnegative sequence {τk}K−1k=0 satisfying
τkϕk − τk+1ϕk+1 = ϕk+1(τk+1 − τk) + 1,
and (τkϕk − τk+1ϕk+1)(τk+1 − τk)− τk+1

2 ≤ 0

for k = 0, 1, . . . ,K − 1

xk =
ϕk+1

ϕk
x⊕k−1 +

(
1− ϕk+1

ϕk

)
zk

zk+1 = zk − (τkϕk − τk+1ϕk+1)
1

L
∇̃LF (xk)

for k = 0, 1, . . . ,K, where z0 = x0

FGM-G

xk+1 = x+k +
ϕk+1 − ϕk+2

ϕk − ϕk+1
(x+k − x

+
k−1)

for k = 0, 1, . . . ,K − 1, where x+−1 := x0, ϕK+1 = 0,
ϕK = 1, and
ϕk =

ϕ2
k+2−ϕk+1ϕk+2+2ϕ2

k+1+(ϕk+1−ϕk+2)
√
ϕ2

k+2+3ϕ2
k+1

ϕk+1+ϕk+2

for k = 0, 1, . . . ,K − 1

xk =
ϕk+1

ϕk
x+k−1 +

(
1− ϕk+1

ϕk

)
zk

zk+1 = zk −
ϕk

ϕk − ϕk+1

1

L
∇f(xk)

for k = 0, 1, . . . ,K, where z0 = x0

G-FGM-G

xk+1 = x+k + ϕk+1−ϕk+2

ϕk−ϕk+1
(x+k − x

+
k−1)

+ ϕk+1−ϕk+2

ϕk+1

(
τkϕk − τk+1ϕk+1 − ϕk

ϕk−ϕk+1

)
(x+k − xk)

for k = 0, 1, . . . ,K−1 where x+−1 := x0, τK = ϕK = 1,
ϕK+1 = 0, and {ϕk}K−1k=0 and the nondecreasing nonneg-
ative sequence {τk}K−1k=0 satisfying
τkϕk − τk+1ϕk+1 = ϕk+1(τk+1 − τk) + 1 and
(τkϕk − τk+1ϕk+1)(τk+1 − τk) − τk+1 ≤ 0 for

k = 0, 1, . . . ,K − 1

xk =
ϕk+1

ϕk
x+k−1 +

(
1− ϕk+1

ϕk

)
zk

zk+1 = zk − (τkϕk − τk+1ϕk+1)
1

L
∇f(xk)

for k = 0, 1, . . . ,K, where z0 = x0

Güler-G

xk+1 = x◦k+
(θk − 1)(2θk+1 − 1)

θk(2θk − 1)
(x◦k − x◦k−1)

+
2θk+1 − 1

2θk − 1
(x◦k − xk)

for k = 0, 1, . . . ,K − 1, where x◦−1 := x0, θK = 1, and

θk =
1+
√

1+4θ2k+1

2 for k = 0, 1, . . . ,K − 1

xk =
θ4k+1

θ4k
x◦k−1 +

(
1−

θ4k+1

θ4k

)
zk

zk+1 = zk − θk∇̃1/λg(xk)

for k = 0, 1, . . . ,K, where z0 = x0 and θK+1 = 0
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Method name With momentum With auxiliary iterates

G-Güler-G

xk+1 = x◦k + ϕk+1−ϕk+2

ϕk−ϕk+1
(x◦k − x◦k−1)

+ ϕk+1−ϕk+2

ϕk+1

(
τkϕk − τk+1ϕk+1 − ϕk

ϕk−ϕk+1

)
(x◦k − xk)

for k = 0, 1, . . . ,K−1 where x◦−1 := x0, τK = ϕK = 1,
ϕK+1 = 0, and {ϕk}K−1k=0 and the nondecreasing nonneg-
ative sequence {τk}K−1k=0 satisfying
τkϕk − τk+1ϕk+1 = ϕk+1(τk+1 − τk) + 1 and
(τkϕk − τk+1ϕk+1)(τk+1 − τk) − τk+1 ≤ 0 for k =

0, 1, . . . ,K − 1

xk =
ϕk+1

ϕk
x◦k−1 +

(
1− ϕk+1

ϕk

)
zk

zk+1 = zk − (τkϕk − τk+1ϕk+1)
1

L
∇̃1/λg(xk)

for k = 0, 1, . . . ,K, where z0 = x0

Proximal
-TMM

xk+1 = x◦k +
(
√
q − 1)2
√
q + 1

(x◦k − x◦k−1)

+ (1−√q)(x◦k − xk)

for k = 0, 1, . . . , where x◦−1 := x0 and q = λµ
λµ+1

xk =
1−√q
1 +
√
q
x◦k−1 +

(
1−

1−√q
1 +
√
q

)
zk

zk+1 =
√
qx◦◦k + (1−√q)zk

for k = 0, 1, . . . , where x◦◦k = xk−
(
λ+ 1

µ

)
∇̃1/λg(xk),

and x◦−1 = x0 = z0 for k = 0, 1, . . .

Proximal
-ITEM

xk+1 = x◦k + αk(x◦k − x◦k−1) + βk(x◦k − xk)

for k = 0, 1, . . . , where q = λµ
λµ+1 , x◦−1 := x0, A0 = 0,

A1 = (1− q)−1,
Ak+2 =

(1+q)Ak+1+2(1+
√

(1+Ak+1)(1+qAk+1)

(1−q)2 ,

αk = (2(1+q)+q(3+q)Ak+(1−q)2qAk+1)((1−q)Ak+2−Ak+1)Ak

2(1−q)(1+q+qAk)((1−q)Ak+1−Ak)Ak+2
,

and βk =
(qA2

k+2(1−q)Ak+1+(1−q)qAkAk+1)((1−q)Ak+2−Ak+1)
2(1+q+qAk)((1−q)Ak+1−Ak)Ak+2

for k = 0, 1, . . .

xk = γkx
◦
k−1 + (1− γk)zk

zk+1 = qδkx
◦◦
k + (1− qδk)zk

for k = 0, 1, . . . , where z0 = x0, x◦◦k = xk −(
λ+ 1

µ

)
∇̃1/λg(xk), γk = Ak

(1−q)Ak+1
, and δk =

(1−q)2Ak+1−(1+q)Ak

2(1+q+qAk)
for k = 0, 1, . . .
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B Omitted proofs of geometric observation and form of algorithm

In this section, we formally establish the basic geometric claims made in the main body.

First, we state parallel lemma (left) and Menelaus’s lemma (right), which are classical results in Euclidean
geometry:

A B B′

C

C′

Parallel lemma

BC ‖ B′C′ if and only if AB

BB′
= AC

CC′

B A

C

A′

C′

B′

Menelaus’s lemma

A′, B′, C′ is on line if and only if A′B
AA′
· B′C
BB′
· C′A
CC′

= 1

B.1 Omitted proofs of observations

Proof of Observation 1. Figure 1 (left) depicts the plane of iteration of FGM. In the plane of iteration of
FGM,

‖xk − x+k−1‖
‖zk − xk‖

=
1

θk − 1
=

1
θk−1
θk+1

+ (θk−1)(θk+1−1)
θk+1

=
‖x+k − x

+
k−1‖

‖xk+1 − x+k ‖+ ‖zk+1 − xk+1‖
=
‖x+k − x

+
k−1‖

‖zk+1 − x+k ‖

by definition of zk, xk+1, zk+1. Then the result comes from parallel lemma.

Proof of Observation 2. Figure 1 (middle) depicts the plane of iteration of OGM. By extending x+k−1x
+
k and

defining new point B that meets with←−−−→zkzk+1, observation can also be shown by parallel lemma.

Proof of Observation 3. Figure 2 (left) depicts the plane of iteration of SC-FGM. Apply Menelaus’s lemma
for4x+k−1xkx

+
k and zkzk+1x

++
k , that

‖zk − x+k−1‖
‖zk − xk‖

·
‖zk+1 − x+k ‖
‖zk+1 − x+k−1‖

·
‖x++

k − xk‖
‖x++

k − x+k ‖
=

√
κ+ 1√
κ
·
√
κ− 1√
κ
·

1
µ

1
µ −

1
L

= 1.

Proof of Observation 4. Figure 2 (middle) depicts the plane of iteration of TMM. By extending x+k xk+1

and defining new point Q that meets with
←−−−→
x+k−1xk, Observation 4 can be shown by Menelaus’s lemma for

4Qxkx+k and zkzk+1x
++
k .

B.2 Parallel structure from momentum-based iteration

Lemma 1. An iteration of the form

xk+1 = x+k +
ak − 1

ak+1
(x+k − x

+
k−1) + bk+1(x+k − xk)

20



A

B

x+k−1 xk zk

zk+1

x+k

xk+1

A

B

x+k−1 xk zk

zk+1

x+k

xk+1

Figure 5: Lemma 1 and Lemma 2

for k = 0, 1, . . . ,K − 1, where 1 ≤ a0, 1 < ak for k = 1, 2, . . . ,K − 1, and 1 ≤ aK , can be equivalently
expressed as

xk =
ϕk−1
ϕk

x+k−1 +

(
1− ϕk−1

ϕk

)
zk

zk+1 = zk −
ak + ak+1bk+1

L
∇f(xk)

for k = 0, 1, . . . ,K, where 0 = ϕ−1, 0 < ϕk, ak−1ak
= ϕk−1

ϕk
for k = 1, 2, . . . ,K, and ϕK ≤ ∞. (If

ϕK =∞, we define ϕK−1/ϕK = 0.)

Proof. First, suppose xk is not a minimizer which implies ∇f(xk) 6= 0 and neither x+k−1, xk, zk are not the
same. From first iteration of algorithm with auxiliary iterates, we know x+k−1, xk, zk are collinear. Set A on

the
←−−−→
x+k−1x

+
k thatAxk+1 ‖ xkx+k . LetB on the

←−→
x+k A that zkB ‖ xkx+k . Lastly, we set zk+1 :=

←→
zkB∩

←−−−→
x+k xk+1.

Then, the condition for parallel term style is satisfied. We will show that the formula above also holds.

Since xkx+k ‖ zkB, parallel lemma indicates that

‖zk − xk‖∥∥xk − x+k−1∥∥ =

∥∥B − x+k ∥∥∥∥x+k − x+k−1∥∥ =
ϕk−1

ϕk − ϕk−1

Since Axk+1 ‖ Bzk+1, parallel lemma indicates that∥∥zk+1 − x+k
∥∥∥∥xk+1 − x+k
∥∥ =

∥∥B − x+k ∥∥∥∥A− x+k ∥∥ =
ϕk+1

ϕk+1 − ϕk

Then, ∥∥A− x+k ∥∥∥∥x+k − x+k−1∥∥ =
ak − 1

ak+1
=
ϕk+1 − ϕk
ϕk+1

· ϕk−1
ϕk − ϕk−1

and this relation holds if ak+1 = ϕk+1

ϕk+1−ϕk
⇐⇒ ak+1−1

ak+1
= ϕk

ϕk+1
. (This strong condition is for easy

Lyapunov analysis).

Lastly, by parallel lemma and previous condition,

zk+1 −B =

∥∥zk+1 − x+k
∥∥∥∥xk+1 − x+k
∥∥ (xk+1 −A) = ak+1bk+1(x+k − xk)
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since ‖xk+1 −A‖ = bk+1

∥∥x+k − xk∥∥ and

B − zk =

∥∥zk − x+k−1∥∥∥∥xk − x+k−1∥∥ (x+k − xk) = ak(x+k − xk),

which indicates

zk+1 = zk − (ak + ak+1bk+1)
1

L
∇f(xk).

If xk is a minimizer which implies ∇f(xk) = 0 and zk+1 − zk = x+k − xk = 0, this is degenerate case. In
this case, proof is trivial.

Lemma 2. An iteration of the form

xk =
ϕk−1
ϕk

x+k−1 +

(
1− ϕk−1

ϕk

)
zk

zk+1 = zk −
φk
L
∇f(xk)

for k = 0, 1, . . . ,K, where {ϕk}Kk=−1 is a nonnegative increasing sequence, can be equivalently expressed
as

xk+1 = x+k +
ϕk+1 − ϕk
ϕk+1

· ϕk−1
ϕk − ϕk−1

(x+k − x
+
k−1) +

ϕk+1 − ϕk
ϕk+1

(
φk −

ϕk
ϕk − ϕk−1

)
(x+k − xk)

for k = 0, 1, . . . ,K.

Proof. Suppose xk is not a minimizer which implies∇f(xk) 6= 0. Set A on the
←−−−→
x+k−1x

+
k that Axk+1 ‖ xkx+k .

Let B on the
←−−−→
x+k−1x

+
k ∩ zkzk+1. Since xkx+k ‖ zkB and Axk+1 ‖ Bzk+1,

A− x+k = (B − x+k )− (B −A) = (B − x+k )− ϕk
ϕk+1

(B − x+k )

=
ϕk+1 − ϕk
ϕk+1

(B − x+k ) =
ϕk+1 − ϕk
ϕk+1

· ϕk−1
ϕk − ϕk−1

(x+k − x
+
k−1).

In addition, since xkx+k ‖ zkB and Axk+1 ‖ Bzk+1,

xk+1 −A =
ϕk+1 − ϕk
ϕk+1

(zk+1 −B) =
ϕk+1 − ϕk
ϕk+1

((zk+1 − zk)− (B − zk))

=
ϕk+1 − ϕk
ϕk+1

(
φk(x+k − xk)− ϕk

ϕk − ϕk−1
(x+k − xk)

)
=
ϕk+1 − ϕk
ϕk+1

(
φk −

ϕk
ϕk − ϕk−1

)
(x+k − xk).

If xk is a minimizer which implies ∇f(xk) = 0 and zk+1 − zk = x+k = xk = 0, this is degenerate case. In
this case, proof is trivial.

By Lemmas 1 and 2, there is a correspondence between the two algorithm forms.
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Figure 6: Lemma 3 and Lemma 4

B.3 Collinear structure from momentum-based iteration

Lemma 3. An iteration of the form

xk+1 = x+k + ak(x+k − x
+
k−1) + bk(x+k − xk),

where 0 < ak and 0 ≤ bk, for k = 0, 1, . . . . can be equivalently expressed as

xk = (1− ϕk)x+k−1 + ϕkzk

zk+1 =

(
1− akϕk

(1− ϕk)ϕk+1

)
x++
k +

akϕk
(1− ϕk)ϕk+1

zk

for k = 0, 1, . . . , where ϕk+1 = (ak + bk) · µ
L−µ + akϕk

1−ϕk
· L
L−µ , provided that 1 > ϕk > 0 for k = 0, 1, . . . .

Proof. Suppose xk is not a minimizer which implies∇f(xk) 6= 0 and neither x+k−1, xk, zk are not the same.
From first iteration of algorithm with auxiliary iterates, we know x+k−1, xk, zk are collinear. We inductively

set zk, and we set Q :=
←−−−→
x+k−1xk ∩

←−−−→
x+k xk+1 and zk+1 :=

←−−−→
x+k xk+1∩

←−−→
x++
k zk. Set A on the

←−−−→
x+k−1x

+
k that Axk+1

is parallel to xkx+k . Set R :=
←−−−→
x+k−1zk ∩Axk+1. Set P on the

←−−−→
x+k−1zk that Pzk+1 is parallel to xkx+k .

By parallel lemma,
‖x+k − xk‖
‖A−R‖

=
‖x+k − x

+
k−1‖

‖A− x+k−1‖
=

1

1 + ak

and
‖x+k − xk‖
‖xk+1 −R‖

=
‖x+k − xk‖

‖xk+1 −A‖+ ‖A−R‖
=

1

1 + ak + bk
.

Then, we have
‖xk −Q‖
‖R− xk‖

=
‖x+k − xk‖

‖R− xk+1‖ − ‖x+k − xk‖
=

1

ak + bk

and
‖xk − x+k−1‖
‖xk −Q‖

=
‖xk − x+k−1‖
‖R− xk‖

· ‖R− xk‖
‖xk −Q‖

=
‖xk − x+k−1‖
‖R− xk‖

·
‖A− x+k ‖
‖x+k − x

+
k−1‖

=
ak + bk
ak

.

Also parallel lemma implies

‖R− xk‖
‖P −R‖

=
‖xk+1 − x+k ‖
‖zk+1 − xk+1‖

=
ϕk+1

1− ϕk+1
.
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Applying Menelaus’s lemma to4Qxkx+k and zkzk+1x
++
k ,

‖zk+1 − x+k ‖
‖zk+1 −Q‖

·
‖x++

k − xk‖
‖x++

k − x+k ‖
· ‖zk −Q‖
‖zk − xk‖

= 1.

Using ‖zk+1−x+
k ‖

‖zk+1−Q‖ = ‖P−xk‖
‖P−Q‖ ,

‖x++
k −zk+1‖
‖zk+1−zk‖ = ‖zk−P‖

‖P−xk‖ , and previous formula, we get

ϕk+1 = (ak + bk) · µ

L− µ
+

akϕk
1− ϕk

· L

L− µ
.

Furthermore, parallel lemma and ‖zk−xk‖
‖xk−x+

k−1‖
= 1−ϕk

ϕk
implies

‖xk − x+k−1‖
‖R− xk‖

=
‖x+k − x

+
k−1‖

‖A− x+k ‖
=

1

ak

and
‖P −R‖
‖zk − P‖

=
ak

1−ϕk+1

ϕk+1

1−ϕk

ϕk
− ak( 1−ϕk+1

ϕk+1
+ 1)

.

Therefore, we have

‖x++
k − zk+1‖
‖zk+1 − zk‖

=
‖P − xk‖
‖zk − P‖

=

ak
ϕk+1

1−ϕk

ϕk
− ak

ϕk+1

=
akϕk

(1− ϕk)ϕk+1 − akϕk
.

If xk is a minimizer which implies∇f(xk) = 0 and zk+1 = zk = x++
k , this is degenerate case. In this case,

proof is trivial.

Lemma 4. An iteration of the form

xk = (1− ϕk)x+k−1 + ϕkzk

zk+1 = (1− φk)x++
k + φkzk,

where 0 < ϕk and 0 < φk, for k = 0, 1, . . . can be equivalently expressed as

xk+1 =
(1− ϕk)ϕk+1φk

ϕk
(x+k − x

+
k−1) +

ϕk+1((κ− 1)(1− φk)ϕk − φk)

ϕk
(x+k − xk)

for k = 0, 1, . . . .

Proof. Suppose xk is not a minimizer which implies∇f(xk) 6= 0. Set A on the
←−−−→
x+k−1x

+
k that Axk+1 ‖ xkx+k .

Set P on the
←−−−→
x+k−1zk that Pzk+1 ‖ xkx+k . Set N :=

←−→
x+k A ∩

←−−→
Pzk+1. Lastly, set R :=

←−−−→
x+k−1zk ∩

←−−→
Axk+1.

By parallel lemma, we have
‖P − xk‖
‖zk − P‖

=
‖x++

k − zk+1‖
‖zk+1 − zk‖

=
φk

1− φk
and

‖R− xk‖
‖P −R‖

=
‖xk+1 − x+k ‖
‖zk+1 − xk+1‖

=
ϕk+1

1− ϕk+1
.

Also
‖xk−x+

k−1‖
‖zk−xk‖ = ϕk

1−ϕk
and previous formula implies

‖xk − x+k−1‖
‖P − xk‖

=
ϕk

φk(1− ϕk)
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and
‖xk − x+k−1‖
‖R− xk‖

=
ϕk

(1− ϕk)ϕk+1φk

Furthermore, we get

A− x+k =
‖A− x+k ‖
‖x+k − x

+
k−1‖

(x+k − x
+
k−1) =

‖R− xk‖
‖xk − x+k−1‖

(x+k − x
+
k−1) =

(1− ϕk)ϕk+1φk
ϕk

(x+k − x
+
k−1).

By parallel lemma, we have
‖x++

k − xk‖
‖zk+1 − P‖

=
‖x++

k − zk‖
‖zk+1 − zk‖

=
1

1− φk
and

‖N − P‖
‖x+k − xk‖

=
‖P − x+k−1‖
‖xk − x+k−1‖

=
ϕk + (1− ϕk)φk

ϕk
.

Using ‖x+
k−xk‖

‖x++
k −xk‖

= 1
κ ,

‖zk+1 − P‖
‖x+k − xk‖

= κ(1− φk)

and previous formula implies

‖zk+1 −N‖
‖x+k − xk‖

=
‖zk+1 − P‖ − ‖N − P‖

‖x+k − xk‖
=

(κ− 1)(1− φk)ϕk − φk
ϕk

.

Finally, we get

xk+1 −A =
‖zk+1 −N‖
‖x+k − xk‖

‖xk+1 −A‖
‖zk+1 −N‖

(x+k − xk) =
ϕk+1((κ− 1)(1− φk)ϕk − φk)

ϕk
(x+k − xk).

If xk is a minimizer which implies∇f(xk) = 0 and zk+1 = zk = x++
k , this is degenerate case. In this case,

proof is trivial.

By Lemmas 3 and 4, there is a correspondence between the two algorithm forms.

C OGM-G analysis

Using Lemma 1, we can write OGM-G [47] as

xk =
θ4k+1

θ4k
x+k−1 +

(
1−

θ4k+1

θ4k

)
zk

zk+1 = zk −
θk
L
∇f(xk),

where z0 = x0 and z1 = z0 − θ0+1
2L ∇f(x0) for k = 1, 2, . . .K.

Theorem 5. Consider (P) with g = 0. OGM-G’s xK exhibits the rate

‖∇f(xK)‖2 ≤ 2L

θ20
(f(x0)− f?) ≤

4L

(K + 1)2
(f(x0)− f?).
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Proof. For k = 1, 2, . . . ,K, define

Uk =
1

θ2k

(
1

2L
‖∇f(xK)‖2 +

1

2L
‖∇f(xk)‖2 + f(xk)− f(xK)−

〈
∇f(xk), xk − x+k−1

〉)
+
L

θ4k

〈
zk − x+k−1, zk − x

+
K

〉
and

U0 =
2

θ20

(
1

2L
‖∇f(xK)‖2 + f(x0)− f(xK)

)
.

We can show that {Uk}Kk=0 is nonincreasing. Using 1
2L‖∇f(xK)‖2 ≤ f(xK) − f(x+K) ≤ f(xK) − f?,

which follows from L-smoothness, we conclude with the rate

1

L
‖∇f(xK)‖2 = UK ≤ U0 ≤

2

θ20
(f(x0)− f?)

and the bound θ0 ≥ K+1√
2

[47, Theorem 6.1]. Now, we complete the proof by showing that {Uk}Kk=0 is
nonincreasing. As we already showed U1 ≥ U2 ≥ · · · ≥ UK in Section 3.2, all that remains is to show
U0 ≥ U1:

U0 − U1

= − 1

θ21
f(x1) +

2

θ20
f(x0) +

(
1

θ21
− 2

θ20

)
f(xK)− 1

θ21

1

2L
‖∇f(x1)‖2 −

(
1

θ21
− 2

θ20

)
1

2L
‖∇f(xK)‖2

+
1

θ21

〈
∇f(x1), x1 − x+0

〉
− L

θ41

〈
z1 − x+0 , z1 − x

+
K

〉
= − 1

θ21

(
f(x1)− f(x0)−

〈
∇f(x1), x1 − x+0

〉
+

1

2L
‖∇f(x1)‖2 +

1

2L
‖∇f(x0)‖2

)
−
(

1

θ21
− 2

θ20

)(
f(x0)− f(xK)−

〈
∇f(x0), x0 − x+K

〉
+

1

2L
‖∇f(x0)‖2 +

1

2L
‖∇f(xK)‖2

)
+

(
1

θ21
− 1

θ20

)
1

L
‖∇f(x0)‖2 −

(
1

θ21
− 2

θ20

)〈
∇f(x0), x0 − x+K

〉
− L

θ41

〈
z1 − x+0 , z1 − x

+
K

〉
≥
(

1

θ21
− 1

θ20

)
1

L
‖∇f(x0)‖2 −

(
1

θ21
− 2

θ20

)〈
∇f(x0), x0 − x+K

〉
− L

θ41

〈
z1 − x+0 , z1 − x

+
K

〉
=

θ0 + 1

θ20(θ0 − 1)

1

L
‖∇f(x0)‖2 − 1

θ21θ0

〈
∇f(x0), x0 − x+K

〉
− L

θ41

〈
z1 − x+0 , z1 − x

+
K

〉
= 0

where the inequality follows from the cocoercivity inequalities.

D Several preliminary inequalities

Lemma 5 ([60, (2.1.11)]). If f : Rn → R is convex and L-smooth, then

f(x)− f(y) + 〈∇f(x), y − x〉+
1

2L
‖∇f(x)−∇f(y)‖2 ≤ 0 ∀x, y ∈ Rn,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2 ∀x, y ∈ Rn.
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Lemma 6. If g : Rn → R ∪ {∞} is µ-strongly convex, then for all u ∈ ∂g(x),

g(x) + 〈u, y − x〉+
µ

2
‖x− y‖2 ≤ g(y) ∀x, y ∈ Rn.

Lemma 7 ([11, lemma 2.2]). Consider (P) in the prox-grad setup. Then for some u ∈ ∂g(x⊕),

∇̃LF (x) = ∇f(x) + u ∀x ∈ Rn.

Proof. Optimality condition for strongly convex function implies that there exist u ∈ ∂g(x⊕) such that
∇f(x) + u+ L(x⊕ − x) = 0.

Lemma 8 ([45, (2.8)]). Consider (P) in the prox-grad setup. Then for some v ∈ ∂F (x⊕),

‖v‖ ≤ 2
∥∥∥∇̃LF (x)

∥∥∥ ∀x ∈ Rn.

Proof. By Lemma 7, ∇̃LF (x) = ∇f(x) + u for some u ∈ ∂g(x⊕). And there exist v ∈ ∂F (x⊕) such that
v = ∇f(x⊕) + u. Thus we have

‖v‖ ≤ ‖∇f(x⊕)−∇f(x)‖+ ‖∇f(x) + u‖ (1)

≤ ‖L(x− x⊕)‖+ ‖∇̃LF (x)‖ (2)

= 2
∥∥∥∇̃LF (x)

∥∥∥ . (3)

(1) follows from triangle inequality and (2) follows from L-smootheness of f , and (3) follows from the
definition of ∇̃LF (x).

Lemma 9 ([59, Theorem 1]). Consider (P) in the prox-grad setup. Then

1

2L

∥∥∥∇̃LF (x)
∥∥∥2 ≤ F (x)− F (x⊕) ∀x ∈ Rn.

Proof. By Lemma 7, for some u ∈ ∂g(x⊕), we have

F (x⊕) ≤ f(x) +
〈
∇f(x), x⊕ − x

〉
+
L

2

∥∥x⊕ − x∥∥2 + g(x⊕) (4)

≤ f(x) +
〈
L(x− x⊕)− u, x⊕ − x

〉
+
L

2

∥∥x⊕ − x∥∥2 + g(x⊕) (5)

= f(x) + g(x⊕) +
〈
u, x− x⊕

〉
− L

2

∥∥x⊕ − x∥∥2
≤ F (x)− L

2

∥∥x⊕ − x∥∥2 = F (x)− 1

2L

∥∥∥∇̃LF (x)
∥∥∥2 . (6)

(4) follows from L-smootheness of f , (5) follows from the definition of ∇̃LF (x), and (6) follows from
convexity of g.

Lemma 10 ([11, lemma 2.3]). Consider (P) in the prox-grad setup. Then

1

2L

∥∥∥∇̃LF (y)
∥∥∥2 − 〈y − x, ∇̃LF (y)

〉
≤ F (x)− F (y⊕) ∀x, y ∈ Rn.
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Proof. By L-smootheness of f , we have

F (y⊕) ≤ f(y) +
〈
∇f(y), y⊕ − y

〉
+
L

2

∥∥y⊕ − y∥∥2 + g(y⊕).

Using convexity of f and g and Lemma 7, for some u ∈ ∂g(y⊕), we have

f(y) + 〈∇f(y), x− y〉 ≤ f(x)

g(y⊕) +
〈
u, x− y⊕

〉
≤ g(x).

Summing above three inequality, we obtain the lemma.

E Omitted proofs of Section 2

We present (G-FISTA-G) for the prox-grad setup:

xk =
ϕk+1

ϕk
x⊕k−1 +

(
1− ϕk+1

ϕk

)
zk

zk+1 = zk −
τkϕk − τk+1ϕk+1

L
∇̃LF (xk)

for k = 0, 1, . . . ,K, where z0 = x0, L is smoothness constant of f , and the nonnegative sequence {ϕk}K+1
k=0

and the nondecreasing nonnegative sequence {τk}Kk=0 satisfy ϕK+1 = 0, ϕK = τK = 1, and

τkϕk − τk+1ϕk+1 = ϕk+1(τk+1 − τk) + 1, (τkϕk − τk+1ϕk+1)(τk+1 − τk) ≤ τk+1

2

for k = 0, 1, . . . ,K − 1.

Theorem 6. Consider (P). G-FISTA-G’s xK exhibits the rate∥∥∥∇̃LF (xK)
∥∥∥2 ≤ 2Lτ0 (F (x0)− F?) .

Proof. For k = 0, 1, . . . ,K, define

Uk = τk

(
1

2L

∥∥∥∇̃LF (xk)
∥∥∥2 + F (x⊕k )− F (x⊕K)−

〈
∇̃LF (xk), xk − x⊕k−1

〉)
+

L

ϕk

〈
zk − x⊕k−1, zk − x

⊕
K

〉
.

(Note that zK = xK .) By plugging in the definitions and performing direct calculations, we get

UK =
1

2L

∥∥∥∇̃LF (xk)
∥∥∥2 and U0 = τ0

(
1

2L

∥∥∥∇̃LF (x0)
∥∥∥2 + F (x⊕0 )− F (x⊕K)

)
.

We can show that {Uk}Kk=0 is nonincreasing. Using Lemma 9, we conclude the rate with

1

2L

∥∥∥∇̃LF (xk)
∥∥∥2 = UK ≤ U0 ≤ τ0

(
F (x0)− F (x⊕K)

)
≤ τ0 (F (x0)− F?) .
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Now we complete the proof by showing that {Uk}Kk=0 is nonincreasing. For k = 0, 1, . . . ,K − 1, we have

0 ≥ τk+1

(
F (x⊕k+1)− F (x⊕k )−

〈
∇̃LF (xk+1), xk+1 − x⊕k

〉
+

1

2L

∥∥∥∇̃LF (xk+1)
∥∥∥2)

+ (τk+1 − τk)

(
F (x⊕k )− F (x⊕K)−

〈
∇̃LF (xk), xk − x⊕K

〉
+

1

2L

∥∥∥∇̃LF (xk)
∥∥∥2)

= τk+1

(
1

2L

∥∥∥∇̃LF (xk+1)
∥∥∥2 + F (x⊕k+1)− F (x⊕K)−

〈
∇̃LF (xk+1), xk+1 − x⊕k

〉)
− τk

(
1

2L

∥∥∥∇̃LF (xk)
∥∥∥2 + F (x⊕k )− F (x⊕K)−

〈
∇̃LF (xk), xk − x⊕k−1

〉)
−
〈
∇̃LF (xk), τk+1x

⊕
k − τkx

⊕
k−1 − (τk+1 − τk)x⊕K

〉
− τk+1

1

2L

∥∥∥∇̃LF (xk)
∥∥∥2︸ ︷︷ ︸

:=T

,

where the inequality follows from the Lemma 10. Finally, we analyze T with the following geometric
argument. Let t ∈ Rn be the projection of x⊕K onto the plane of iteration. Then,

x⊕k−1 xk zk

zk+1

x⊕k

t

Figure 7: Plane of iteration of G-FISTA-G

1

L
T

(i)
=
〈−−−→
xkx

⊕
k , (τk+1 − τk)

−−→
tx⊕k + τk

−−−−−→
x⊕k−1x

⊕
k −

τk+1

2

−−−→
xkx

⊕
k

〉
(ii)
=
〈−−−→
xkx

⊕
k , (τk+1 − τk)

(−−−→
tzk+1 −−−−−→zkzk+1 −−−→xkzk +

−−−→
xkx

⊕
k

)
+ τk

(−−−−→
x⊕k−1xk +

−−−→
xkx

⊕
k

)
− τk+1

2

−−−→
xkx

⊕
k

〉
(iii)
=
〈−−−→
xkx

⊕
k , (τk+1 − τk)

−−−→
tzk+1 − (τk+1 − τk)(τkϕk − τk+1ϕk+1 − 1)

−−−→
xkx

⊕
k

+ τk
−−−→
xkx

⊕
k −

τk+1

2
xkx

⊕
k − (τk+1 − τk)−−→xkzk + τk

(
ϕk
ϕk+1

− 1

)
−−→xkzk

〉
(iv)
≥
〈−−−→
xkx

⊕
k , (τk+1 − τk)

−−−→
tzk+1 +

τkϕk − τk+1ϕk+1

ϕk+1

−−→xkzk
〉

(v)
=

1

ϕk+1

〈−−−−→
x⊕k zk+1 −−−→xkzk,

−−−→
tzk+1

〉
+

1

ϕk+1

〈−−−→
tzk+1 −

−→
tzk,
−−→xkzk

〉
(vi)
=

1

ϕk+1

〈
zk+1 − x⊕k , zk+1 − x⊕K

〉
− 1

ϕk

〈
zk − x⊕k−1, zk − x

⊕
K

〉
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where (i) follows from the definition of t and the fact that we can replace x⊕K with t, the projection of xK
onto the plane of iteration, without affecting the inner products, (ii) from vector addition, (iii) from the fact

that
−−−→
xkx

⊕
k and −−−−→zkzk+1 are parallel and their lengths satisfy (τkϕk − τk+1ϕk+1)

−−−→
xkx

⊕
k = −−−−→zkzk+1 and

−−−−→
x⊕k−1xk

and −−→xkzk are parallel and their lengths satisfy
(

ϕk

ϕk+1
− 1
)−−→xkzk =

−−−−→
x⊕k−1xk, (iv) from vector addition and

τk+1

2
− (τkϕk − τk+1ϕk+1)(τk+1 − τk) ≥ 0, (7)

(v) from distributing the product and substituting xkx⊕k = (τkϕk − τk+1ϕk+1 − 1)
−1
(−−−−→
x⊕k zk+1 −−−→xkzk

)
=

(ϕk+1(τk+1 − τk))
−1
(−−−−→
x⊕k zk+1 −−−→xkzk

)
into the first term and xkx⊕k = (τkϕk − τk+1ϕk+1)

−1−−−−→zkzk+1 =

(τkϕk − τk+1ϕk+1)
−1
(−−−→
tzk+1 −

−→
tzk

)
into the second term, and (vi) from cancelling out the cross terms,

using ϕ−1k
−−−−→
x⊕k−1zk = ϕ−1k+1

−−→xkzk, and by replacing t with x⊕K in the inner products. In (v), we also used

τkϕk − τk+1ϕk+1 = ϕk+1 (τk+1 − τk) + 1. (8)

Thus we conclude Uk+1 ≤ Uk for k = 0, 1, 2, . . . ,K − 1.

Proof of Theorem 1. The conclusion of Theorem 1 follows from plugging FISTA-G’s ϕk and τk into Theo-
rem 6. If τk = 2ϕk−1

(ϕk−1−ϕk)2
, we can check condition (8), condition (7), and

ϕkτk − τk+1ϕk+1 = ϕk+1(τk+1 − τk) + 1 =
ϕk

ϕk − ϕk+1
.

Then using Lemma 2, we get the iteration of the form of FISTA-G. Furthermore, by Lemma 8, ‖v‖ ≤
2
∥∥∥∇̃LF (x)

∥∥∥ for some v ∈ ∂F (x⊕). Thus we have

min
∥∥∂F (x⊕K)

∥∥2 ≤ 4
∥∥∥∇̃LF (xK)

∥∥∥2 ≤ 264L

(K + 2)2
(F (x0)− F?) .

Finally, it remains to show τ0 ≤ 33
(K+2)2 in the setup of Theorem 1.

First, τkϕk − τk+1ϕk+1 = ϕk+1 (τk+1 − τk) + 1 and (τkϕk − τk+1ϕk+1)(τk+1 − τk)− τk+1

2 = 0 implies

ϕk+1 =
1

τk+1 − τk

(
τk+1

2(τk+1 − τk)
− 1

)
.

By substitution and direct calculation, we get

ak+1 = ak +
(ak − ak−1)ak√

a2k − akak−1 + a2k−1

,

where τk = 1
aK−k

. This is equivalent to

ak+1

ak
= 1 +

(ak − ak−1)√
(ak − ak−1)2 + akak−1

⇐⇒ ak+1

ak
= 1 +

1√
1 + 1

ak
ak−1

+
ak−1
ak
−2

.
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Let bk = ak+1

ak
. Then, b0 = 1 + 1√

3
by τK = ϕK = 1, and

bk = 1 +
1√

1 + 1(√
bk−1−

√
1

bk−1

)2

⇐⇒ 1

(bk − 1)2
= 1 +

1

(bk−1 − 1)
+

1

(bk−1 − 1)2
.

Let ck = 1
bk−1 . Then

c2k = c2k−1 + ck−1 + 1

where c0 =
√

3. Also, by definition,

ak+1 = bkbk−1 . . . b0 =

(
1 +

1

ck

)(
1 +

1

ck−1

)
. . .

(
1 +

1

c0

)
.

Using c2k = c2k−1 + ck−1 + 1 ⇐⇒ c2k−1
c2k−1

= 1 + 1
ck−1

, we have(
ck + 1

ck

)(
ck−1 + 1

ck−1

)
. . .

(
c0 + 1

c0

)
=
c2k+1 − 1

c2k

c2k − 1

c2k−1
. . .

c21 − 1

c20

=

(
ck+1 + 1

ck

)(
ck + 1

ck−1

)
. . .

(
c1 + 1

c0

)(
ck+1 − 1

ck

)(
ck − 1

ck−1

)
. . .

(
c1 − 1

c0

)
.

And after reduction of fraction, we get(
ck+1 + 1

c0 + 1

)(
ck+1 − 1

ck

)(
ck − 1

ck−1

)
. . .

(
c1 − 1

c0

)
= 1

⇐⇒ c2k+1 − 1 = (c20 − 1)

(
ck

ck − 1

)(
ck−1

ck−1 − 1

)
. . .

(
c0

c0 − 1

)
.

ck−2+1
ck

≥ ck−2

ck−1 ⇐⇒ ck ≥ ck−2 + 1 since c2k = (ck−1 + 1
2 )2 + 3

4 implies ck ≥ ck−1 + 1
2 . Therefore,(

ck + 1

ck

)(
ck−1 + 1

ck−1

)
. . .

(
c0 + 1

c0

)
≥ (ck + 1)(ck−1 + 1)

ckck−1

(c1 − 1)(c0 − 1)

c1c0(c20 − 1)
(c2k+1 − 1).

Furthermore, we can show ck ≥ k+3
2 by induction. (c0 =

√
3 ≥ 3

2 and if ck ≥ k+3
2 , ck+1 ≥ ck + 1

2 ≥
k+4
2 .)

Finally

ak+1 ≥
(c1 − 1)(c0 − 1)

c1c0(c20 − 1)
(c2k+1 − 1) ≥ 1

33
(k + 3)2.

For k = K − 1, 1
aK

= τ0 and we get wanted result.

F Omitted proofs of Section 3

We present (G-FGM-G) for the smooth convex setup

xk =
ϕk+1

ϕk
x+k−1 +

(
1− ϕk+1

ϕk

)
zk

zk+1 = zk −
τkϕk − τk+1ϕk+1

L
∇f(xk)
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for k = 0, 1, . . . ,K where z0 = x0, L is smootheness constant of f , and the nonnegative sequence {ϕk}K+1
k=0

and the nondecreasing nonnegative sequence {τk}Kk=0 satisfy ϕK+1 = 0, ϕK = τK = 1, and

τkϕk − τk+1ϕk+1 = ϕk+1(τk+1 − τk) + 1, (τkϕk − τk+1ϕk+1)(τk+1 − τk) ≤ τk+1.

for k = 0, 1, . . . ,K − 1.

Note that G-FISTA-G had the parameter requirement ≤ τk+1

2 while G-FGM-G (and later G-Güler G) has
≤ τk+1. The parameter requirements are otherwise identical.

Theorem 7. Consider (P) with g = 0. G-FGM-G’s xK exhibits the rate

‖∇f(xK)‖2 ≤ 2Lτ0(f(x0)− f?).

Proof. For k = 0, 1, . . . ,K, define

Uk = τk

(
1

2L
‖∇f(xK)‖2 +

1

2L
‖∇f(xk)‖2 + f(xk)− f(xK)− 〈∇f(xk), xk − x+k−1〉

)
+

L

ϕk

〈
zk − x+k−1, zk − x

+
K

〉
.

(Note that zK = xK .) By plugging in the definitions and performing direct calculations, we get

UK =
1

L
‖∇f(xk)‖2 and U0 = τ0

(
1

2L
‖∇f(xK)‖2 +

1

2L
‖∇f(x0)‖2 + f(x0)− f(xK)

)
.

We can show that {Uk}Kk=0 is nonincreasing. Using 1
2L‖∇f(xK)‖2 ≤ f(xK)− f(x+K) ≤ f(xK)− f(x?)

and 1
2L‖∇f(x0)‖2 ≤ f(x0) − f(x+0 ) ≤ f(x0) − f?, which follows from L-smoothness, we conclude the

rate with
1

L
‖∇f(xK)‖2 = UK ≤ U0 ≤ 2τ0 (f(x0)− f?) .

Now we complete the proof by showing that {Uk}Kk=0 is nonincreasing. For k = 0, 1, . . .K − 1, we have

0 ≥ τk+1

(
f(xk+1)− f(xk)− 〈∇f(xk+1), xk+1 − xk〉+

1

2L
‖∇f(xk+1)−∇f(xk)‖2

)
+ (τk+1 − τk)

(
f(xk)− f(xK)− 〈∇f(xk), xk − xK〉+

1

2L
‖∇f(xk)−∇f(xK)‖2

)
= τk+1

(
1

2L
‖∇f(xK)‖2 +

1

2L
‖∇f(xk+1)‖2 + f(xk+1)− f(xK)−

〈
∇f(xk+1), xk+1 − x+k

〉)
− τk

(
1

2L
‖∇f(xK)‖2 +

1

2L
‖∇f(xk)‖2 + f(xk)− f(xK)−

〈
∇f(xk), xk − x+k−1

〉)
−
〈
∇f(xk), τk+1x

+
k − τkx

+
k−1 − (τk+1 − τk)x+K

〉︸ ︷︷ ︸
:=T

,

where the inequality follows from the cocoercivity inequalities. Finally, we analyze T with the following
geometric argument. Let t ∈ Rn be the projection of x+K onto the plane of iteration. Then,
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x+k−1 xk zk

zk+1

x+k

t

Figure 8: Plane of iteration of G-FGM-G

1

L
T

(i)
=
〈−−−→
xkx

+
k , (τk+1 − τk)

−−→
tx+k + τk

−−−−−→
x+k−1x

+
k

〉
(ii)
=
〈−−−→
xkx

+
k , (τk+1 − τk)

(−−−→
tzk+1 −−−−−→zkzk+1 −−−→xkzk +

−−−→
xkx

+
k

)
+ τk

(−−−−→
x+k−1xk +

−−−→
xkx

+
k

)〉
(iii)
=
〈−−−→
xkx

+
k , (τk+1 − τk)

−−−→
tzk+1 − (τk+1 − τk)(τkϕk − τk+1ϕk+1 − 1)

−−−→
xkx

+
k

+ τk
−−−→
xkx

+
k − (τk+1 − τk)−−→xkzk + τk

(
ϕk
ϕk+1

− 1

)
−−→xkzk

〉
(iv)
≥
〈−−−→
xkx

+
k , (τk+1 − τk)

−−−→
tzk+1 +

τkϕk − τk+1ϕk+1

ϕk+1

−−→xkzk
〉

(v)
=

1

ϕk+1

〈−−−−→
x+k zk+1 −−−→xkzk,

−−−→
tzk+1

〉
+

1

ϕk+1

〈−−−→
tzk+1 −

−→
tzk,
−−→xkzk

〉
(vi)
=

1

ϕk+1

〈
zk+1 − x+k , zk+1 − x+K

〉
− 1

ϕk

〈
zk − x+k−1, zk − x

+
K

〉
,

where (i) follows from the definition of t and the fact that we can replace x+K with t, the projection of xK
onto the plane of iteration, without affecting the inner products, (ii) from vector addition, (iii) from the fact

that
−−−→
xkx

+
k and −−−−→zkzk+1 are parallel and their lengths satisfy (τkϕk − τk+1ϕk+1)

−−−→
xkx

+
k = −−−−→zkzk+1 and

−−−−→
x+k−1xk

and −−→xkzk are parallel and their lengths satisfy
(

ϕk

ϕk+1
− 1
)−−→xkzk =

−−−−→
x+k−1xk, (iv) from vector addition and

τk+1 − (τkϕk − τk+1ϕk+1)(τk+1 − τk) ≥ 0, (9)

(v) from distributing the product and substituting xkx+k = (τkϕk − τk+1ϕk+1 − 1)
−1
(−−−−→
x+k zk+1 −−−→xkzk

)
=

(ϕk+1(τk+1 − τk))
−1
(−−−−→
x+k zk+1 −−−→xkzk

)
into the first term and xkx+k = (τkϕk − τk+1ϕk+1)

−1−−−−→zkzk+1 =

(τkϕk − τk+1ϕk+1)
−1
(−−−→
tzk+1 −

−→
tzk

)
into the second term, and (vi) from cancelling out the cross terms,

using ϕ−1k
−−−−→
x+k−1zk = ϕ−1k+1

−−→xkzk, and by replacing t with x+K in the inner products.In (v), we also used

τkϕk − τk+1ϕk+1 = ϕk+1 (τk+1 − τk) + 1. (10)
Thus we conclude Uk+1 ≤ Uk for k = 0, 1, . . . ,K − 1.

Theorem 8. Consider (P) with g = 0. FGM-G’s xK exhibits the rate

‖∇f(xK)‖2 ≤ 66L

(K + 2)2
(f(x0)− f?) .
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Proof. This follows from plugging FGM-G’s ϕk and 2ϕk−1

(ϕk−1−ϕk)2
into Theorem 7’s ϕk and τk. We can check

condition (9), condition (10), and

ϕkτk − τk+1ϕk+1 = ϕk+1(τk+1 − τk) + 1 =
ϕk

ϕk − ϕk+1
.

Then using Lemma 2, we get the iteration of the form of FGM-G

We present (G-Güler-G) for the proximal-point setup:

xk =
ϕk+1

ϕk
x◦k−1 +

(
1− ϕk+1

ϕk

)
zk

zk+1 = zk − (τkϕk − τk+1ϕk+1)λ∇̃1/λg(xk)

for k = 0, 1, . . . ,K where z0 = x0 and the nonnegative sequence {ϕk}K+1
k=0 and the nondecreasing nonnega-

tive sequence {τk}Kk=0 satisfy ϕK+1 = 0, ϕK = τK = 1, and

τkϕk − τk+1ϕk+1 = ϕk+1(τk+1 − τk) + 1, (τkϕk − τk+1ϕk+1)(τk+1 − τk) ≤ τk+1.

for k = 0, 1, . . . ,K − 1.
Theorem 9. Consdier (P) with f = 0. G-Güler-G’s xK exhibits the rate

‖∇̃1/λg(xK)‖2 ≤ τ0
λ

(g(x0)− g?)

Proof. For k = 0, 1, . . . ,K, define

Uk = τk

(
λ
∥∥∥∇̃1/λg(xk)

∥∥∥2 + g(x◦k)− g(x◦K)− ∇̃1/λg(xk) · (xk − x◦k−1)

)
+

1

λϕk

〈
zk − x◦k−1, zk − x◦K

〉
.

(Note that zK = xK .) By plugging in the definitions and performing direct calculations, we get

UK = λ
∥∥∥∇̃1/λg(xK)

∥∥∥2 and U0 = τ0

(
λ
∥∥∥∇̃1/λg(x0)

∥∥∥2 + g(x◦0)− g(x◦K)

)
.

We can show that {Uk}Kk=0 is nonincreasing. Using λ
∥∥∥∇̃1/λg(x0)

∥∥∥2 ≤ g(x0)− g(x◦0), we conclude the rate
with

λ
∥∥∥∇̃1/λg(xK)

∥∥∥2 = UK ≤ U0 ≤ τ0 (g(x0)− g(x◦K)) ≤ τ0 (g(x0)− g?) .

Now we complete the proof by showing that {Uk}Kk=0 is nonincreasing. For k = 0, 1, . . . ,K − 1, we have

0 ≥ τk+1

(
g(x◦k+1)− g(x◦k)−

〈
∇̃1/λg(xk+1), xk+1 − x◦k

〉
+ λ

∥∥∥∇̃1/λg(xk+1)
∥∥∥2)

+ (τk+1 − τk)

(
g(x◦k)− g(x◦K)−

〈
∇̃1/λg(xk), xk − x◦K

〉
+ λ

∥∥∥∇̃1/λg(xk)
∥∥∥2)

= τk+1

(
λ
∥∥∥∇̃1/λg(xk+1)

∥∥∥2 + g(x◦k+1)− g(x◦K)− ∇̃1/λg(x◦k+1) · (xk+1 − x◦k)

)
− τk

(
λ
∥∥∥∇̃1/λg(xk)

∥∥∥2 + g(x◦k)− g(x◦K)− ∇̃1/λg(x◦k) · (xk − x◦k−1)

)
−
〈
∇̃1/λg(x◦k), τk+1x

◦
k − τkx◦k−1 − (τk+1 − τk)x◦K

〉
︸ ︷︷ ︸

:=T

,
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Figure 9: Plane of iteration of G-Güler-G

where the inequality follows from the convexity inequalities. Finally, we analyze T with the following
geometric argument. Let t ∈ Rn be the projection of x◦K onto the plane of iteration. Then

1

L
T

(i)
=
〈−−−→
xkx

◦
k, (τk+1 − τk)

−→
tx◦k + τk

−−−−→
x◦k−1x

◦
k

〉
(ii)
=
〈−−−→
xkx

◦
k, (τk+1 − τk)

(−−−→
tzk+1 −−−−−→zkzk+1 −−−→xkzk +

−−−→
xkx

◦
k

)
+ τk

(−−−−→
x◦k−1xk +

−−−→
xkx

◦
k

)〉
(iii)
=
〈−−−→
xkx

◦
k, (τk+1 − τk)

−−−→
tzk+1 − (τk+1 − τk)(τkϕk − τk+1ϕk+1 − 1)

−−−→
xkx

◦
k

+ τk
−−−→
xkx

◦
k − (τk+1 − τk)−−→xkzk + τk

(
ϕk
ϕk+1

− 1

)
−−→xkzk

〉
(iv)
≥
〈−−−→
xkx

◦
k, (τk+1 − τk)

−−−→
tzk+1 +

τkϕk − τk+1ϕk+1

ϕk+1

−−→xkzk
〉

(v)
=

1

ϕk+1

〈−−−−→
x◦kzk+1 −−−→xkzk,

−−−→
tzk+1

〉
+

1

ϕk+1

〈−−−→
tzk+1 −

−→
tzk,
−−→xkzk

〉
(vi)
=

1

ϕk+1
〈zk+1 − x◦k, zk+1 − x◦K〉 −

1

ϕk

〈
zk − x◦k−1, zk − x◦K

〉
,

where (i) follows from the definition of t and the fact that we can replace x◦K with t, the projection of xK
onto the plane of iteration, without affecting the inner products, (ii) from vector addition, (iii) from the fact
that
−−−→
xkx

◦
k and −−−−→zkzk+1 are parallel and their lengths satisfy (τkϕk − τk+1ϕk+1)

−−−→
xkx

◦
k = −−−−→zkzk+1 and

−−−−→
x◦k−1xk

and −−→xkzk are parallel and their lengths satisfy
(

ϕk

ϕk+1
− 1
)−−→xkzk =

−−−−→
x◦k−1xk, (iv) from vector addition and

τk+1 − (τkϕk − τk+1ϕk+1)(τk+1 − τk) ≥ 0, (11)

(v) from distributing the product and substituting xkx◦k = (τkϕk − τk+1ϕk+1 − 1)
−1
(−−−−→
x◦kzk+1 −−−→xkzk

)
=

(ϕk+1(τk+1 − τk))
−1
(−−−−→
x◦kzk+1 −−−→xkzk

)
into the first term and xkx◦k = (τkϕk − τk+1ϕk+1)

−1−−−−→zkzk+1 =

(τkϕk − τk+1ϕk+1)
−1
(−−−→
tzk+1 −

−→
tzk

)
into the second term, and (vi) from cancelling out the cross terms,

using ϕ−1k
−−−−→
x◦k−1zk = ϕ−1k+1

−−→xkzk, and by replacing t with x+K in the inner products.

τkϕk − τk+1ϕk+1 = ϕk+1 (τk+1 − τk) + 1. (12)

Thus we conclude Uk+1 ≤ Uk for k = 0, 1, . . . ,K − 1.
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Proof of Theorem 2. The conclusion of Theorem 2 follows from plugging Güler-G’s ϕk and τk into Theorem
9. If τk = θ−2k and ϕk = θ4k, we can check conditions (11) and (12). Then using Lemma 2, we get the
iteration of the form of Güler-G. Combining the g(x◦K)−g? ≤ ‖x0−x?‖2/λ(K+2)2 rate of Güler’s second
method [37, Theorem 6.1] with rate of Güler-G, we get the rate of Güler+Güler-G:∥∥∥∇̃1/λg(x2K)

∥∥∥2 ≤ 4

λ(K + 2)2
(g(x◦K)− g?) ≤

4

λ2(K + 2)4
‖x0 − x?‖2 .

G Omitted proofs of Section 4

Proof of Theorem 3. In the setup of Theorem 3, define

Uk = g(x◦k−1)− g? −
µ

2
‖x◦k−1 − x?‖2 + µ‖zk − x?‖2

for k = 0, 1, . . . . By plugging in the definitions and performing direct calculations, we get

U0 = g(x0)− g? +
µ

2
‖x0 − x?‖2.

We can show that Uk+1 ≤
(

1− 1√
q

)2
Uk for k = −1, 0, . . . . Using strong convexity, we conclude the rate

with

µ‖zk − x?‖2 ≤ Uk ≤ U0 ≤ 2(g(x0)− g?).

Now we complete the proof by showing that Uk+1 ≤
(

1− 1√
q

)2
Uk for k = −1, 0, . . . . For k = 0, 1, . . . ,

we have

Uk+1 −
(

1− 1
√
q

)2

Uk

=
(
g(x◦k)− g? −

µ

2
‖x◦k − x?‖2

)
−
(

1− 1
√
q

)2 (
g(x◦k−1)− g? −

µ

2
‖x◦k−1 − x?‖2

)
+ µ‖zk+1 − x?‖2 − µ

(
1− 1
√
q

)2

‖zk − x?‖2.

For calculating the last term of difference, we use (q − 1)xk − (1−√q)2x◦k−1 = 2(
√
q − 1)zk. Since

µ‖zk+1−x?‖2 = µ

∥∥∥∥ 1
√
q

(
xk −

(
1

µ
+ λ

)
∇̃1/λg(xk)

)
+

(
1− 1
√
q

)
zk − x?

∥∥∥∥2
=
µ

q

∥∥∥∥xk − ( 1

µ
+ λ

)
∇̃1/λg(xk)− x?

∥∥∥∥2 + µ

(
1− 1
√
q

)2

‖zk − x?‖2

+ 2

(
1− 1
√
q

)
µ
√
q

〈
xk −

(
1

µ
+ λ

)
∇̃1/λg(xk)− x?, zk − x?

〉
,

we get

µ‖zk+1 − x?‖2 − µ
(

1− 1
√
q

)2

‖zk − x?‖2
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=
µ

q

∥∥∥∥xk − ( 1

µ
+ λ

)
∇̃1/λg(xk)− x?

∥∥∥∥2
+
µ

q

〈
xk −

(
1

µ
+ λ

)
∇̃1/λg(xk)− x?, (q − 1)(xk − x?)− (1−√q)2(x◦k−1 − x?)

〉
=
µ

q

〈
xk −

(
1

µ
+ λ

)
∇̃1/λg(xk)− x?,−

(
1

µ
+ λ

)
∇̃1/λg(xk) + q(xk − x?)− (1−√q)2(x◦k−1 − x?)

〉
=
µ

q

〈
xk −

(
1

µ
+ λ

)
∇̃1/λg(xk)− x?, q(x◦k − x?)− (1−√q)2(x◦k−1 − x?)

〉
= µ

〈
x◦k −

1

µ
∇̃1/λg(xk)− x?, x◦k − x?

〉
− µ

(
1− 1
√
q

)2〈
x◦k −

1

µ
∇̃1/λg(xk)− x?, x◦k−1 − x?

〉
=

(
1−

(
1− 1
√
q

)2
)〈

µx◦k − ∇̃1/λg(xk)− µx?, x◦k − x?
〉

+

(
1− 1
√
q

)2 〈
µx◦k − ∇̃1/λg(xk)− µx?, x◦k − x◦k−1

〉
.

Therefore, we can write difference of Uk+1 and
(

1− 1√
q

)2
Uk as

Uk+1 −
(

1− 1
√
q

)2

Uk

=
(
g(x◦k)− g? −

µ

2
‖x◦k − x?‖2

)
−
(

1− 1
√
q

)2 (
g(x◦k−1)− g? −

µ

2
‖x◦k−1 − x?‖2

)
+

(
1−

(
1− 1
√
q

)2
)〈

µx◦k − ∇̃1/λg(xk)− µx?, x◦k − x?
〉

+

(
1− 1
√
q

)2 〈
µx◦k − ∇̃1/λg(xk)− µx?, x◦k − x◦k−1

〉
= (g(x◦k)− g?)−

(
1− 1
√
q

)2 (
g(x◦k−1)− g? −

µ

2
‖x◦k−1 − x?‖2 +

µ

2
‖x◦k − x?‖2

)
−

(
1−

(
1− 1
√
q

)2
)
µ

2
‖x◦k − x?‖2 +

(
1−

(
1− 1
√
q

)2
)〈

µx◦k − ∇̃1/λg(xk)− µx?, x◦k − x?
〉

+

(
1− 1
√
q

)2 〈
µx◦k − ∇̃1/λg(xk)− µx?, x◦k − x◦k−1

〉
= (g(x◦k)− g?)−

(
1− 1
√
q

)2 (
g(x◦k−1)− g?

)
+

(
1− 1
√
q

)2
µ

2

〈
x◦k−1 − x◦k, x◦k−1 + x◦k − 2x?

〉
+

(
1−

(
1− 1
√
q

)2
)〈µ

2
(x◦k − x?)− ∇̃1/λg(xk), x◦k − x?

〉
+

(
1− 1
√
q

)2 〈
−µx◦k + ∇̃1/λg(xk) + µx?, x

◦
k−1 − x◦k

〉
= (g(x◦k)− g?)−

(
1− 1
√
q

)2 (
g(x◦k−1)− g?

)
+

(
1− 1
√
q

)2 〈µ
2

(x◦k−1 − x◦k) + ∇̃1/λg(xk), x◦k−1 − x◦k
〉

+

(
1−

(
1− 1
√
q

)2
)〈µ

2
(x◦k − x?)− ∇̃1/λg(xk), x◦k − x?

〉
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= −
(

1− 1
√
q

)2 (
g(x◦k−1)− g(x◦k)−

〈
∇̃1/λg(xk), x◦k−1 − x◦k

〉
− µ

2
‖x◦k−1 − x◦k‖2

)
−

(
1−

(
1− 1
√
q

)2
)(

g? − g(x◦k)−
〈
∇̃1/λg(xk), x? − x◦k

〉
− µ

2
‖x? − x◦k‖2

)
≤ 0,

where the inequality follows from strong convexity inequalities.

The caseU1 ≤
(

1− 1√
q

)2
U0 follows from the same argument with x◦−1 = x0. ThusUk+1 ≤

(
1− 1√

q

)2
Uk

for k = −1, 0, . . . .

Following proof is a close adaptation of the convergence analysis of ITEM [19, Theorem 3].

Proof of Theorem 4. In the setup of Theorem 4, define

Uk = Ak

(
g(x◦k−1)− g? −

µ

2
‖x◦k−1 − x?‖2

)
+

(
Akµ+ µ+

1

λ

)
‖zk − x?‖2

for k = 0, 1, . . . . By plugging in the definitions and performing direct calculations, we get

U0 =

(
µ+

1

λ

)
‖x0 − x?‖2.

We can show that {Uk}∞k=0 is nonincreasing. Using strong convexity, we conclude the rate with(
Akµ+ µ+

1

λ

)
‖zk − x?‖2 ≤ Uk ≤ U0 =

(
µ+

1

λ

)
‖z0 − x?‖2.

And by

Ak =
(1 + q)Ak−1 + 2(1 +

√
(1 +Ak−1)(1 + qAk−1))

(1− q)2
≥

(1 + q)Ak−1 + 2
√
qA2

k−1

(1− q)2
=

Ak−1
(1−√q)2

,

we get theorem through direct calculation.

Now we complete the proof by showing that {Uk}∞k=0 is nonincreasing. For k = 1, 2, . . . , we have

Uk+1 − Uk

= 4
λ

1− q
K2P (Ak+1, Ak)

∥∥∥∥(1− q)Ak+1∇̃1/λg(xk)− µ

1 + λµ
Ak(x◦k−1 − x?) +

µ

1 + λµ
K3(zk − x?)

∥∥∥∥2
− 1

λ(1− q)
K1P (Ak+1, Ak)‖zk − x?‖2

+Ak

(
g(x◦k)− g(x◦k−1) +

〈
∇̃1/λg(xk), x◦k−1 − x◦k

〉
+
µ

2
‖x◦k−1 − x◦k‖2

)
+ (Ak+1 −Ak)

(
g(x◦k)− g? +

〈
∇̃1/λg(xk), x? − x◦k

〉
+
µ

2
‖x? − x◦k‖2

)
≤ 0
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where inequality follows from the strong convexity inequality,

K1 =
q2

(1 + q)2 + (1− q)2qAk+1

K2 =
(1 + q)2 + (1− q)2qAk+1

(1− q)2(1 + q + qAk)2A2
k+1

K3 = (1 + q)
(1 + q)Ak − (1− q)(2 + qAk)Ak+1

(1 + q)2 + (1− q)2qAk+1
,

P (x, y) = (y − (1 − q)x)2 − 4x(1 + qy) and P (Ak+1, Ak) = 0 by condition, and equality follows from
direct calculation.

The case U1 ≤ U0 follows from the same argument with x◦−1 = x0. Thus Uk+1 ≤ Uk for k = 0, 1, . . . .

H Other geometric and non-geometric views of acceleration

Geometric descent is an accelerated method designed expressly based on a geometric principle of shrinking
balls for the smooth strongly convex setup [13, 16, 42]. Quadratic averaging is equivalent to geometric
descent but has an interpretation of averaging quadratic lower bounds [30]. Both methods implicitly induce
the collinear structure through steps equivalent to defining zk+1 as a convex combination of zk and x++

k .
(In fact, our x++

k notation comes from the geometric descent paper [13].) However, this line of work does
not establish a rate faster than FGM or its corresponding proximal version, nor does it extend the geometric
principle to the non-strongly convex setup.

The method of similar triangles (MST) is an accelerated method [32, 60, 1] with iterates forming simi-
lar triangles analogous to our illustration of FGM in Figure 1. One can also interpret acceleration as an
approximate proximal point method with alternating upper and lower bounds and obtain the structure of
similar triangles as a consequence [1]. The parallel structure we present generalizes the structure of similar
triangles; the illustration of OGM and OGM-G in Figure 1 exhibits the parallel structure but not the similar
triangles structure. To the best of our knowledge, the parallel structure we present is a geometric structure of
acceleration that has not been considered, explicitly or implicitly, in prior works.

Linear coupling [4] interprets acceleration as a unification of gradient descent and mirror descent. The
auxiliary iterates of our setup are referred to as the mirror descent iterates in the linear coupling viewpoint.
However, the primary motivation of linear coupling is to unify gradient descent, which reduces the function
value much when the gradient is large, with mirror descent, which reduces the function value much when the
gradient is small. This motivation does not seem to be applicable to the problem setup of minimizing gradient
magnitudes, the setup of OGM-G and FISTA-G.

The scaled relative graph (SRG) is another geometric framework for analyzing optimization algorithms; it
establishes a correspondence between algebraic operations on nonlinear operators with geometric operations
on subsets of the 2D plane [66, 40, 41, 68]. The SRG demonstrated that geometry can serve as a powerful
tool for the analysis of optimization algorithms. However, there is no direct connection as the SRG has not
been used to analyze accelerated optimization algorithms.

I Experiment

For scientific reproducibility, we include code for generating the synthetic data of the experiments. We
furthermore clarify that since FPGM-m, FISTA, and FISTA+FISTA-G are not anytime algorithms (i.e., since
the total iteration count K must be known in advance), the points in the plot of Figure 4 were generated with
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a separate iteration. In other words, the plots for ISTA and FISTA were generated each with a single for-loop,
while the plots for FPGM-m, FISTA, and FISTA+FISTA-G were generated with nested double for-loops.

import numpy as np

np.random.seed(419)

#l1 norm problem data
m, n, k = 60, 100, 20 # dimensions
lamb = 0.1 # lasso penalty constant
L = 324
x_true = np.zeros(n)
x_true[:k] = np.random.randn(k)
np.random.shuffle(x_true)
[U,_] = np.linalg.qr(np.random.randn(m,m))
[V,_] = np.linalg.qr(np.random.randn(n,n))
Sigma = np.zeros((m,n))
np.fill_diagonal(Sigma,np.abs(np.random.randn(m)))
np.fill_diagonal(Sigma[m-3:m,m-3:m],np.sqrt(L))
A = U @ Sigma @ V.T
b = A@x_true + 0.01 * np.random.randn(m)

#nuclear problem data
m, n, k = 60, 20, 20 # dimensions
lamb = 0.1 # nuclear norm penalty constant
L = 400
n2 = int(n*(n+1)/2)
x_true = np.zeros(n2)
x_true[:k] = np.random.randn(k)
np.random.shuffle(x_true)
[U,_] = np.linalg.qr(np.random.randn(m,m))
[V,_] = np.linalg.qr(np.random.randn(n2,n2))
Sigma = np.zeros((m,n2))
np.fill_diagonal(Sigma,np.abs(np.random.randn(m)))
np.fill_diagonal(Sigma[m-3:m,m-3:m],np.sqrt(L))
A = U @ Sigma @ V.T
b = A@x_true + 0.01 * np.random.randn(m)
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